frap/SharedMemory.v
2017-02-07 20:51:13 -05:00

1786 lines
50 KiB
Coq

(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
* Chapter 13: Operational Semantics for Shared-Memory Concurrency
* Author: Adam Chlipala
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
Require Import Frap.
Set Implicit Arguments.
Set Asymmetric Patterns.
(** * Shared notations and definitions; main material starts afterward. *)
Notation "m $! k" := (match m $? k with Some n => n | None => O end) (at level 30).
Definition heap := fmap nat nat.
Hint Extern 1 (_ <= _) => linear_arithmetic.
Hint Extern 1 (@eq nat _ _) => linear_arithmetic.
(** * An object language with shared-memory concurrency *)
(* We're going to start investigating how to verify concurrent programs whose
* behavior is given with operational semantics. There are a variety of
* different concurrency styles out there, with their distinctive practical and
* theoretical benefits; we'll start with the most venerable style, shared
* memory. *)
(* We'll build on the mixed-embedding languages from the last two chapter.
* Let's simplify the encoding by only working with commands that generate
* [nat]. *)
Inductive cmd :=
| Return (r : nat)
| Bind (c1 : cmd) (c2 : nat -> cmd)
| Read (a : nat)
| Write (a v : nat)
| Fail
(* Now here's the new part: parallel composition of commands. *)
| Par (c1 c2 : cmd)
(* Let's also add locking commands, where locks are named by [nat]s. *)
| Lock (a : nat)
| Unlock (a : nat).
Notation "x <- c1 ; c2" := (Bind c1 (fun x => c2)) (right associativity, at level 80).
Infix "||" := Par.
(* As the program runs, it has not just a heap but also a set of locks that are
* taken at that moment. *)
Definition locks := set nat.
(* The first few rules below are basically the same as in last chapter, except
* that we relax the restriction on only reading/writing addresses that are
* explicitly mapped into the heap. *)
Inductive step : heap * locks * cmd -> heap * locks * cmd -> Prop :=
| StepBindRecur : forall c1 c1' c2 h h' l l',
step (h, l, c1) (h', l', c1')
-> step (h, l, Bind c1 c2) (h', l', Bind c1' c2)
| StepBindProceed : forall v c2 h l,
step (h, l, Bind (Return v) c2) (h, l, c2 v)
| StepRead : forall h l a,
step (h, l, Read a) (h, l, Return (h $! a))
| StepWrite : forall h l a v,
step (h, l, Write a v) (h $+ (a, v), l, Return 0)
(* First interesting twist: we can "push steps through" the [Par] operator on
* either side. The choice of a side is the sole source of nondeterminism in
* this semantics, corresponding to the whims of a scheduler. *)
| StepParRecur1 : forall h l c1 c2 h' l' c1',
step (h, l, c1) (h', l', c1')
-> step (h, l, Par c1 c2) (h', l', Par c1' c2)
| StepParRecur2 : forall h l c1 c2 h' l' c2',
step (h, l, c2) (h', l', c2')
-> step (h, l, Par c1 c2) (h', l', Par c1 c2')
(* To take a lock, it must not be held; and vice versa for releasing a lock. *)
| StepLock : forall h l a,
~a \in l
-> step (h, l, Lock a) (h, l \cup {a}, Return 0)
| StepUnlock : forall h l a,
a \in l
-> step (h, l, Unlock a) (h, l \setminus {a}, Return 0).
Definition trsys_of (h : heap) (l : locks) (c : cmd) := {|
Initial := {(h, l, c)};
Step := step
|}.
(** * An example *)
(* In this lecture, we'll focus on model checking as our program-proof
* technique. Recall that model checking is all about reducing a problem to a
* reachability question in a finite-state system. Our programs here have the
* (perhaps surprising!) property that termination is guaranteed, for any
* initial state, regardless of how the scheduler behaves. Therefore, all
* programs of this language are finite-state and thus, in principle, amenable
* to model checking! (We were careful to leave out looping constructs.)
* Let's define a simple two-thread program and model-check it. *)
(* Throughout this file, we'll only be verifying that no thread could ever reach
* a [Fail] command that is next in line to execute, a property that is easy to
* phrase as an invariant of the transition system. Here's how to compute
* whether a command is about to fail. *)
Fixpoint notAboutToFail (c : cmd) : bool :=
match c with
| Fail => false
| Bind c1 _ => notAboutToFail c1
| Par c1 c2 => notAboutToFail c1 && notAboutToFail c2
| _ => true
end.
Example two_increments_thread :=
_ <- Lock 0;
n <- Read 0;
if n <=? 1 then
_ <- Write 0 (n + 1);
Unlock 0
else
Fail.
Example two_increments := two_increments_thread || two_increments_thread.
(* Next, we do one of our standard boring (and slow; sorry!) model-checking
* proofs, where tactics explore the finite state space for us. *)
Theorem two_increments_ok :
invariantFor (trsys_of $0 {} two_increments)
(fun p => let '(_, _, c) := p in
notAboutToFail c = true).
Proof.
unfold two_increments, two_increments_thread.
simplify.
eapply invariant_weaken.
apply multiStepClosure_ok; simplify.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_done.
simplify.
propositional; subst; equality.
Qed.
