frap/Sets.v

588 lines
16 KiB
Coq

Require Import Classical FunctionalExtensionality List.
Set Implicit Arguments.
Axiom prop_ext : forall P Q : Prop,
(P <-> Q) -> P = Q.
Section set.
Variable A : Type.
Definition set := A -> Prop.
Definition In (x : A) (s : set) := s x.
Definition constant (ls : list A) : set := fun x => List.In x ls.
Definition universe : set := fun _ => True.
Definition check (P : Prop) : set := fun _ => P.
Definition union (s1 s2 : set) : set := fun x => s1 x \/ s2 x.
Definition intersection (s1 s2 : set) : set := fun x => s1 x /\ s2 x.
Definition minus (s1 s2 : set) : set := fun x => s1 x /\ ~s2 x.
Definition complement (s : set) : set := fun x => ~s x.
Definition subseteq (s1 s2 : set) := forall x, s1 x -> s2 x.
Definition subset (s1 s2 : set) := subseteq s1 s2 /\ ~subseteq s2 s1.
Definition scomp (P : A -> Prop) : set := P.
Theorem sets_equal : forall s1 s2 : set, (forall x, s1 x <-> s2 x) -> s1 = s2.
Proof.
intros.
apply functional_extensionality; intros.
apply prop_ext; auto.
Qed.
End set.
Infix "\in" := In (at level 70).
Notation "{ }" := (constant nil).
Notation "{ x1 , .. , xN }" := (constant (cons x1 (.. (cons xN nil) ..))).
Notation "[ P ]" := (check P).
Infix "\cup" := union (at level 40).
Infix "\cap" := intersection (at level 40).
Infix "\setminus" := minus (at level 40).
Infix "\subseteq" := subseteq (at level 70).
Infix "\subset" := subset (at level 70).
Notation "[ x | P ]" := (scomp (fun x => P)).
Ltac sets' tac :=
unfold In, constant, universe, check, union, intersection, minus, complement, subseteq, subset, scomp in *;
tauto || intuition tac.
Ltac sets tac :=
try match goal with
| [ |- @eq (set _) _ _ ] => apply sets_equal; intro; split
end; sets' tac.
(** * Some of the usual properties of set operations *)
Section properties.
Variable A : Type.
Variable x : A.
Variables s1 s2 s3 : set A.
Theorem union_comm : s1 \cup s2 = s2 \cup s1.
Proof.
sets idtac.
Qed.
Theorem union_assoc : (s1 \cup s2) \cup s3 = s1 \cup (s2 \cup s3).
Proof.
sets idtac.
Qed.
Theorem intersection_comm : s1 \cap s2 = s2 \cap s1.
Proof.
sets idtac.
Qed.
Theorem intersection_assoc : (s1 \cap s2) \cap s3 = s1 \cap (s2 \cap s3).
Proof.
sets idtac.
Qed.
Theorem not_union : complement (s1 \cup s2) = complement s1 \cap complement s2.
Proof.
sets idtac.
Qed.
Theorem not_intersection : complement (s1 \cap s2) = complement s1 \cup complement s2.
Proof.
sets idtac.
Qed.
Theorem subseteq_refl : s1 \subseteq s1.
Proof.
unfold subseteq; eauto.
Qed.
Theorem subseteq_In : s1 \subseteq s2 -> x \in s1 -> x \in s2.
Proof.
unfold subseteq, In; eauto.
Qed.
Theorem cap_split : forall (P1 P2 : A -> Prop),
(forall s, P1 s \/ P2 s)
-> s1 \cap [s | P1 s] \subseteq s2
-> s1 \cap [s | P2 s] \subseteq s3
-> s1 \subseteq (s2 \cap [s | P1 s]) \cup (s3 \cap [s | P2 s]).
Proof.
intros; sets eauto.
specialize (H x0).
specialize (H0 x0).
specialize (H1 x0).
tauto.
Qed.
Variables ss1 ss2 : list A.
Theorem union_constant : constant ss1 \cup constant ss2 = constant (ss1 ++ ss2).
Proof.
unfold constant, union; simpl.
apply sets_equal; simpl; intuition.
Qed.
End properties.
Hint Resolve subseteq_refl subseteq_In.
(*Hint Rewrite union_constant.*)
(** * Removing duplicates from constant sets *)
Inductive removeDups A : list A -> list A -> Prop :=
| RdNil : removeDups nil nil
| RdNew : forall x ls ls',
~List.In x ls
-> removeDups ls ls'
-> removeDups (x :: ls) (x :: ls')
| RdDup : forall x ls ls',
List.In x ls
-> removeDups ls ls'
-> removeDups (x :: ls) ls'.
