mirror of
https://github.com/achlipala/frap.git
synced 2024-12-01 00:26:18 +00:00
218 lines
5.7 KiB
Coq
218 lines
5.7 KiB
Coq
Require Import Frap.
|
|
|
|
Set Implicit Arguments.
|
|
|
|
|
|
Inductive arith : Set :=
|
|
| Const (n : nat)
|
|
| Var (x : var)
|
|
| Plus (e1 e2 : arith)
|
|
| Minus (e1 e2 : arith)
|
|
| Times (e1 e2 : arith).
|
|
|
|
Inductive cmd :=
|
|
| Skip
|
|
| Assign (x : var) (e : arith)
|
|
| Sequence (c1 c2 : cmd)
|
|
| If (e : arith) (then_ else_ : cmd)
|
|
| While (e : arith) (body : cmd).
|
|
|
|
Coercion Const : nat >-> arith.
|
|
Coercion Var : var >-> arith.
|
|
Infix "+" := Plus : arith_scope.
|
|
Infix "-" := Minus : arith_scope.
|
|
Infix "*" := Times : arith_scope.
|
|
Delimit Scope arith_scope with arith.
|
|
Notation "x <- e" := (Assign x e%arith) (at level 75).
|
|
Infix ";;" := Sequence (at level 76). (* This one changed slightly, to avoid parsing clashes. *)
|
|
Notation "'when' e 'then' then_ 'else' else_ 'done'" := (If e%arith then_ else_) (at level 75, e at level 0).
|
|
Notation "'while' e 'loop' body 'done'" := (While e%arith body) (at level 75).
|
|
|
|
Definition valuation := fmap var nat.
|
|
Fixpoint interp (e : arith) (v : valuation) : nat :=
|
|
match e with
|
|
| Const n => n
|
|
| Var x =>
|
|
match v $? x with
|
|
| None => 0
|
|
| Some n => n
|
|
end
|
|
| Plus e1 e2 => interp e1 v + interp e2 v
|
|
| Minus e1 e2 => interp e1 v - interp e2 v
|
|
| Times e1 e2 => interp e1 v * interp e2 v
|
|
end.
|
|
|
|
Inductive eval : valuation -> cmd -> valuation -> Prop :=
|
|
| EvalSkip : forall v,
|
|
eval v Skip v
|
|
| EvalAssign : forall v x e,
|
|
eval v (Assign x e) (v $+ (x, interp e v))
|
|
| EvalSeq : forall v c1 v1 c2 v2,
|
|
eval v c1 v1
|
|
-> eval v1 c2 v2
|
|
-> eval v (Sequence c1 c2) v2
|
|
| EvalIfTrue : forall v e then_ else_ v',
|
|
interp e v <> 0
|
|
-> eval v then_ v'
|
|
-> eval v (If e then_ else_) v'
|
|
| EvalIfFalse : forall v e then_ else_ v',
|
|
interp e v = 0
|
|
-> eval v else_ v'
|
|
-> eval v (If e then_ else_) v'
|
|
| EvalWhileTrue : forall v e body v' v'',
|
|
interp e v <> 0
|
|
-> eval v body v'
|
|
-> eval v' (While e body) v''
|
|
-> eval v (While e body) v''
|
|
| EvalWhileFalse : forall v e body,
|
|
interp e v = 0
|
|
-> eval v (While e body) v.
|
|
|
|
Inductive step : valuation * cmd -> valuation * cmd -> Prop :=
|
|
| StepAssign : forall v x e,
|
|
step (v, Assign x e) (v $+ (x, interp e v), Skip)
|
|
| StepSeq1 : forall v c1 c2 v' c1',
|
|
step (v, c1) (v', c1')
|
|
-> step (v, Sequence c1 c2) (v', Sequence c1' c2)
|
|
| StepSeq2 : forall v c2,
|
|
step (v, Sequence Skip c2) (v, c2)
|
|
| StepIfTrue : forall v e then_ else_,
|
|
interp e v <> 0
|
|
-> step (v, If e then_ else_) (v, then_)
|
|
| StepIfFalse : forall v e then_ else_,
|
|
interp e v = 0
|
|
-> step (v, If e then_ else_) (v, else_)
|
|
| StepWhileTrue : forall v e body,
|
|
interp e v <> 0
|
|
-> step (v, While e body) (v, Sequence body (While e body))
|
|
| StepWhileFalse : forall v e body,
|
|
interp e v = 0
|
|
-> step (v, While e body) (v, Skip).
|
|
|
|
Hint Constructors trc step eval.
|
|
|
|
Lemma step_star_Seq : forall v c1 c2 v' c1',
|
|
step^* (v, c1) (v', c1')
|
|
-> step^* (v, Sequence c1 c2) (v', Sequence c1' c2).
|
|
Proof.
|
|
induct 1; eauto.