(* Notice how every step of the process needs to consider all possibilities of
* threads that could run next, which, in general, gives us state spaces of size
* *exponential* in the program-text length. That's really a shame from a
* performance perspective, isn't it? Our goal now will be to apply
* *optimizations* that show equivalence with alternative transition systems
* whose state spaces are smaller. By the end, we'll be able to check
* nontrivial concurrent programs by only computing state spaces with *linear*
* size in program-text length! (The catch is that the technique only applies
* for programs accepted by a simple static analysis.) *)
(** * Optimization #1: always run all purely local actions first. *)
(* Here's a function that, in a single go, performs all simplifications that are
* *thread-local*. That is, no other thread can observe those steps, as they
* don't touch the heap or lockset. *)
Fixpoint runLocal (c : cmd) : cmd :=
match c with
| Return _ => c
| Bind c1 c2 =>
match runLocal c1 with
| Return v => runLocal (c2 v)
| c1' => Bind c1' c2
end
| Read _ => c
| Write _ _ => c
| Fail => c
| Par c1 c2 => Par (runLocal c1) (runLocal c2)
| Lock _ => c
| Unlock _ => c
end.
(* We can define an alternative step relation that always runs [runLocal] as a
* kind of postprocessing on the new command. This way, the model checker won't
* need to run separate exploration steps for all of those trivial
* simplifications. *)
Inductive stepL : heap * locks * cmd -> heap * locks * cmd -> Prop :=
| StepL : forall h l c h' l' c',
step (h, l, c) (h', l', c')
-> stepL (h, l, c) (h', l', runLocal c').
Definition trsys_ofL (h : heap) (l : locks) (c : cmd) := {|
Initial := {(h, l, runLocal c)};
Step := stepL
|}.
(* Now we prove some basic facts; commentary resumes before [step_runLocal]. *)
Hint Constructors step stepL.
Lemma run_Return : forall h l r h' l' c,
step^* (h, l, Return r) (h', l', c)
-> h' = h /\ l' = l /\ c = Return r.
Proof.
induct 1; eauto.
invert H.
Qed.
Lemma run_Bind : forall h l c1 c2 h' l' c',
step^* (h, l, Bind c1 c2) (h', l', c')
-> (exists c1', step^* (h, l, c1) (h', l', c1')
/\ c' = Bind c1' c2)
\/ (exists h'' l'' r, step^* (h, l, c1) (h'', l'', Return r)
/\ step^* (h'', l'', c2 r) (h', l', c')).
Proof.
induct 1; eauto.
invert H; eauto 10.
Ltac inst H :=
repeat match type of H with
| _ = _ -> _ => specialize (H eq_refl)
| forall x : ?T, _ =>
let y := fresh in evar (y : T); let y' := eval unfold y in y in
specialize (H y'); clear y
end.
inst IHtrc.
first_order; eauto 10.
Qed.
Lemma StepBindRecur_star : forall c1 c1' c2 h h' l l',
step^* (h, l, c1) (h', l', c1')
-> step^* (h, l, Bind c1 c2) (h', l', Bind c1' c2).
Proof.
induct 1; eauto.
cases y.
cases p.
eauto.
Qed.
Lemma StepParRecur1_star : forall h l c1 c2 h' l' c1',
step^* (h, l, c1) (h', l', c1')
-> step^* (h, l, Par c1 c2) (h', l', Par c1' c2).
Proof.
induct 1; eauto.
cases y.
cases p.
eauto.
Qed.
Lemma StepParRecur2_star : forall h l c1 c2 h' l' c2',
step^* (h, l, c2) (h', l', c2')
-> step^* (h, l, Par c1 c2) (h', l', Par c1 c2').
Proof.
induct 1; eauto.
cases y.
cases p.
eauto.
Qed.
Hint Resolve StepBindRecur_star StepParRecur1_star StepParRecur2_star.
Lemma runLocal_idem : forall c, runLocal (runLocal c) = runLocal c.
Proof.
induct c; simplify; eauto.
cases (runLocal c); simplify; eauto.
rewrite IHc; auto.
rewrite IHc; auto.
equality.
Qed.
(* The key correctnss property: when an original step takes place, either it
* has no effect or can be duplicated when we apply [runLocal] both *before* and
* *after* the step. *)
Lemma step_runLocal : forall h l c h' l' c',
step (h, l, c) (h', l', c')
-> (runLocal c = runLocal c' /\ h = h' /\ l = l')
\/ exists c'', step (h, l, runLocal c) (h', l', c'')
/\ runLocal c'' = runLocal c'.
Proof.
induct 1; simplify; first_order; eauto.
rewrite H0; equality.
cases (runLocal c1).
invert H0.
rewrite <- H1; eauto.
rewrite <- H1; eauto.
rewrite <- H1; eauto.
rewrite <- H1; eauto.
rewrite <- H1; eauto.
rewrite <- H1; eauto.
rewrite <- H1; eauto.
rewrite H0; equality.
right; eexists; propositional.
eauto.
simplify.
rewrite runLocal_idem; equality.
equality.
right; eexists; propositional.
eauto.
simplify.
rewrite runLocal_idem; equality.
Qed.
(* That was the main punchline. Commentary resumes at [step_stepL]. *)
Lemma step_stepL' : forall h l c h' l' c',
step^* (h, l, c) (h', l', c')
-> stepL^* (h, l, runLocal c) (h', l', runLocal c').
Proof.
induct 1; simplify; eauto.
cases y.
cases p.
inst IHtrc.
apply step_runLocal in H; first_order; subst.
rewrite H; eauto.
econstructor.
econstructor.
eauto.
equality.
Qed.
Theorem notAboutToFail_runLocal : forall c,
notAboutToFail (runLocal c) = true
-> notAboutToFail c = true.
Proof.
induct c; simplify; auto.
cases (runLocal c); simplify; auto.
cases (runLocal c1); simplify; auto; propositional;
repeat match goal with
| [ H : _ |- _ ] => apply andb_true_iff in H; propositional
| [ H : _ = _ |- _ ] => rewrite H
end; try equality.
Qed.
