(** Formal Reasoning About Programs * Chapter 8: Lambda Calculus and Simple Type Soundness * Author: Adam Chlipala * License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *) Require Import Frap. (* The last few chapters have focused on small programming languages that are * representative of the essence of the imperative languages. We now turn to * lambda-calculus, the usual representative of functional languages. *) Module Ulc. Inductive exp : Set := | Var (x : var) | Abs (x : var) (body : exp) | App (e1 e2 : exp). Fixpoint subst (rep : exp) (x : var) (e : exp) : exp := match e with | Var y => if string_dec y x then rep else Var y | Abs y e1 => Abs y (if y ==v x then e1 else subst rep x e1) | App e1 e2 => App (subst rep x e1) (subst rep x e2) end. (** * Big-step semantics *) Inductive eval : exp -> exp -> Prop := | BigAbs : forall x e, eval (Abs x e) (Abs x e) | BigApp : forall e1 x e1' e2 v2 v, eval e1 (Abs x e1') -> eval e2 v2 -> eval (subst v2 x e1') v -> eval (App e1 e2) v. Inductive value : exp -> Prop := | Value : forall x e, value (Abs x e). Hint Constructors eval value. Theorem value_eval : forall v, value v -> eval v v. Proof. invert 1; eauto. Qed. Hint Resolve value_eval. Theorem eval_value : forall e v, eval e v -> value v. Proof. induct 1; eauto. Qed. Hint Resolve eval_value. (* Some notations, to let us write more normal-looking lambda terms *) Coercion Var : var >-> exp. Notation "\ x , e" := (Abs x e) (at level 50). Infix "@" := App (at level 49, left associativity). (* Believe it or not, this is a Turing-complete language! Here's an example * nonterminating program. *) Example omega := (\"x", "x" @ "x") @ (\"x", "x" @ "x"). (** * Church Numerals, everyone's favorite example of lambda terms in * action *) (* Here are two curious definitions. *) Definition zero := \"f", \"x", "x". Definition plus1 := \"n", \"f", \"x", "f" @ ("n" @ "f" @ "x"). (* We can build up any natural number [n] as [plus1^n @ zero]. Let's prove * that, in fact, these definitions constitute a workable embedding of the * natural numbers in lambda-calculus. *) (* A term [plus^n @ zero] evaluates to something very close to what this * function returns. *) Fixpoint canonical' (n : nat) : exp := match n with | O => "x" | S n' => "f" @ ((\"f", \"x", canonical' n') @ "f" @ "x") end. (* This missing piece is this wrapper. *) Definition canonical n := \"f", \"x", canonical' n. (* Let's formalize our definition of what it means to represent a number. *) Definition represents (e : exp) (n : nat) := eval e (canonical n). (* Zero passes the test. *) Theorem zero_ok : represents zero 0. Proof. unfold zero, represents, canonical. simplify. econstructor. Qed. (* So does our successor operation. *) Theorem plus1_ok : forall e n, represents e n -> represents (plus1 @ e) (S n). Proof. unfold plus1, represents, canonical; simplify. econstructor. econstructor. eassumption. simplify. econstructor. Qed. (* What's basically going on here? The representation of number [n] is [N] * such that, for any function [f]: * N(f) = f^n * That is, we represent a number as its repeated-composition operator. * So, given a number, we can use it to repeat any operation. In particular, * to implement addition, we can just repeat [plus1]! *) Definition add := \"n", \"m", "n" @ plus1 @ "m". (* Our addition works properly on this test case. *) Example add_1_2 : exists v, eval (add @ (plus1 @ zero) @ (plus1 @ (plus1 @ zero))) v /\ eval (plus1 @ (plus1 @ (plus1 @ zero))) v. Proof. eexists; propositional. repeat (econstructor; simplify). repeat econstructor. Qed. (* By the way: since [canonical'] doesn't mention variable "m", substituting * for "m" has no effect. This fact will come in handy shortly. *) Lemma subst_m_canonical' : forall m n, subst m "m" (canonical' n) = canonical' n. Proof. induct n; simplify; equality. Qed. (* This inductive proof is the workhorse for the next result, so let's skip * ahead there. *) Lemma add_ok' : forall m n, eval (subst (\ "f", (\ "x", canonical' m)) "x" (subst (\ "n", (\ "f", (\ "x", "f" @ (("n" @ "f") @ "x")))) "f" (canonical' n))) (canonical (n + m)). Proof. induct n; simplify. econstructor. econstructor. econstructor. econstructor. econstructor. econstructor. econstructor. simplify. econstructor. econstructor. simplify. eassumption. simplify. econstructor. Qed. (* [add] properly encodes the usual addition. *) Theorem add_ok : forall n ne m me, represents ne n -> represents me m -> represents (add @ ne @ me) (n + m). Proof. unfold represents; simplify. econstructor. econstructor. econstructor. eassumption. simplify. econstructor. eassumption. simplify. econstructor. econstructor. econstructor. econstructor. simplify. econstructor. econstructor. rewrite subst_m_canonical'. apply add_ok'. Qed. (* Let's repeat the same exercise for multiplication. *) Definition mult := \"n", \"m", "n" @ (add @ "m") @ zero. Example mult_1_2 : exists v, eval (mult @ (plus1 @ zero) @ (plus1 @ (plus1 @ zero))) v /\ eval (plus1 @ (plus1 @ zero)) v. Proof. eexists; propositional. repeat (econstructor; simplify). repeat econstructor. Qed. Lemma mult_ok' : forall m n, eval (subst (\ "f", (\ "x", "x")) "x" (subst (\ "m", ((\ "f", (\ "x", canonical' m)) @ (\ "n", (\ "f", (\ "x", "f" @ (("n" @ "f") @ "x"))))) @ "m") "f" (canonical' n))) (canonical (n * m)). Proof. induct n; simplify. econstructor. econstructor. econstructor. econstructor. econstructor. econstructor. econstructor. simplify. econstructor. econstructor. simplify. eassumption. simplify. econstructor. econstructor. econstructor. econstructor. simplify. econstructor. econstructor. rewrite subst_m_canonical'. apply add_ok'. (* Note the recursive appeal to correctness of [add]. *) Qed. Theorem mult_ok : forall n ne m me, represents ne n -> represents me m -> represents (mult @ ne @ me) (n * m). Proof. unfold represents; simplify. econstructor. econstructor. econstructor. eassumption. simplify. econstructor. eassumption. simplify. econstructor. econstructor. econstructor. econstructor. econstructor. econstructor. simplify. econstructor. simplify. econstructor. econstructor. simplify. rewrite subst_m_canonical'. apply mult_ok'. Qed. (** * Small-step semantics with evaluation contexts *) Inductive context : Set := | Hole : context | App1 : context -> exp -> context | App2 : exp -> context -> context. Inductive plug : context -> exp -> exp -> Prop := | PlugHole : forall e, plug Hole e e | PlugApp1 : forall c e1 e2 e, plug c e1 e -> plug (App1 c e2) e1 (App e e2) | PlugApp2 : forall c e1 e2 e, value e1 -> plug c e2 e -> plug (App2 e1 c) e2 (App e1 e). Inductive step : exp -> exp -> Prop := | ContextBeta : forall c x e v e1 e2, value v -> plug c (App (Abs x e) v) e1 -> plug c (subst v x e) e2 -> step e1 e2. Hint Constructors plug step. (* Here we now go through a proof of equivalence between big- and small-step * semantics, though we won't spend any further commentary on it. *) Lemma step_eval'' : forall v c x e e1 e2 v0, value v -> plug c (App (Abs x e) v) e1 -> plug c (subst v x e) e2 -> eval e2 v0 -> eval e1 v0. Proof. induct c; invert 2; invert 1; simplify; eauto. invert H0; eauto. invert H0; eauto. Qed. Hint Resolve step_eval''. Lemma step_eval' : forall e1 e2, step e1 e2 -> forall v, eval e2 v -> eval e1 v. Proof. invert 1; simplify; eauto. Qed. Hint Resolve step_eval'. Theorem step_eval : forall e v, step^* e v -> value v -> eval e v. Proof. induct 1; eauto. Qed. Lemma plug_functional : forall C e e1, plug C e e1 -> forall e2, plug C e e2 -> e1 = e2. Proof. induct 1; invert 1; simplify; try f_equal; eauto. Qed. Lemma plug_mirror : forall C e e', plug C e e' -> forall e1, exists e1', plug C e1 e1'. Proof. induct 1; simplify; eauto. specialize (IHplug e0); first_order; eauto. specialize (IHplug e0); first_order; eauto. Qed. Fixpoint compose (C1 C2 : context) : context := match C2 with | Hole => C1 | App1 C2' e => App1 (compose C1 C2') e | App2 v C2' => App2 v (compose C1 C2') end. Lemma compose_ok : forall C1 C2 e1 e2 e3, plug C1 e1 e2 -> plug C2 e2 e3 -> plug (compose C1 C2) e1 e3. Proof. induct 2; simplify; eauto. Qed. Hint Resolve compose_ok. Lemma step_plug : forall e1 e2, step e1 e2 -> forall C e1' e2', plug C e1 e1' -> plug C e2 e2' -> step e1' e2'. Proof. invert 1; simplify; eauto. Qed. Lemma stepStar_plug : forall e1 e2, step^* e1 e2 -> forall C e1' e2', plug C e1 e1' -> plug C e2 e2' -> step^* e1' e2'. Proof. induct 1; simplify. assert (e1' = e2') by (eapply plug_functional; eassumption). subst. constructor. assert (exists y', plug C y y') by eauto using plug_mirror. invert H3. eapply step_plug in H. econstructor. eassumption. eapply IHtrc. eassumption. assumption. eassumption. assumption. Qed. Hint Resolve stepStar_plug eval_value. Theorem eval_step : forall e v, eval e v -> step^* e v. Proof. induct 1; eauto. eapply trc_trans. eapply stepStar_plug with (e1 := e1) (e2 := Abs x e1') (C := App1 Hole e2); eauto. eapply trc_trans. eapply stepStar_plug with (e1 := e2) (e2 := v2) (C := App2 (Abs x e1') Hole); eauto. eauto. Qed. End Ulc. Module Stlc. Inductive exp : Set := | Var (x : var) | Const (n : nat) | Plus (e1 e2 : exp) | Abs (x : var) (e1 : exp) | App (e1 e2 : exp). Inductive value : exp -> Prop := | VConst : forall n, value (Const n) | VAbs : forall x e1, value (Abs x e1). Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp := match e2 with | Var y => if y ==v x then e1 else Var y | Const n => Const n | Plus e2' e2'' => Plus (subst e1 x e2') (subst e1 x e2'') | Abs y e2' => Abs y (if y ==v x then e2' else subst e1 x e2') | App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'') end. Inductive context : Set := | Hole : context | Plus1 : context -> exp -> context | Plus2 : exp -> context -> context | App1 : context -> exp -> context | App2 : exp -> context -> context. Inductive plug : context -> exp -> exp -> Prop := | PlugHole : forall e, plug Hole e e | PlugPlus1 : forall e e' C e2, plug C e e' -> plug (Plus1 C e2) e (Plus e' e2) | PlugPlus2 : forall e e' v1 C, value v1 -> plug C e e' -> plug (Plus2 v1 C) e (Plus v1 e') | PlugApp1 : forall e e' C e2, plug C e e' -> plug (App1 C e2) e (App e' e2) | PlugApp2 : forall e e' v1 C, value v1 -> plug C e e' -> plug (App2 v1 C) e (App v1 e'). Inductive step0 : exp -> exp -> Prop := | Beta : forall x e