Theorem removeDups_fwd : forall A x (ls ls' : list A),
removeDups ls ls'
-> List.In x ls
-> List.In x ls'.
Proof.
induction 1; simpl; intuition.
subst; eauto.
Qed.
Theorem removeDups_bwd : forall A x (ls ls' : list A),
removeDups ls ls'
-> List.In x ls'
-> List.In x ls.
Proof.
induction 1; simpl; intuition.
Qed.
Theorem removeDups_ok : forall A (ls ls' : list A),
removeDups ls ls'
-> constant ls = constant ls'.
Proof.
intros.
apply sets_equal.
unfold constant; intuition eauto using removeDups_fwd, removeDups_bwd.
Qed.
Ltac someMatch ls :=
match ls with
| ?x :: ?ls' =>
let rec someMatch' ls :=
match ls with
| x :: _ => idtac
| _ :: ?ls' => someMatch' ls'
end
in someMatch' ls'
| _ :: ?ls' => someMatch ls'
end.
Ltac removeDups :=
match goal with
| [ |- context[constant ?ls] ] =>
someMatch ls;
erewrite (@removeDups_ok _ ls)
by repeat (apply RdNil
|| (apply RdNew; [ simpl; intuition congruence | ])
|| (apply RdDup; [ simpl; intuition congruence | ]))
end.
(** * Simplifying set subtraction with constant sets *)
Inductive doSubtract A : list A -> list A -> list A -> Prop :=
| DsNil : forall ls, doSubtract nil ls nil
| DsKeep : forall x ls ls0 ls',
~List.In x ls0
-> doSubtract ls ls0 ls'
-> doSubtract (x :: ls) ls0 (x :: ls')
| DsDrop : forall x ls ls0 ls',
List.In x ls0
-> doSubtract ls ls0 ls'
-> doSubtract (x :: ls) ls0 ls'.
Theorem doSubtract_fwd : forall A x (ls ls0 ls' : list A),
doSubtract ls ls0 ls'
-> List.In x ls
-> ~List.In x ls0
-> List.In x ls'.
Proof.
induction 1; simpl; intuition.
subst; eauto.
tauto.
Qed.
Theorem doSubtract_bwd1 : forall A x (ls ls0 ls' : list A),
doSubtract ls ls0 ls'
-> List.In x ls'
-> List.In x ls.
Proof.
induction 1; simpl; intuition.
Qed.
Theorem doSubtract_bwd2 : forall A x (ls ls0 ls' : list A),
doSubtract ls ls0 ls'
-> List.In x ls'
-> List.In x ls0
-> False.
Proof.
induction 1; simpl; intuition.
subst; eauto.
Qed.
Theorem doSubtract_ok : forall A (ls ls0 ls' : list A),
doSubtract ls ls0 ls'
-> constant ls \setminus constant ls0 = constant ls'.
Proof.
unfold minus.
intros.
apply sets_equal.
unfold constant; intuition eauto using doSubtract_fwd, doSubtract_bwd1, doSubtract_bwd2.
Qed.
Ltac fancy_neq :=
solve [ repeat match goal with
| [ H : @eq (nat -> _) _ _ |- _ ] => apply (f_equal (fun f => f 0)) in H
| [ H : _ = _ |- _ ] => inversion H; clear H; subst
end ].
Ltac doSubtract :=
match goal with
| [ |- context[constant ?ls \setminus constant ?ls0] ] =>
erewrite (@doSubtract_ok _ ls ls0)
by repeat (apply DsNil
|| (apply DsKeep; [ simpl; intuition (congruence || fancy_neq) | ])
|| (apply DsDrop; [ simpl; intuition congruence | ]))
end.
(** Undetermined set variables in fixed points should be turned into the empty set. *)
Ltac unifyTails :=
match goal with
| [ |- context[_ \cup ?x] ] => is_evar x;
match type of x with
| set ?A => unify x (constant (@nil A))
| ?A -> Prop => unify x (constant (@nil A))
end
end.
(** * But wait... there's a reflective way to do some of this, too. *)
Require Import Arith.
Import List ListNotations.
Section setexpr.
Variable A : Type.
Inductive setexpr :=
| Literal (vs : list nat)
| Constant (s : set A)
| Union (e1 e2 : setexpr).
Fixpoint interp_setexpr (env : list A) (e : setexpr) : set A :=
match e with
| Literal vs =>
match env with
| [] => {}
| x :: _ => constant (map (nth_default x env) vs)
end
| Constant s => s
| Union e1 e2 => interp_setexpr env e1 \cup interp_setexpr env e2
end.