(* The key proof principle: to verify a can-never-fail invariant for the
* original semantics, it suffices to verify it for the new semantics
* instead. *)
Theorem step_stepL : forall h l c ,
invariantFor (trsys_ofL h l c) (fun p => let '(_, _, c) := p in
notAboutToFail c = true)
-> invariantFor (trsys_of h l c) (fun p =>
let '(_, _, c) := p in
notAboutToFail c = true).
Proof.
unfold invariantFor; simplify.
propositional; subst.
cases s'.
cases p.
apply step_stepL' in H1.
apply H in H1; eauto using notAboutToFail_runLocal.
Qed.
(* Now watch as we verify that last example in fewer steps, with a smaller
* invariant! *)
Theorem two_increments_ok_again :
invariantFor (trsys_of $0 {} two_increments)
(fun p => let '(_, _, c) := p in
notAboutToFail c = true).
Proof.
apply step_stepL.
unfold two_increments, two_increments_thread.
simplify.
eapply invariant_weaken.
apply multiStepClosure_ok; simplify.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_done.
simplify.
propositional; subst; equality.
Qed.
(** * Optimization #2: partial-order reduction *)
(* There was a key property lurking behind the soundness proof of our last
* optimization: *commutativity*, one of the most common ways to tame the
* state-space explosion from concurrency scheduling. Specifically, the local
* steps performed by [runLocal] all *commute* with any steps taken in other
* threads, because they are agnostic to shared state. Can we generalize the
* technique to also harness commutativity of operations that *do* depend on the
* shared state, but in particular controlled ways? Why, yes we can! The most
* popular such technique from the model-checking world is
* *partial order reduction*. *)
(* First, here's an example where we should be able to do better than allowing
* either thread to run in every step, as we model-check. *)
Example independent_threads :=
(a <- Read 0;
_ <- Write 1 (a + 1);
a <- Read 1;
if a ==n 1 then
Return 0
else
Fail)
|| (b <- Read 2;
Write 2 (b + 1)).
(* Unfortunately, our existing model-checker does in fact follow the
* "exponential" strategy to build the state space. *)
Theorem independent_threads_ok :
invariantFor (trsys_of $0 {} independent_threads)
(fun p => let '(_, _, c) := p in
notAboutToFail c = true).
Proof.
apply step_stepL.
unfold independent_threads.
simplify.
eapply invariant_weaken.
apply multiStepClosure_ok; simplify.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_done.
simplify.
propositional; subst; equality.
Qed.
(* It turns out that we can actually do model-checking where at each point we
* only explore the result of running *the first thread that is ready*! Such a
* strategy isn't sound for all programs, but it is for our example here. Why?
* Every pair of atomic actions between threads *commutes*. That is, neither
* one affects whether the other is enabled to execute (the way that one [Lock]
* can disable another), and running the two actions in either order modifies
* shared state identically. In such a case, we may always pick our favorite
* thread to step next. *)
(* To make all that formal, we will do some static program analyze to summarize
* which atomic actions a thread might take. *)
Record summary := {
Reads : set nat;
Writes : set nat;
Locks : set nat
}.
(* Here is a relation to check the accuracy of a summary for a single thread. *)
Inductive summarize : cmd -> summary -> Prop :=
| SumReturn : forall r s,
summarize (Return r) s
| SumFail : forall s,
summarize Fail s
| SumBind : forall c1 c2 s,
summarize c1 s
-> (forall r, summarize (c2 r) s)
-> summarize (Bind c1 c2) s
| SumRead : forall a s,
a \in s.(Reads)
-> summarize (Read a) s
| SumWrite : forall a v s,
a \in s.(Writes)
-> summarize (Write a v) s
| SumLock : forall a s,
a \in s.(Locks)
-> summarize (Lock a) s
| SumUnlock : forall a s,
a \in s.(Locks)
-> summarize (Unlock a) s.
(* And here's one to check the accuracy of a summary for a list of threads.
* Each thread is packaged with its verified summary in the list. *)
Inductive summarizeThreads : cmd -> list (cmd * summary) -> Prop :=
| StPar : forall c1 c2 ss1 ss2,
summarizeThreads c1 ss1
-> summarizeThreads c2 ss2
-> summarizeThreads (Par c1 c2) (ss1 ++ ss2)
| StAtomic : forall c s,
summarize c s
-> summarizeThreads c [(c, s)].
(* We will use these expanded lists as the command type in the new semantics. *)
(* To check commutativity, it is helpful to know which atomic command a thread
* could run next. *)
Inductive nextAction : cmd -> cmd -> Prop :=
| NaReturn : forall r,
nextAction (Return r) (Return r)
| NaFail :
nextAction Fail Fail
| NaRead : forall a,
nextAction (Read a) (Read a)
| NaWrite : forall a v,
nextAction (Write a v) (Write a v)
| NaLock : forall l,
nextAction (Lock l) (Lock l)
| NaUnlock : forall l,
nextAction (Unlock l) (Unlock l)
| NaBind : forall c1 c2 c,
nextAction c1 c
-> nextAction (Bind c1 c2) c.
(* We can succinctly capture which summaries describe threads that will commute
* with a particular atomic action. The guarantee applies not just to the
* thread's first action but also to all others that it might reach later in
* execution. *)
Definition commutes (c : cmd) (s : summary) : Prop :=
match c with
| Return _ => True
| Fail => True
| Read a => ~a \in s.(Writes)
| Write a _ => ~a \in s.(Reads) \cup s.(Writes)
| Lock a => ~a \in s.(Locks)
| Unlock a => ~a \in s.(Locks)
| _ => False
end.
