(** Formal Reasoning About Programs * Chapter 9: Compiler Correctness * Author: Adam Chlipala * License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *) Require Import Frap. Set Implicit Arguments. (* In this chapter, we'll work with a small variation on the imperative language * from the previous chapter. *) Inductive arith : Set := | Const (n : nat) | Var (x : var) | Plus (e1 e2 : arith) | Minus (e1 e2 : arith) | Times (e1 e2 : arith). Inductive cmd := | Skip | Assign (x : var) (e : arith) | Sequence (c1 c2 : cmd) | If (e : arith) (then_ else_ : cmd) | While (e : arith) (body : cmd) | Output (e : arith). (* The last constructor above is the new one, for generating an _output_ value, * say to display in a terminal. By including this operation, we create * interesting differences between the behaviors of different nonterminating * programs. A correct compiler should preserve these differences. *) (* The next span of notations and definitions is the same as last chapter. *) Coercion Const : nat >-> arith. Coercion Var : var >-> arith. Infix "+" := Plus : arith_scope. Infix "-" := Minus : arith_scope. Infix "*" := Times : arith_scope. Delimit Scope arith_scope with arith. Notation "x <- e" := (Assign x e%arith) (at level 75). Infix ";;" := Sequence (at level 76). (* This one changed slightly, to avoid parsing clashes. *) Notation "'when' e 'then' then_ 'else' else_ 'done'" := (If e%arith then_ else_) (at level 75, e at level 0). Notation "'while' e 'loop' body 'done'" := (While e%arith body) (at level 75). Definition valuation := fmap var nat. Fixpoint interp (e : arith) (v : valuation) : nat := match e with | Const n => n | Var x => match v $? x with | None => 0 | Some n => n end | Plus e1 e2 => interp e1 v + interp e2 v | Minus e1 e2 => interp e1 v - interp e2 v | Times e1 e2 => interp e1 v * interp e2 v end. Inductive context := | Hole | CSeq (C : context) (c : cmd). Inductive plug : context -> cmd -> cmd -> Prop := | PlugHole : forall c, plug Hole c c | PlugSeq : forall c C c' c2, plug C c c' -> plug (CSeq C c2) c (Sequence c' c2). (* Here's our first difference. We add a new parameter to [step0], giving a * _label_ that records which _externally visible effect_ the step has. For * this language, output is the only externally visible effect, so a label * records an optional output value. *) Inductive step0 : valuation * cmd -> option nat -> valuation * cmd -> Prop := | Step0Assign : forall v x e, step0 (v, Assign x e) None (v $+ (x, interp e v), Skip) | Step0Seq : forall v c2, step0 (v, Sequence Skip c2) None (v, c2) | Step0IfTrue : forall v e then_ else_, interp e v <> 0 -> step0 (v, If e then_ else_) None (v, then_) | Step0IfFalse : forall v e then_ else_, interp e v = 0 -> step0 (v, If e then_ else_) None (v, else_) | Step0WhileTrue : forall v e body, interp e v <> 0 -> step0 (v, While e body) None (v, Sequence body (While e body)) | Step0WhileFalse : forall v e body, interp e v = 0 -> step0 (v, While e body) None (v, Skip) | Step0Output : forall v e, step0 (v, Output e) (Some (interp e v)) (v, Skip). Inductive cstep : valuation * cmd -> option nat -> valuation * cmd -> Prop := | CStep : forall C v c l v' c' c1 c2, plug C c c1 -> step0 (v, c) l (v', c') -> plug C c' c2 -> cstep (v, c1) l (v', c2). (* To characterize correct compilation, it is helpful to define a relation to * capture which output _traces_ a command might generate. Note that, for us, a * trace is a list of output values, where [None] labels are simply dropped. *) Inductive generate : valuation * cmd -> list nat -> Prop := | GenDone : forall vc, generate vc [] | GenSilent : forall vc vc' ns, cstep vc None vc' -> generate vc' ns -> generate vc ns | GenOutput : forall vc n vc' ns, cstep vc (Some n) vc' -> generate vc' ns -> generate vc (n :: ns). Hint Constructors plug step0 cstep generate. Definition traceInclusion (vc1 vc2 : valuation * cmd) := forall ns, generate vc1 ns -> generate vc2 ns. Infix "<|" := traceInclusion (at level 70). Definition traceEquivalence (vc1 vc2 : valuation * cmd) := vc1 <| vc2 /\ vc2 <| vc1. Infix "=|" := traceEquivalence (at level 70). (** * Basic Simulation Arguments and Optimizing Expressions *) Fixpoint cfoldArith (e : arith) : arith := match e with | Const _ => e | Var _ => e | Plus e1 e2 => let e1' := cfoldArith e1 in let e2' := cfoldArith e2 in match e1', e2' with | Const n1, Const n2 => Const (n1 + n2) | _, _ => Plus e1' e2' end | Minus e1 e2 => let e1' := cfoldArith e1 in let e2' := cfoldArith e2 in match e1', e2' with | Const n1, Const n2 => Const (n1 - n2) | _, _ => Minus e1' e2' end | Times e1 e2 => let e1' := cfoldArith e1 in let e2' := cfoldArith e2 in match e1', e2' with | Const n1, Const n2 => Const (n1 * n2) | _, _ => Times e1' e2' end end. Theorem cfoldArith_ok : forall v e, interp (cfoldArith e) v = interp e v. Proof. induct e; simplify; try equality; repeat (match goal with | [ |- context[match ?E with _ => _ end] ] => cases E | [ H : _ = interp _ _ |- _ ] => rewrite <- H end; simplify); subst; ring. Qed. Fixpoint cfoldExprs (c : cmd) : cmd := match c with | Skip => c | Assign x e => Assign x (cfoldArith e) | Sequence c1 c2 => Sequence (cfoldExprs c1) (cfoldExprs c2) | If e then_ else_ => If (cfoldArith e) (cfoldExprs then_) (cfoldExprs else_) | While e body => While (cfoldArith e) (cfoldExprs body) | Output e => Output (cfoldArith e) end. Theorem skip_or_step : forall v c, c = Skip \/ exists v' l c', cstep (v, c) l (v', c'). Proof. induct c; simplify; first_order; subst; try match goal with | [ H : cstep _ _ _ |- _ ] => invert H end; try match goal with | [ |- context[cstep (?v, If ?e _ _)] ] => cases (interp e v ==n 0) | [ |- context[cstep (?v, While ?e _)] ] => cases (interp e v ==n 0) end; eauto 10. Qed. Lemma deterministic0 : forall vc l vc', step0 vc l vc' -> forall l' vc'', step0 vc l' vc'' -> l = l' /\ vc'' = vc'. Proof. invert 1; invert 1; simplify; propositional. Qed. Theorem plug_function : forall C c1 c2, plug C c1 c2 -> forall c2', plug C c1 c2' -> c2 = c2'. Proof. induct 1; invert 1; eauto. apply IHplug in H5. equality. Qed. Lemma peel_cseq : forall C1 C2 c (c1 c2 : cmd), C1 = C2 /\ c1 = c2 -> CSeq C1 c = CSeq C2 c /\ c1 = c2. Proof. equality. Qed. Hint Resolve peel_cseq. Lemma plug_deterministic : forall v C c1 c2, plug C c1 c2 -> forall l vc1, step0 (v, c1) l vc1 -> forall C' c1', plug C' c1' c2 -> forall l' vc1', step0 (v, c1') l' vc1' -> C' = C /\ c1' = c1. Proof. induct 1; invert 1; invert 1; invert 1; auto; try match goal with | [ H : plug _ _ _ |- _ ] => invert1 H end; eauto. Qed. Theorem deterministic : forall vc l vc', cstep vc l vc' -> forall l' vc'', cstep vc l' vc'' -> l = l' /\ vc' = vc''. Proof. invert 1; invert 1; simplify. eapply plug_deterministic in H0; eauto. invert H0. eapply deterministic0 in H1; eauto. propositional; subst; auto. invert H0. auto. eapply plug_function in H2; eauto. equality. Qed. Section simulation. Variable R : valuation * cmd -> valuation * cmd -> Prop. Hypothesis one_step : forall vc1 vc2, R vc1 vc2 -> forall vc1' l, cstep vc1 l vc1' -> exists vc2', cstep vc2 l vc2' /\ R vc1' vc2'. Hypothesis agree_on_termination : forall v1 v2 c2, R (v1, Skip) (v2, c2) -> c2 = Skip. Lemma simulation_fwd' : forall vc1 ns, generate vc1 ns -> forall vc2, R vc1 vc2 -> generate vc2 ns. Proof. induct 1; simplify; eauto. eapply one_step in H; eauto. first_order. eauto. eapply one_step in H1; eauto. first_order. eauto. Qed. Theorem simulation_fwd : forall vc1 vc2, R vc1 vc2 -> vc1 <| vc2. Proof. unfold traceInclusion; eauto using simulation_fwd'. Qed. Lemma simulation_bwd' : forall vc2 ns, generate vc2 ns -> forall vc1, R vc1 vc2 -> generate vc1 ns. Proof. induct 1; simplify; eauto. cases vc1; cases vc. assert (c = Skip \/ exists v' l c', cstep (v, c) l (v', c')) by apply skip_or_step. first_order; subst. apply agree_on_termination in H1; subst. invert H. invert H3. invert H4. specialize (one_step H1 H2). first_order. eapply deterministic in H; eauto. propositional; subst. eauto. cases vc1; cases vc. assert (c = Skip \/ exists v' l c', cstep (v, c) l (v', c')) by apply skip_or_step. first_order; subst. apply agree_on_termination in H1; subst. invert H. invert H3. invert H4. specialize (one_step H1 H2). first_order. eapply deterministic in H; eauto. propositional; subst. eauto. Qed. Theorem simulation_bwd : forall vc1 vc2, R vc1 vc2 -> vc2 <| vc1. Proof. unfold traceInclusion; eauto using simulation_bwd'. Qed. Theorem simulation : forall vc1 vc2, R vc1 vc2 -> vc1 =| vc2. Proof. simplify; split; auto using simulation_fwd, simulation_bwd. Qed. End simulation. Lemma cfoldExprs_ok' : forall v1 c1 l v2 c2, step0 (v1, c1) l (v2, c2) -> step0 (v1, cfoldExprs c1) l (v2, cfoldExprs c2). Proof. invert 1; simplify; try match goal with | [ _ : context[interp ?e ?v] |- _ ] => rewrite <- (cfoldArith_ok v e) in * | [ |- context[interp ?e ?v] ] => rewrite <- (cfoldArith_ok v e) end; eauto. Qed. Fixpoint cfoldExprsContext (C : context) : context := match C with | Hole => Hole | CSeq C c => CSeq (cfoldExprsContext C) (cfoldExprs c) end. Lemma plug_cfoldExprs1 : forall C c1 c2, plug C c1 c2 -> plug (cfoldExprsContext C) (cfoldExprs c1) (cfoldExprs c2). Proof. induct 1; simplify; eauto. Qed. Hint Resolve plug_cfoldExprs1. Lemma cfoldExprs_ok : forall v