Record normal_form := {
Elements : list nat;
Other : option (set A)
}.
Fixpoint member (n : nat) (ls : list nat) : bool :=
match ls with
| [] => false
| m :: ls' => (n =? m) || member n ls'
end.
Fixpoint dedup (ls : list nat) : list nat :=
match ls with
| [] => []
| n :: ls =>
let ls' := dedup ls in
if member n ls' then ls' else n :: ls'
end.
Fixpoint setmerge (ls1 ls2 : list nat) : list nat :=
match ls1 with
| [] => ls2
| n :: ls1' =>
if member n ls2 then setmerge ls1' ls2 else n :: setmerge ls1' ls2
end.
Fixpoint normalize_setexpr (e : setexpr) : normal_form :=
match e with
| Literal vs => {| Elements := dedup vs; Other := None |}
| Constant s => {| Elements := []; Other := Some s |}
| Union e1 e2 =>
let nf1 := normalize_setexpr e1 in
let nf2 := normalize_setexpr e2 in
{| Elements := setmerge nf1.(Elements) nf2.(Elements);
Other := match nf1.(Other), nf2.(Other) with
| None, None => None
| o, None => o
| None, o => o
| Some s1, Some s2 => Some (s1 \cup s2)
end |}
end.
Definition interp_normal_form (env : list A) (nf : normal_form) : set A :=
let cs := match env with
| [] => {}
| x :: _ => constant (map (nth_default x env) nf.(Elements))
end in
match nf.(Other) with
| None => cs
| Some o => cs \cup o
end.
Lemma member_ok : forall n ns,
if member n ns then In n ns else ~In n ns.
Proof.
induction ns; simpl; intuition.
case_eq (n =? a); simpl; intros.
apply beq_nat_true in H; auto.
apply beq_nat_false in H.
destruct (member n ns); intuition.
Qed.
Lemma In_dedup_fwd : forall n ns,
In n (dedup ns)
-> In n ns.
Proof.
induction ns; simpl; intuition.
pose proof (member_ok a (dedup ns)).
destruct (member a (dedup ns)); simpl in *; intuition.
Qed.
Lemma In_dedup_bwd : forall n ns,
In n ns
-> In n (dedup ns).
Proof.
induction ns; simpl; intuition.
pose proof (member_ok a (dedup ns)).
destruct (member a (dedup ns)); simpl in *; intuition congruence.
pose proof (member_ok a (dedup ns)).
destruct (member a (dedup ns)); simpl in *; intuition congruence.
Qed.
Lemma constant_dedup : forall (f : _ -> A) vs,
constant (map f (dedup vs)) = constant (map f vs).
Proof.
induction vs; simpl; intuition.
pose proof (member_ok a (dedup vs)).
case_eq (member a (dedup vs)); intro.
rewrite IHvs.
rewrite H0 in H.
apply In_dedup_fwd in H.
apply sets_equal.
unfold constant.
simpl.
intuition.
apply in_map_iff.
eauto.
simpl.
apply sets_equal.
simpl.
intuition congruence.
Qed.
Lemma constant_map_setmerge : forall (f : _ -> A) ns2 ns1,
constant (map f (setmerge ns1 ns2)) = constant (map f ns1) \cup constant (map f ns2).
Proof.
induction ns1; simpl; intros.
sets ltac:(simpl in *; intuition).
pose proof (member_ok a ns2).
destruct (member a ns2).
rewrite IHns1.
sets ltac:(simpl in *; intuition).
right.
eapply in_map_iff; eauto.
simpl.
sets ltac:(simpl in *; intuition).
change (In x (map f (setmerge ns1 ns2))) with ((fun x => In x (map f (setmerge ns1 ns2))) x) in H1.
rewrite IHns1 in H1.
tauto.
change (In x (map f (setmerge ns1 ns2))) with ((fun x => In x (map f (setmerge ns1 ns2))) x).
rewrite IHns1.
tauto.
change (In x (map f (setmerge ns1 ns2))) with ((fun x => In x (map f (setmerge ns1 ns2))) x).
rewrite IHns1.
tauto.
Qed.
Theorem normalize_setexpr_ok : forall env e,
interp_normal_form env (normalize_setexpr e) = interp_setexpr env e.