(* Now the new semantics: *)
Inductive stepC : heap * locks * list (cmd * summary) -> heap * locks * list (cmd * summary) -> Prop :=
(* It is always OK to let the first thread run. *)
| StepFirst : forall h l c h' l' c' s cs,
step (h, l, c) (h', l', c')
-> stepC (h, l, (c, s) :: cs) (h', l', (c', s) :: cs)
(* However, you may only pick another thread to run if it would be unsound to
* consider just the first thread. The negation of the soundness condition is
* expressed in the first premise below. *)
| StepAny : forall h l c h' l' s cs1 c1 s1 cs2 c1',
(forall c0 h'' l'' c'', nextAction c c0
(* The first thread [c] has some atomic action [c0]
* ready to run. *)
-> List.Forall (fun c_s => commutes c0 (snd c_s)) (cs1 ++ (c1, s1) :: cs2)
(* All other threads only contain actiosn that commute
* with [c0]. *)
-> step (h, l, c) (h'', l'', c'')
(* Finaly, [c] is actually enabled to run, which might
* not be the case if [c0] is a locking command. *)
-> False)
(* If we passed that check, then we can step a single thread as expected! *)
-> step (h, l, c1) (h', l', c1')
-> stepC (h, l, (c, s) :: cs1 ++ (c1, s1) :: cs2) (h', l', (c, s) :: cs1 ++ (c1', s1) :: cs2).
(* Notice how this definition turns the partial-order-reduction optimization
* "off and on" during state-space exploration. We only restrict our attention
* to the first thread so long as the soundness condition above is true. *)
Definition trsys_ofC (h : heap) (l : locks) (cs : list (cmd * summary)) := {|
Initial := {(h, l, cs)};
Step := stepC
|}.
(* Now we come to quite a few fairly complex lemmas.
* First, [commutes] really does allow other commands to swap order with the
* atomic action in question. *)
Lemma commutes_sound' : forall h l c2 h' l' c2',
step (h, l, c2) (h', l', c2')
-> forall s c1 h'' l'' c1', step (h', l', c1) (h'', l'', c1')
-> summarize c2 s
-> commutes c1 s
-> exists h1 l1, step (h, l, c1) (h1, l1, c1')
/\ step (h1, l1, c2) (h'', l'', c2').
Proof.
induct 1; simplify; eauto.
invert H1.
eapply IHstep in H0; eauto; first_order.
eauto.
invert H0; invert H; simplify; propositional; eauto.
do 2 eexists; propositional.
eauto.
assert (a <> a0) by sets.
replace (h' $! a) with (h' $+ (a0, v) $! a) by (simplify; equality).
eauto.
invert H0; invert H; simplify; propositional; eauto.
do 2 eexists; propositional.
eauto.
assert (a <> a0) by sets.
replace (h $+ (a, v) $+ (a0, v0)) with (h $+ (a0, v0) $+ (a, v)) by maps_equal.
eauto.
invert H1.
invert H1.
invert H1; invert H0; simplify; propositional; eauto.
do 2 eexists; propositional.
constructor.
sets.
replace ((l \cup {a}) \cup {a0}) with ((l \cup {a0}) \cup {a}) by sets.
constructor.
sets.
do 2 eexists; propositional.
constructor.
sets; propositional.
replace (l \cup {a} \setminus {a0}) with ((l \setminus {a0}) \cup {a}) by sets.
constructor.
sets.
invert H1; invert H0; simplify; propositional; eauto.
do 2 eexists; propositional.
constructor.
sets.
replace ((l \setminus {a}) \cup {a0}) with ((l \cup {a0}) \setminus {a}) by sets.
constructor.
sets.
do 2 eexists; propositional.
constructor.
sets; propositional.
replace ((l \setminus {a}) \setminus {a0}) with ((l \setminus {a0}) \setminus {a}) by sets.
constructor.
sets.
Qed.
(* Commentary now resumes at [commutes_sound]. *)
Lemma step_nextAction_Return : forall r h l c h' l' c',
step (h, l, c) (h', l', c')
-> nextAction c (Return r)
-> h' = h /\ l' = l /\ (forall h'' l'', step (h'', l'', c) (h'', l'', c')).
Proof.
induct 1; invert 1; propositional; eauto.
Qed.
Lemma step_nextAction_other : forall c0 h l c h' l' c',
step (h, l, c) (h', l', c')
-> nextAction c c0
-> (forall r, c0 <> Return r)
-> exists f c0', step (h, l, c0) (h', l', c0')
/\ c = f c0
/\ c' = f c0'
/\ forall h1 l1 h2 l2 c0'', step (h1, l1, c0) (h2, l2, c0'')
-> step (h1, l1, f c0) (h2, l2, f c0'').
Proof.
induct 1; invert 1; first_order; subst; eauto.
exists (fun X => x <- x X; c2 x); eauto 10.
invert H3.
unfold not in *; exfalso; eauto.
exists (fun X => X); eauto.
exists (fun X => X); eauto.
exists (fun X => X); eauto 10.
exists (fun X => X); eauto 10.
Qed.
Lemma nextAction_couldBe : forall c c0,
nextAction c c0
-> match c0 with
| Return _ => True
| Fail => True
| Read _ => True
| Write _ _ => True
| Lock _ => True
| Unlock _ => True
| _ => False
end.
Proof.
induct 1; auto.
Qed.
(* [commutes] allows order-swapping even when the atomic action is embedded
* further within the structure of a larger command. *)
Lemma commutes_sound : forall h l c2 h' l' c2',
step (h, l, c2) (h', l', c2')
-> forall s c1 c0 h'' l'' c1', step (h', l', c1) (h'', l'', c1')
-> summarize c2 s
-> nextAction c1 c0
-> commutes c0 s
-> exists h1 l1, step (h, l, c1) (h1, l1, c1')
/\ step (h1, l1, c2) (h'', l'', c2').