|
|
cases y; eauto.
|
|
Qed.
|
|
|
|
Hint Resolve step_star_Seq.
|
|
|
|
Theorem big_small : forall v c v', eval v c v'
|
|
-> step^* (v, c) (v', Skip).
|
|
Proof.
|
|
induct 1; eauto 6 using trc_trans.
|
|
Qed.
|
|
|
|
Lemma small_big'' : forall v c v' c', step (v, c) (v', c')
|
|
-> forall v'', eval v' c' v''
|
|
-> eval v c v''.
|
|
Proof.
|
|
induct 1; simplify;
|
|
repeat match goal with
|
|
| [ H : eval _ _ _ |- _ ] => invert1 H
|
|
end; eauto.
|
|
Qed.
|
|
|
|
Hint Resolve small_big''.
|
|
|
|
Lemma small_big' : forall v c v' c', step^* (v, c) (v', c')
|
|
-> forall v'', eval v' c' v''
|
|
-> eval v c v''.
|
|
Proof.
|
|
induct 1; eauto.
|
|
cases y; eauto.
|
|
Qed.
|
|
|
|
Hint Resolve small_big'.
|
|
|
|
Theorem small_big : forall v c v', step^* (v, c) (v', Skip)
|
|
-> eval v c v'.
|
|
Proof.
|
|
eauto.
|
|
Qed.
|
|
|
|
Definition trsys_of (v : valuation) (c : cmd) : trsys (valuation * cmd) := {|
|
|
Initial := {(v, c)};
|
|
Step := step
|
|
|}.
|
|
|
|
Inductive context :=
|
|
| Hole
|
|
| CSeq (C : context) (c : cmd).
|
|
|
|
Inductive plug : context -> cmd -> cmd -> Prop :=
|
|
| PlugHole : forall c, plug Hole c c
|
|
| PlugSeq : forall c C c' c2,
|
|
plug C c c'
|
|
-> plug (CSeq C c2) c (Sequence c' c2).
|
|
|
|
Inductive step0 : valuation * cmd -> valuation * cmd -> Prop :=
|
|
| Step0Assign : forall v x e,
|
|
step0 (v, Assign x e) (v $+ (x, interp e v), Skip)
|
|
| Step0Seq : forall v c2,
|
|
step0 (v, Sequence Skip c2) (v, c2)
|
|
| Step0IfTrue : forall v e then_ else_,
|
|
interp e v <> 0
|
|
-> step0 (v, If e then_ else_) (v, then_)
|
|
| Step0IfFalse : forall v e then_ else_,
|
|
interp e v = 0
|
|
-> step0 (v, If e then_ else_) (v, else_)
|
|
| Step0WhileTrue : forall v e body,
|
|
interp e v <> 0
|
|
-> step0 (v, While e body) (v, Sequence body (While e body))
|
|
| Step0WhileFalse : forall v e body,
|
|
interp e v = 0
|
|
-> step0 (v, While e body) (v, Skip).
|
|
|
|
Inductive cstep : valuation * cmd -> valuation * cmd -> Prop :=
|
|
| CStep : forall C v c v' c' c1 c2,
|
|
plug C c c1
|
|
-> step0 (v, c) (v', c')
|
|
-> plug C c' c2
|
|
-> cstep (v, c1) (v', c2).
|
|
|
|
Hint Constructors plug step0 cstep.
|
|
|
|
Theorem step_cstep : forall v c v' c',
|
|
step (v, c) (v', c')
|
|
-> cstep (v, c) (v', c').
|
|
Proof.
|
|
induct 1; repeat match goal with
|
|
| [ H : cstep _ _ |- _ ] => invert H
|
|
end; eauto.
|
|
Qed.
|
|
|
|
Hint Resolve step_cstep.
|
|
|
|
Lemma step0_step : forall v c v' c',
|
|
step0 (v, c) (v', c')
|
|
-> step (v, c) (v', c').
|
|
Proof.
|
|
invert 1; eauto.
|
|
Qed.
|
|
|
|
Hint Resolve step0_step.
|
|
|
|
Lemma cstep_step' : forall C c0 c,
|
|
plug C c0 c
|
|
-> forall v' c'0 v c', step0 (v, c0) (v', c'0)
|
|
-> plug C c'0 c'
|
|
-> step (v, c) (v', c').
|
|
Proof.
|
|
induct 1; simplify; repeat match goal with
|
|
| [ H : plug _ _ _ |- _ ] => invert1 H
|
|
end; eauto.
|
|
Qed.
|
|
|
|
Hint Resolve cstep_step'.
|
|
|
|
Theorem cstep_step : forall v c v' c',
|
|
cstep (v, c) (v', c')
|
|
-> step (v, c) (v', c').
|
|
Proof.
|
|
invert 1; eauto.
|
|
Qed.
|