Proof.
induction e; simpl; intros.
unfold interp_normal_form; simpl.
destruct env; trivial.
apply constant_dedup.
unfold interp_normal_form; simpl.
destruct env; sets ltac:(simpl in *; intuition).
unfold interp_normal_form in *; simpl in *.
destruct (Other (normalize_setexpr e1)), (Other (normalize_setexpr e2)).
destruct env.
rewrite <- IHe1.
rewrite <- IHe2.
sets ltac:(simpl in *; intuition).
rewrite <- IHe1.
rewrite <- IHe2.
rewrite constant_map_setmerge.
sets ltac:(simpl in *; intuition).
destruct env.
rewrite <- IHe1.
rewrite <- IHe2.
sets ltac:(simpl in *; intuition).
rewrite constant_map_setmerge.
rewrite <- IHe1.
rewrite <- IHe2.
sets ltac:(simpl in *; intuition).
destruct env.
rewrite <- IHe1.
rewrite <- IHe2.
sets ltac:(simpl in *; intuition).
rewrite constant_map_setmerge.
rewrite <- IHe1.
rewrite <- IHe2.
sets ltac:(simpl in *; intuition).
destruct env.
rewrite <- IHe1.
rewrite <- IHe2.
sets ltac:(simpl in *; intuition).
rewrite constant_map_setmerge.
rewrite <- IHe1.
rewrite <- IHe2.
sets ltac:(simpl in *; intuition).
Qed.
Fixpoint included (ns1 ns2 : list nat) : bool :=
match ns1 with
| [] => true
| n :: ns1' => member n ns2 && included ns1' ns2
end.
Lemma included_true : forall ns2 ns1,
included ns1 ns2 = true
-> (forall x, In x ns1 -> In x ns2).
Proof.
induction ns1; simpl; intuition subst.
pose proof (member_ok x ns2).
destruct (member x ns2); simpl in *; auto; congruence.
pose proof (member_ok a ns2).
destruct (member a ns2); simpl in *; auto; congruence.
Qed.
Require Import Bool.
Theorem compare_sets : forall env e1 e2,
let nf1 := normalize_setexpr e1 in
let nf2 := normalize_setexpr e2 in
match Other nf1, Other nf2 with
| None, None => included nf1.(Elements) nf2.(Elements)
&& included nf2.(Elements) nf1.(Elements) = true
| _, _ => False
end
-> interp_setexpr env e1 = interp_setexpr env e2.
Proof.
intros.
do 2 rewrite <- normalize_setexpr_ok.
subst nf1.
subst nf2.
unfold interp_normal_form.
destruct (Other (normalize_setexpr e1)), (Other (normalize_setexpr e2)); intuition.
destruct env; trivial.
apply andb_true_iff in H; intuition.
specialize (included_true _ _ H0).
specialize (included_true _ _ H1).
clear H0 H1.
intros.
apply sets_equal.
unfold constant; simpl; intuition.
apply in_map_iff.
apply in_map_iff in H1.
firstorder.
apply in_map_iff.
apply in_map_iff in H1.
firstorder.
Qed.
End setexpr.
Ltac quote E env k :=
let T := type of E in
match eval hnf in T with
| ?A -> Prop =>
let rec lookup E env k :=
match env with
| [] => k 0 [E]
| E :: _ => k 0 env
| ?E' :: ?env' =>
lookup E env' ltac:(fun pos env'' => k (S pos) (E' :: env''))
end in
let rec lookups Es env k :=
match Es with
| [] => k (@nil nat) env
| ?E :: ?Es' =>
lookup E env ltac:(fun pos env' =>
lookups Es' env' ltac:(fun poss env'' =>
k (pos :: poss) env''))
end in
let rec quote' E env k :=
match E with
| constant ?Es =>
lookups Es env ltac:(fun poss env' => k (Literal A poss) env')
| ?E1 \cup ?E2 =>
quote' E1 env ltac:(fun e1 env' =>
quote' E2 env' ltac:(fun e2 env'' =>
k (Union e1 e2) env''))
| _ =>
(let pf := constr:(eq_refl : E = {}) in
k (Literal A []) env)
|| k (Constant E) env
end in
quote' E env k
end.
Ltac normalize_set :=
match goal with
| [ |- context[@union ?A ?X ?Y] ] =>
quote (@union A X Y) (@nil A) ltac:(fun e env =>
change (@union A X Y) with (interp_setexpr env e);
rewrite <- normalize_setexpr_ok;
cbv beta iota zeta delta [interp_normal_form normalize_setexpr nth_default
setmerge Elements Other nth_error map dedup member beq_nat orb])
end.
Ltac compare_sets :=
match goal with
| [ |- @eq ?T ?X ?Y ] =>
match eval hnf in T with
| ?A -> _ =>
quote X (@nil A) ltac:(fun x env =>
quote Y env ltac:(fun y env' =>
change (interp_setexpr env' x = interp_setexpr env' y);
apply compare_sets; reflexivity))
end
end.