Proof.
simplify.
assert (Hc : commutes c0 s) by assumption.
specialize (nextAction_couldBe H2).
cases c0; propositional.
assert (Hs : step (h', l', c1) (h'', l'', c1')) by assumption.
eapply step_nextAction_Return in H0; eauto; propositional; subst.
eauto.
eapply step_nextAction_other in H0; eauto; first_order; subst; try equality.
eapply commutes_sound' with (c2 := c2) (c1 := Read a) in H3; eauto.
first_order; eauto.
eapply step_nextAction_other in H0; eauto; first_order; subst; try equality.
eapply commutes_sound' with (c2 := c2) (c1 := Write a v) in H; eauto; try solve [ simplify; sets ].
first_order; eauto.
eapply step_nextAction_other in H0; eauto; first_order; subst; try equality.
invert H0.
eapply step_nextAction_other in H0; eauto; first_order; subst; try equality.
eapply commutes_sound' with (c2 := c2) (c1 := Lock a) in H3; eauto.
first_order; eauto.
eapply step_nextAction_other in H0; eauto; first_order; subst; try equality.
eapply commutes_sound' with (c2 := c2) (c1 := Unlock a) in H3; eauto.
first_order; eauto.
Qed.
Hint Constructors summarize.
(* The next two lemmas show that, once a summary is accurate for a command, it
* remains accurate throughout the whole execution lifetime of the command. *)
Lemma summarize_step : forall h l c h' l' c' s,
step (h, l, c) (h', l', c')
-> summarize c s
-> summarize c' s.
Proof.
induct 1; invert 1; simplify; eauto.
Qed.
Lemma summarize_steps : forall h l c h' l' c' s,
step^* (h, l, c) (h', l', c')
-> summarize c s
-> summarize c' s.
Proof.
induct 1; eauto.
cases y.
cases p.
eauto using summarize_step.
Qed.
(* The next technical device will require that we bound how many steps of
* execution particular commands could run for. We use a conservative
* overapproximation that is easy to compute, phrased as a relation.
* Yes, it is time to get scared, as we must define exponentiation to compute
* large enough time bounds! *)
Fixpoint pow2 (n : nat) : nat :=
match n with
| O => 1
| S n' => pow2 n' * 2
end.
Inductive boundRunningTime : cmd -> nat -> Prop :=
| BrtReturn : forall r n,
boundRunningTime (Return r) n
| BrtFail : forall n,
boundRunningTime Fail n
| BrtRead : forall a n,
boundRunningTime (Read a) (S n)
| BrtWrite : forall a v n,
boundRunningTime (Write a v) (S n)
| BrtLock : forall a n,
boundRunningTime (Lock a) (S n)
| BrtUnlock : forall a n,
boundRunningTime (Unlock a) (S n)
| BrtBind : forall c1 c2 n1 n2,
boundRunningTime c1 n1
-> (forall r, boundRunningTime (c2 r) n2)
-> boundRunningTime (Bind c1 c2) (S (n1 + n2))
| BrtPar : forall c1 c2 n1 n2,
boundRunningTime c1 n1
-> boundRunningTime c2 n2
-> boundRunningTime (Par c1 c2) (pow2 (n1 + n2)).
(* Perhaps surprisingly, there exist commands that have no finite time bounds!
* Mixed-embedding languages often have these counterintuitive properties. *)
Theorem boundRunningTime_not_total : exists c, forall n, ~boundRunningTime c n.
Proof.
Fixpoint scribbly (n : nat) : cmd :=
match n with
| O => Return 0
| S n' => _ <- Write n' 0; scribbly n'
end.
Lemma scribbly_time : forall n m,
boundRunningTime (scribbly n) m
-> m >= n.
Proof.
induct n; invert 1; auto.
invert H2.
specialize (H4 n0).
apply IHn in H4.
linear_arithmetic.
Qed.
exists (n <- Read 0; scribbly n); propositional.
invert H.
specialize (H4 (S n2)).
apply scribbly_time in H4.
linear_arithmetic.
Qed.
(* Next, some boring properties of [pow2]. *)
Lemma pow2_pos : forall n,
pow2 n > 0.
Proof.
induct n; simplify; auto.
Qed.
Lemma pow2_mono : forall n m,
n < m
-> pow2 n < pow2 m.
Proof.
induct 1; simplify; auto.
specialize (pow2_pos n); linear_arithmetic.
Qed.
Hint Resolve pow2_mono.
Lemma pow2_incr : forall n,
n < pow2 n.
Proof.
induct n; simplify; auto.
Qed.
Hint Resolve pow2_incr.
Lemma pow2_inv : forall n m,
pow2 n <= m
-> n < m.
Proof.
simplify.
specialize (pow2_incr n).
linear_arithmetic.
Qed.
Lemma use_pow2 : forall n m k,
pow2 m <= S k
-> n <= m
-> n <= k.
Proof.
simplify.
apply pow2_inv in H.
linear_arithmetic.
Qed.
Lemma use_pow2' : forall n m k,
pow2 m <= S k
-> n < m
-> pow2 n <= k.
Proof.
simplify.
specialize (@pow2_mono n m).
linear_arithmetic.
Qed.
Hint Constructors boundRunningTime.
(* Key property: taking a step of execution lowers the running-time bound. *)
Lemma boundRunningTime_step : forall c n h l h' l',
boundRunningTime c n
-> forall c', step (h, l, c) (h', l', c')
-> exists n', boundRunningTime c' n' /\ n' < n.
Proof.
induct 1; invert 1; simplify; eauto.
apply IHboundRunningTime in H4; first_order; subst.
eexists; propositional.
eauto.
linear_arithmetic.
apply IHboundRunningTime1 in H3; first_order; subst.
eauto 6.
apply IHboundRunningTime2 in H3; first_order; subst.
eauto 6.
Qed.