c, (v, c) =| (v, cfoldExprs c). Proof. simplify. apply simulation with (R := fun vc1 vc2 => fst vc1 = fst vc2 /\ snd vc2 = cfoldExprs (snd vc1)); simplify; propositional. invert H0; simplify; subst. apply cfoldExprs_ok' in H3. cases vc2; simplify; subst. eauto 7. Qed. (** * Simulations That Allow Skipping Steps *) Fixpoint cfold (c : cmd) : cmd := match c with | Skip => c | Assign x e => Assign x (cfoldArith e) | Sequence c1 c2 => Sequence (cfold c1) (cfold c2) | If e then_ else_ => let e' := cfoldArith e in match e' with | Const n => if n ==n 0 then cfold else_ else cfold then_ | _ => If e' (cfold then_) (cfold else_) end | While e body => While (cfoldArith e) (cfold body) | Output e => Output (cfoldArith e) end. Notation silent_cstep := (fun a b => cstep a None b). Lemma silent_generate_fwd : forall ns vc vc', silent_cstep^* vc vc' -> generate vc ns -> generate vc' ns. Proof. induct 1; simplify; eauto. invert H1; auto. eapply deterministic in H; eauto. propositional; subst. auto. eapply deterministic in H; eauto. equality. Qed. Lemma silent_generate_bwd : forall ns vc vc', silent_cstep^* vc vc' -> generate vc' ns -> generate vc ns. Proof. induct 1; eauto. Qed. Lemma generate_Skip : forall v a ns, generate (v, Skip) (a :: ns) -> False. Proof. induct 1; simplify. invert H. invert H3. invert H4. invert H. invert H3. invert H4. Qed. Hint Resolve silent_generate_fwd silent_generate_bwd generate_Skip. Section simulation_skipping. Variable R : nat -> valuation * cmd -> valuation * cmd -> Prop. Hypothesis one_step : forall n vc1 vc2, R n vc1 vc2 -> forall vc1' l, cstep vc1 l vc1' -> (exists n', n = S n' /\ l = None /\ R n' vc1' vc2) \/ exists n' vc2', cstep vc2 l vc2' /\ R n' vc1' vc2'. Hypothesis agree_on_termination : forall n v1 v2 c2, R n (v1, Skip) (v2, c2) -> c2 = Skip. Lemma simulation_skipping_fwd' : forall vc1 ns, generate vc1 ns -> forall n vc2, R n vc1 vc2 -> generate vc2 ns. Proof. induct 1; simplify; eauto. eapply one_step in H; eauto. first_order. eauto. eapply one_step in H1; eauto. first_order. equality. eauto. Qed. Theorem simulation_skipping_fwd : forall n vc1 vc2, R n vc1 vc2 -> vc1 <| vc2. Proof. unfold traceInclusion; eauto using simulation_skipping_fwd'. Qed. Lemma match_step : forall n vc2 l vc2' vc1, cstep vc2 l vc2' -> R n vc1 vc2 -> exists vc1' vc1'' n', silent_cstep^* vc1 vc1' /\ cstep vc1' l vc1'' /\ R n' vc1'' vc2'. Proof. induct n; simplify. cases vc1; cases vc2. assert (c = Skip \/ exists v' l' c', cstep (v, c) l' (v', c')) by apply skip_or_step. first_order; subst. apply agree_on_termination in H0; subst. invert H. invert H2. invert H3. eapply one_step in H0; eauto. first_order; subst. equality. eapply deterministic in H; eauto. first_order; subst. eauto 6. cases vc1; cases vc2. assert (c = Skip \/ exists v' l' c', cstep (v, c) l' (v', c')) by apply skip_or_step. first_order; subst. apply agree_on_termination in H0; subst. invert H. invert H2. invert H3. eapply one_step in H0; eauto. first_order; subst. invert H0. eapply IHn in H3; eauto. first_order. eauto 8. eapply deterministic in H; eauto. first_order; subst. eauto 