v, value v -> step0 (App (Abs x e) v) (subst v x e) | Add : forall n1 n2, step0 (Plus (Const n1) (Const n2)) (Const (n1 + n2)). Inductive step : exp -> exp -> Prop := | StepRule : forall C e1 e2 e1' e2', plug C e1 e1' -> plug C e2 e2' -> step0 e1 e2 -> step e1' e2'. Definition trsys_of (e : exp) := {| Initial := {e}; Step := step |}. Inductive type := | Nat (* Numbers *) | Fun (dom ran : type) (* Functions *). Inductive hasty : fmap var type -> exp -> type -> Prop := | HtVar : forall G x t, G $? x = Some t -> hasty G (Var x) t | HtConst : forall G n, hasty G (Const n) Nat | HtPlus : forall G e1 e2, hasty G e1 Nat -> hasty G e2 Nat -> hasty G (Plus e1 e2) Nat | HtAbs : forall G x e1 t1 t2, hasty (G $+ (x, t1)) e1 t2 -> hasty G (Abs x e1) (Fun t1 t2) | HtApp : forall G e1 e2 t1 t2, hasty G e1 (Fun t1 t2) -> hasty G e2 t1 -> hasty G (App e1 e2) t2. Hint Constructors value plug step0 step hasty. (* Some notation to make it more pleasant to write programs *) Infix "-->" := Fun (at level 60, right associativity). Coercion Const : nat >-> exp. Infix "^+^" := Plus (at level 50). Coercion Var : var >-> exp. Notation "\ x , e" := (Abs x e) (at level 51). Infix "@" := App (at level 49, left associativity). (* Some examples of typed programs *) Example one_plus_one : hasty $0 (1 ^+^ 1) Nat. Proof. repeat (econstructor; simplify). Qed. Example add : hasty $0 (\"n", \"m", "n" ^+^ "m") (Nat --> Nat --> Nat). Proof. repeat (econstructor; simplify). Qed. Example eleven : hasty $0 ((\"n", \"m", "n" ^+^ "m") @ 7 @ 4) Nat. Proof. repeat (econstructor; simplify). Qed. Example seven_the_long_way : hasty $0 ((\"x", "x") @ (\"x", "x") @ 7) Nat. Proof. repeat (econstructor; simplify). Qed. (** * Let's prove type soundness. *) Definition unstuck e := value e \/ (exists e' : exp, step e e'). (* For class, we'll stick with this magic tactic, to save proving time. *) Ltac t0 := match goal with | [ H : ex _ |- _ ] => invert H | [ H : _ /\ _ |- _ ] => invert H | [ |- context[?x ==v ?y] ] => cases (x ==v y) | [ H : Some _ = Some _ |- _ ] => invert H | [ H : step _ _ |- _ ] => invert H | [ H : step0 _ _ |- _ ] => invert1 H | [ H : hasty _ ?e _, H' : value ?e |- _ ] => invert H'; invert H | [ H : hasty _ _ _ |- _ ] => invert1 H | [ H : plug _ _ _ |- _ ] => invert1 H end; subst. Ltac t := simplify; propositional; repeat (t0; simplify); try equality; eauto 6. Lemma progress : forall e t, hasty $0 e t -> value e \/ (exists e' : exp, step e e'). Proof. Admitted. (* Replacing a typing context with an equal one has no effect (useful to guide * proof search as a hint). *) Lemma hasty_change : forall G e t, hasty G e t -> forall G', G' = G -> hasty G' e t. Proof. t. Qed. Hint Resolve hasty_change. Lemma preservation : forall e1 e2, step e1 e2 -> forall t, hasty $0 e1 t -> hasty $0 e2 t. Proof. Admitted. Theorem safety : forall e t, hasty $0 e t -> invariantFor (trsys_of e) unstuck. Proof. simplify. (* Step 1: strengthen the invariant. In particular, the typing relation is * exactly the right stronger invariant! Our progress theorem proves the * required invariant inclusion. *) apply invariant_weaken with (invariant1 := fun e' => hasty $0 e' t). (* Step 2: apply invariant induction, whose induction step turns out to match * our preservation theorem exactly! *) apply invariant_induction; simplify. equality. eapply preservation. eassumption. assumption. simplify. eapply progress. eassumption. Qed. End Stlc.