Lemma boundRunningTime_steps : forall h l c h' l' c',
step^* (h, l, c) (h', l', c')
-> forall n, boundRunningTime c n
-> exists n', boundRunningTime c' n' /\ n' <= n.
Proof.
induct 1; simplify; eauto.
cases y.
cases p.
specialize (boundRunningTime_step H1 H); first_order.
eapply IHtrc in H2; eauto.
first_order.
eauto.
Qed.
(* Here we get a bit naughty and begin to depend on *classical logic*, as with
* the *law of the excluded middle*: [forall P, P \/ ~P]. You may not have
* noticed that we've never applied that principle explicitly so far! *)
Require Import Classical.
(* A very useful property: when a command has bounded running time, any
* execution starting from that command can be *completed* to one ending in a
* stuck state. This property definitely wouldn't be true without the bound,
* if our language had explicit, unbounded loops.
*
* The fun thing about this proof is that we are essentially using tactics to
* define an interpreter for the object language, making arbitrary scheduling
* choices. Implicit in the derivation is a proof that this interpreter always
* terminates, which we get by strong induction on the running-time bound. *)
Theorem complete_trace : forall k c n,
boundRunningTime c n
-> n <= k
-> forall h l, exists h' l' c', step^* (h, l, c) (h', l', c')
/\ (forall h'' l'' c'',
step (h', l', c') (h'', l'', c'')
-> False).
Proof.
induct k; simplify.
invert H; try linear_arithmetic.
do 3 eexists; propositional.
eauto.
invert H.
do 3 eexists; propositional.
eauto.
invert H.
specialize (pow2_pos (n1 + n2)).
linear_arithmetic.
invert H.
do 3 eexists; propositional.
eauto.
invert H.
do 3 eexists; propositional.
eauto.
invert H.
do 3 eexists; propositional.
apply trc_one.
eauto.
invert H.
do 3 eexists; propositional.
apply trc_one.
eauto.
invert H.
destruct (classic (a \in l)).
do 3 eexists; propositional.
eauto.
invert H1.
sets.
do 3 eexists; propositional.
apply trc_one.
eauto.
invert H1.
destruct (classic (a \in l)).
do 3 eexists; propositional.
apply trc_one.
eauto.
invert H1.
do 3 eexists; propositional.
eauto.
invert H1.
sets.
eapply IHk in H1; eauto; first_order.
cases x1.
specialize (H2 r).
eapply IHk in H2; eauto; first_order.
do 3 eexists; propositional.
eapply trc_trans.
apply StepBindRecur_star.
eassumption.
eapply TrcFront.
eauto.
eassumption.
eauto.
do 3 eexists; propositional.
apply StepBindRecur_star.
eassumption.
invert H3.
eauto.
do 3 eexists; propositional.
apply StepBindRecur_star.
eassumption.
invert H3.
eauto.
do 3 eexists; propositional.
apply StepBindRecur_star.
eassumption.
invert H3.
eauto.
do 3 eexists; propositional.
apply StepBindRecur_star.
eassumption.
invert H3.
eauto.
do 3 eexists; propositional.
apply StepBindRecur_star.
eassumption.
invert H3.
eauto.
do 3 eexists; propositional.
apply StepBindRecur_star.
eassumption.
invert H3.
eauto.
do 3 eexists; propositional.
apply StepBindRecur_star.
eassumption.
invert H3.
eauto.
assert (Hb1 : boundRunningTime c1 n1) by assumption.
assert (Hb2 : boundRunningTime c2 n2) by assumption.
eapply IHk in H1; eauto using use_pow2; first_order.
invert H.
eapply IHk in H2; eauto using use_pow2; first_order.
invert H.
do 3 eexists; propositional.
eauto.
invert H; eauto.
cases y.
cases p.
specialize (boundRunningTime_step Hb2 H3); first_order.
assert (boundRunningTime (Par x1 c) (pow2 (n1 + x3))) by eauto.
eapply IHk in H6; eauto using use_pow2'; first_order.
do 3 eexists; propositional.
eapply TrcFront.
eauto.
eassumption.
eauto.
cases y.
cases p.
specialize (boundRunningTime_step Hb1 H3); first_order.
assert (boundRunningTime (Par c c2) (pow2 (x2 + n2))) by eauto.
eapply IHk in H6; eauto using use_pow2'; first_order.
do 3 eexists; propositional.
eapply TrcFront.
eauto.
eassumption.
eauto.
Qed.
(* We will apply completion to traces that end in violation of the
* not-about-to-fail invariant. It is important that any extension of such a
* trace preserves that property. *)
Lemma notAboutToFail_step : forall h l c h' l' c',
step (h, l, c) (h', l', c')
-> notAboutToFail c = false
-> notAboutToFail c' = false.
Proof.
induct 1; simplify; eauto; try equality.
apply andb_false_iff in H0.
apply andb_false_iff.
propositional.
apply andb_false_iff in H0.
apply andb_false_iff.
propositional.
Qed.
Lemma notAboutToFail_steps : forall h l c h' l' c',
step^* (h, l, c) (h', l', c')
-> notAboutToFail c = false
-> notAboutToFail c' = false.
Proof.
induct 1; simplify; eauto.
cases y.
cases p.
eauto using notAboutToFail_step.
Qed.
(* One last technical device: we define a variant of [step^*] that tracks how
* many steps were made, which will come in handy for induction shortly. *)
Inductive stepsi : nat -> heap * locks * cmd -> heap * locks * cmd -> Prop :=
| StepsiO : forall st,
stepsi O st st
| StepsiS : forall st1 st2 st3 i,
step st1 st2
-> stepsi i st2 st3
-> stepsi (S i) st1 st3.
Hint Constructors stepsi.