6. Qed. Lemma simulation_skipping_bwd' : forall ns vc2, generate vc2 ns -> forall n vc1, R n vc1 vc2 -> generate vc1 ns. Proof. induct 1; simplify; eauto. eapply match_step in H1; eauto. first_order. eauto. eapply match_step in H1; eauto. first_order. eauto. Qed. Theorem simulation_skipping_bwd : forall n vc1 vc2, R n vc1 vc2 -> vc2 <| vc1. Proof. unfold traceInclusion; eauto using simulation_skipping_bwd'. Qed. Theorem simulation_skipping : forall n vc1 vc2, R n vc1 vc2 -> vc1 =| vc2. Proof. simplify; split; eauto using simulation_skipping_fwd, simulation_skipping_bwd. Qed. End simulation_skipping. Fixpoint countIfs (c : cmd) : nat := match c with | Skip => 0 | Assign _ _ => 0 | Sequence c1 c2 => countIfs c1 + countIfs c2 | If _ c1 c2 => 1 + countIfs c1 + countIfs c2 | While _ c1 => countIfs c1 | Output _ => 0 end. Hint Extern 1 (_ < _) => linear_arithmetic. Lemma cfold_ok' : forall v1 c1 l v2 c2, step0 (v1, c1) l (v2, c2) -> step0 (v1, cfold c1) l (v2, cfold c2) \/ (l = None /\ v1 = v2 /\ cfold c1 = cfold c2 /\ countIfs c2 < countIfs c1). Proof. invert 1; simplify; try match goal with | [ _ : context[interp ?e ?v] |- _ ] => rewrite <- (cfoldArith_ok v e) in * | [ |- context[interp ?e ?v] ] => rewrite <- (cfoldArith_ok v e) end; repeat match goal with | [ |- context[match ?E with _ => _ end] ] => cases E; subst; simplify end; propositional; eauto. Qed. Fixpoint cfoldContext (C : context) : context := match C with | Hole => Hole | CSeq C c => CSeq (cfoldContext C) (cfold c) end. Lemma plug_cfold1 : forall C c1 c2, plug C c1 c2 -> plug (cfoldContext C) (cfold c1) (cfold c2). Proof. induct 1; simplify; eauto. Qed. Hint Resolve plug_cfold1. Lemma plug_samefold : forall C c1 c1', plug C c1 c1' -> forall c2 c2', plug C c2 c2' -> cfold c1 = cfold c2 -> cfold c1' = cfold c2'. Proof. induct 1; invert 1; simplify; propositional. f_equal; eauto. Qed. Hint Resolve plug_samefold. Lemma plug_countIfs : forall C c1 c1', plug C c1 c1' -> forall c2 c2', plug C c2 c2' -> countIfs c1 < countIfs c2 -> countIfs c1' < countIfs c2'. Proof. induct 1; invert 1; simplify; propositional. apply IHplug in H5; linear_arithmetic. Qed. Hint Resolve plug_countIfs. Lemma cfold_ok : forall v c, (v, c) =| (v, cfold c). Proof. simplify. apply simulation_skipping with (R := fun n vc1 vc2 => fst vc1 = fst vc2 /\ snd vc2 = cfold (snd vc1) /\ countIfs (snd vc1) < n) (n := S (countIfs c)); simplify; propositional; auto. invert H0; simplify; subst. apply cfold_ok' in H4. propositional; subst. cases vc2; simplify; subst. eauto 11. cases vc2; simplify; subst. cases n; try linear_arithmetic. assert (countIfs c2 < n). eapply plug_countIfs in H2; eauto. eauto. eauto 10. Qed. (** * Simulations That Allow Taking Multiple Matching Steps *) Fixpoint tempVar (n : nat) : string := match n with | O => "_tmp" | S n' => tempVar n' ++ "'" end%string. Fixpoint noUnderscoreVar (x : var) : bool := match x with | String "_" _ => false | _ => true end. Lemma append_assoc : forall a b c, (a ++ (b ++ c) = (a ++ b) ++ c)%string. Proof. induct a; simplify; equality. Qed. Lemma append_assoc_String : forall a b, (String a b = String a "" ++ b)%string. Proof. induct b; simplify; equality. Qed. Lemma noUnderscoreVar_tempVar' : forall n, exists s, tempVar n = ("_tmp" ++ s)%string. Proof. induct n; simplify; first_order. exists ""; auto. rewrite H. exists (x ++ "'")%string. repeat match goal with | [ |- context[String ?c ?x] ] => match x with | "" => fail 1 | _ => rewrite (append_assoc_String c x) end end. repeat rewrite append_assoc. reflexivity. Qed. Theorem noUnderscoreVar_tempVar : forall x, noUnderscoreVar x = true -> forall n, x <> tempVar n. Proof. unfold not; simplify. subst. pose proof (noUnderscoreVar_tempVar' n). first_order. rewrite H0 in H. simplify. equality. Qed. Lemma tempVar_inj' : forall s1 s2, (s1 ++ "'" = s2 ++ "'")%string -> s1 = s2. Proof. induct s1; simplify. cases s2; simplify; try equality. invert H. cases s2; simplify; equality. cases s2; simplify. invert H. cases s1; simplify; equality. invert H. f_equal; auto. Qed. Theorem tempVar_inj : forall n1 n2, tempVar n1 = tempVar n2 -> n1 = n2. Proof. induct n1; simplify; cases n2; simplify; try equality. repeat match goal with | [ _ : context[(?s ++ "'")%string] |- _ ] => cases s; simplify; try equality end. repeat match goal with | [ _ : context[(?s ++ "'")%string] |- _ ] => cases s; simplify; try equality end. auto using tempVar_inj'. Qed. Fixpoint noUnderscoreArith (e : arith) : bool := match e with | Const _ => true | Var x => noUnderscoreVar x | Plus e1 e2 => noUnderscoreArith e1 && noUnderscoreArith e2 | Minus e1 e2 => noUnderscoreArith e1 && noUnderscoreArith e2 | Times e1 e2 => noUnderscoreArith e1 && noUnderscoreArith e2 end. Fixpoint noUnderscore (c : cmd) : bool := match c with | Skip => true | Assign x e => noUnderscoreVar x && noUnderscoreArith e | Sequence c1 c2 => noUnderscore c1 && noUnderscore c2 | If e then_ else_ => noUnderscoreArith e && noUnderscore then_ && noUnderscore else_ | While e body => noUnderscoreArith e && noUnderscore body | Output e => noUnderscoreArith e end. Fixpoint flattenArith (tempCount : nat) (dst : var) (e : arith) : nat * cmd := match e with | Const _ | Var _ => (tempCount, Assign dst e) | Plus e1 e2 => let x1 := tempVar tempCount in let (tempCount, c1) := flattenArith (S tempCount) x1 e1 in let x2 := tempVar tempCount in let (tempCount, c2) := flattenArith (S tempCount) x2 e2 in (tempCount, Sequence c1 (Sequence c2 (Assign dst (Plus x1 x2)))) | Minus e1 e2 => let x1 := tempVar tempCount in let (tempCount, c1) := flattenArith (S tempCount) x1 e1 in let x2 := tempVar tempCount in let (tempCount, c2) := flattenArith (S tempCount) x2 e2 in (tempCount, Sequence c1 (Sequence c2 (Assign dst (Minus x1 x2)))) | Times e1 e2 => let x1 := tempVar tempCount in let (tempCount, c1) := flattenArith (S tempCount) x1 e1 in let x2 := tempVar tempCount in let (tempCount, c2) := flattenArith (S tempCount) x2 e2 in (tempCount, Sequence c1 (Sequence c2 (Assign dst (Times x1 x2)))) end. Fixpoint flatten (c : cmd) : cmd := match c with | Skip => c | Assign x e => snd (flattenArith 0 x e) | Sequence c1 c2 => Sequence (flatten c1) (flatten c2) | If e