Theorem steps_stepsi : forall st1 st2,
step^* st1 st2
-> exists i, stepsi i st1 st2.
Proof.
induct 1; first_order; eauto.
Qed.
(* Some helper lemmas about Coq's quantification over lists *)
Lemma Exists_app_fwd : forall A (P : A -> Prop) ls1 ls2,
Exists P (ls1 ++ ls2)
-> Exists P ls1 \/ Exists P ls2.
Proof.
induct ls1; invert 1; simplify; subst; eauto.
apply IHls1 in H1; propositional; eauto.
Qed.
Lemma Exists_app_bwd : forall A (P : A -> Prop) ls1 ls2,
Exists P ls1 \/ Exists P ls2
-> Exists P (ls1 ++ ls2).
Proof.
induct ls1; simplify; propositional; eauto.
invert H0.
invert H0; eauto.
Qed.
Lemma Forall_app_fwd1 : forall A (P : A -> Prop) ls1 ls2,
Forall P (ls1 ++ ls2)
-> Forall P ls1.
Proof.
induct ls1; invert 1; eauto.
Qed.
Lemma Forall_app_fwd2 : forall A (P : A -> Prop) ls1 ls2,
Forall P (ls1 ++ ls2)
-> Forall P ls2.
Proof.
induct ls1; invert 1; simplify; subst; eauto.
Qed.
Hint Immediate Forall_app_fwd1 Forall_app_fwd2.
Lemma Forall_app_bwd : forall A (P : A -> Prop) ls1 ls2,
Forall P ls1
-> Forall P ls2
-> Forall P (ls1 ++ ls2).
Proof.
induct 1; simplify; eauto.
Qed.
Hint Resolve Forall_app_bwd.
Lemma Forall2 : forall A (P Q R : A -> Prop) ls,
Forall P ls
-> Forall Q ls
-> (forall x, P x -> Q x -> R x)
-> Forall R ls.
Proof.
induct 1; invert 1; eauto.
Qed.
(* A connection between [notAboutToFail] in the old and new worlds *)
Lemma summarizeThreads_aboutToFail : forall c cs,
summarizeThreads c cs
-> notAboutToFail c = false
-> Exists (fun c_s => notAboutToFail (fst c_s) = false) cs.
Proof.
induct 1; simplify; eauto.
apply andb_false_iff in H1; propositional; eauto using Exists_app_bwd.
Qed.
Hint Resolve summarizeThreads_aboutToFail.
Lemma summarizeThreads_nonempty : forall c,
summarizeThreads c []
-> False.
Proof.
induct 1.
cases ss1; simplify; eauto.
equality.
Qed.
Hint Immediate summarizeThreads_nonempty.
Hint Constructors stepC summarizeThreads.
(* When we step a summarized thread, we can duplicate the step within one of the
* elements of the summary. *)
Lemma step_pick : forall h l c h' l' c',
step (h, l, c) (h', l', c')
-> forall cs, summarizeThreads c cs
-> exists cs1 c0 s cs2 c0', cs = cs1 ++ (c0, s) :: cs2
/\ step (h, l, c0) (h', l', c0')
/\ summarizeThreads c' (cs1 ++ (c0', s) :: cs2).
Proof.
induct 1; invert 1.
eexists [], _, _, [], _; simplify; propositional; eauto 10 using summarize_step.
eexists [], _, _, [], _; simplify; propositional; eauto 10 using summarize_step.
eexists [], _, _, [], _; simplify; propositional; eauto 10 using summarize_step.
eexists [], _, _, [], _; simplify; propositional; eauto 10 using summarize_step.
apply IHstep in H3; first_order; subst.
rewrite <- app_assoc.
simplify.
do 5 eexists; propositional.
eauto.
change (x ++ (x3, x1) :: x2 ++ ss2)
with (x ++ ((x3, x1) :: x2) ++ ss2).
rewrite app_assoc.
eauto.
invert H1.
apply IHstep in H5; first_order; subst.
rewrite app_assoc.
do 5 eexists; propositional.
eauto.
rewrite <- app_assoc.
eauto.
invert H1.
eexists [], _, _, [], _; simplify; propositional; eauto using summarize_step.
eexists [], _, _, [], _; simplify; propositional; eauto using summarize_step.
(* Here's a gnarly bit to make up for simplification in the proof above.
* Some existential variables weren't determined, but we can pick their values
* here. *)
Grab Existential Variables.
exact l'.
exact h'.
Qed.
(* The next few lemmas are quite technical. Commentary resumes for
* [translate_trace]. *)
Lemma translate_trace_matching : forall h l c h' l' c',
step (h, l, c) (h', l', c')
-> forall c0 s cs, summarizeThreads c ((c0, s) :: cs)
-> ~(exists c1 h'0 l'0 c'0,
nextAction c0 c1
/\ Forall (fun c_s => commutes c1 (snd c_s)) cs
/\ step (h, l, c0) (h'0, l'0, c'0))
-> exists cs', stepC (h, l, (c0, s) :: cs) (h', l', cs')
/\ summarizeThreads c' cs'.
Proof.
simplify.
eapply step_pick in H; eauto.
first_order; subst.
cases x; simplify.
invert H.
eauto.
invert H.
eauto 10.
Qed.
Lemma nextAction_det : forall c c0,
nextAction c c0
-> forall h l h' l' c', step (h, l, c) (h', l', c')
-> forall h'' l'' c'', step (h, l, c) (h'', l'', c'')
-> h' = h'' /\ l'' = l' /\ c'' = c'.
Proof.
induct 1; invert 1; invert 1; auto.
eapply IHnextAction in H2; eauto.
equality.
invert H2.
invert H2.
Qed.