then_ else_ => If e (flatten then_) (flatten else_) | While e body => While e (flatten body) | Output _ => c end. Section simulation_multiple. Variable R : valuation * cmd -> valuation * cmd -> Prop. Hypothesis one_step : forall vc1 vc2, R vc1 vc2 -> forall vc1' l, cstep vc1 l vc1' -> exists vc2' vc2'', silent_cstep^* vc2 vc2' /\ cstep vc2' l vc2'' /\ R vc1' vc2''. Hypothesis agree_on_termination : forall v1 v2 c2, R (v1, Skip) (v2, c2) -> c2 = Skip. Lemma simulation_multiple_fwd' : forall vc1 ns, generate vc1 ns -> forall vc2, R vc1 vc2 -> generate vc2 ns. Proof. induct 1; simplify; eauto. eapply one_step in H; eauto. first_order. eauto. eapply one_step in H1; eauto. first_order. eauto. Qed. Theorem simulation_multiple_fwd : forall vc1 vc2, R vc1 vc2 -> vc1 <| vc2. Proof. unfold traceInclusion; eauto using simulation_multiple_fwd'. Qed. (* A version of [generate] that counts how many steps run *) Inductive generateN : nat -> valuation * cmd -> list nat -> Prop := | GenDoneN : forall vc, generateN 0 vc [] | GenSilentN : forall sc vc vc' ns, cstep vc None vc' -> generateN sc vc' ns -> generateN (S sc) vc ns | GenOutputN : forall sc vc n vc' ns, cstep vc (Some n) vc' -> generateN sc vc' ns -> generateN (S sc) vc (n :: ns). Hint Constructors generateN. Lemma generateN_fwd : forall sc vc ns, generateN sc vc ns -> generate vc ns. Proof. induct 1; eauto. Qed. Hint Resolve generateN_fwd. Lemma generateN_bwd : forall vc ns, generate vc ns -> exists sc, generateN sc vc ns. Proof. induct 1; first_order; eauto. Qed. Lemma generateN_silent_cstep : forall sc vc ns, generateN sc vc ns -> forall vc', silent_cstep^* vc vc' -> exists sc', sc' <= sc /\ generateN sc' vc' ns. Proof. clear; induct 1; simplify; eauto. invert H1; eauto. eapply deterministic in H; eauto. propositional; subst. apply IHgenerateN in H3. first_order. eauto. invert H1; eauto. eapply deterministic in H; eauto. equality. Qed. Lemma simulation_multiple_bwd' : forall sc sc', sc' < sc -> forall vc2 ns, generateN sc' vc2 ns -> forall vc1, R vc1 vc2 -> generate vc1 ns. Proof. induct sc; simplify. linear_arithmetic. cases sc'. invert H0. auto. cases vc1; cases vc2. assert (c = Skip \/ exists v' l c', cstep (v, c) l (v', c')) by apply skip_or_step. first_order; subst. apply agree_on_termination in H1; subst. cases ns; auto. exfalso; eauto. eapply one_step in H1; eauto. first_order. eapply generateN_silent_cstep in H0; eauto. first_order. invert H5; auto. eapply deterministic in H3; eauto. propositional; subst. econstructor. eauto. eapply IHsc; try eassumption. linear_arithmetic. eapply deterministic in H3; eauto. propositional; subst. eapply GenOutput. eauto. eapply IHsc; try eassumption. linear_arithmetic. Qed. Theorem simulation_multiple_bwd : forall vc1 vc2, R vc1 vc2 -> vc2 <| vc1. Proof. unfold traceInclusion; simplify. apply generateN_bwd in H0. first_order. eauto using simulation_multiple_bwd'. Qed. Theorem simulation_multiple : forall vc1 vc2, R vc1 vc2 -> vc1 =| vc2. Proof. simplify; split; auto using simulation_multiple_fwd, simulation_multiple_bwd. Qed. End simulation_multiple.