Lemma split_center : forall A (x : A) l1 l2 r1 r2,
l1 ++ l2 = r1 ++ x :: r2
-> (exists r21, r2 = r21 ++ l2
/\ l1 = r1 ++ x :: r21)
\/ (exists r12, r1 = l1 ++ r12
/\ l2 = r12 ++ x :: r2).
Proof.
induct l1; simplify; subst; eauto.
cases r1; simplify.
invert H; eauto.
invert H.
apply IHl1 in H2; first_order; subst; eauto.
Qed.
Hint Rewrite app_length.
Lemma step_into_summarizeThreads : forall c0 cs1 c s cs2,
summarizeThreads c0 (cs1 ++ (c, s) :: cs2)
-> forall h l h' l' c', step (h, l, c) (h', l', c')
-> exists c0', step (h, l, c0) (h', l', c0')
/\ summarizeThreads c0' (cs1 ++ (c', s) :: cs2).
Proof.
induct 1; simplify.
apply split_center in x; first_order; subst.
eapply IHsummarizeThreads1 in H1; eauto.
first_order.
eexists; propositional.
eauto.
change (summarizeThreads (x0 || c2) (cs1 ++ ((c', s) :: x) ++ ss2)).
rewrite app_assoc.
eauto.
eapply IHsummarizeThreads2 in H1; eauto.
first_order.
rewrite <- app_assoc.
eauto.
cases cs1; simplify.
invert x.
eauto using summarize_step.
invert x.
apply (f_equal (@length _)) in H3; simplify.
linear_arithmetic.
Qed.
Lemma commute_writes : forall c1 c a s h l1' h' l' v,
nextAction c1 c
-> a \in Writes s
-> commutes c s
-> forall c1', step (h, l1', c1) (h', l', c1')
-> step (h $+ (a, v), l1', c1) (h' $+ (a, v), l', c1').
Proof.
induct 1; simplify.
invert H1.
invert H1.
invert H1.
replace (h' $! a0) with (h' $+ (a, v) $! a0).
eauto.
assert (a <> a0) by sets.
simplify; equality.
invert H1.
replace (h $+ (a0, v0) $+ (a, v)) with (h $+ (a, v) $+ (a0, v0)).
eauto.
assert (a <> a0) by sets.
maps_equal.
invert H1.
eauto.
invert H1.
eauto.
invert H2; eauto.
Qed.
Lemma commute_locks : forall c1 c a s h l1' h' l',
nextAction c1 c
-> a \in Locks s
-> commutes c s
-> forall c1', step (h, l1', c1) (h', l', c1')
-> step (h, l1' \cup {a}, c1) (h', l' \cup {a}, c1').
Proof.
induct 1; simplify.
invert H1.
invert H1.
invert H1; eauto.
invert H1; eauto.
invert H1.
replace ((l1' \cup {l}) \cup {a}) with ((l1' \cup {a}) \cup {l}) by sets.
constructor.
sets.
invert H1.
replace ((l1' \setminus {l}) \cup {a}) with ((l1' \cup {a}) \setminus {l}) by sets.
constructor.
sets.
invert H2; eauto.
Qed.
Lemma commute_unlocks : forall c1 c a s h l1' h' l',
nextAction c1 c
-> a \in Locks s
-> commutes c s
-> forall c1', step (h, l1', c1) (h', l', c1')
-> step (h, l1' \setminus {a}, c1) (h', l' \setminus {a}, c1').
Proof.
induct 1; simplify.
invert H1.
invert H1.
invert H1; eauto.
invert H1; eauto.
invert H1.
replace (l1' \cup {l} \setminus {a}) with ((l1' \setminus {a}) \cup {l}) by sets.
constructor.
sets.
invert H1.
replace ((l1' \setminus {l}) \setminus {a}) with ((l1' \setminus {a}) \setminus {l}) by sets.
constructor.
sets.
invert H2; eauto.
Qed.
Lemma commutes_noblock : forall c c0,
nextAction c c0
-> forall h l h' l' c', step (h, l, c) (h', l', c')
-> forall c1 s, summarize c1 s
-> commutes c0 s
-> forall h1' l1' c1', step (h, l, c1) (h1', l1', c1')
-> exists h'' l'', step (h1', l1', c) (h'', l'', c').
Proof.
induct 1; invert 1.
induct 1; simplify; eauto.
invert H0.
invert H0.
invert H3; eauto.
invert H1; eauto.
invert H1; eauto.
assert (a0 <> a) by sets.
replace (h' $! a) with (h' $+ (a0, v) $! a) by (simplify; equality).
eauto.
invert H1; eauto.
invert H1; eauto.
induct 1; simplify; eauto.
induct 1; simplify; eauto.
invert H0.
invert H0.
invert H4; eauto.
invert H2; eauto.
invert H2; eauto.
invert H2; eauto.
do 2 eexists.
constructor.
sets.
invert H2; eauto.
do 2 eexists.
constructor.
sets.
induct 1; simplify; eauto.
invert H0.
invert H0.
invert H4; eauto.
invert H2; eauto.
invert H2; eauto.
invert H2; eauto.
do 2 eexists.
constructor.
sets.
invert H2; eauto.
do 2 eexists.
constructor.
sets.
induct 1; simplify; eauto.
invert H1.
invert H1.
invert H5; eauto.
invert H3; eauto.
invert H3.
do 2 eexists; eapply commute_writes in H2; eauto.
invert H3.
do 2 eexists; eapply commute_locks in H2; eauto.
invert H3.
do 2 eexists; eapply commute_unlocks in H2; eauto.
eauto.
Qed.
Lemma split_app : forall A (l1 l2 r1 r2 : list A),
l1 ++ l2 = r1 ++ r2
-> (exists r12, r1 = l1 ++ r12
/\ l2 = r12 ++ r2)
\/ (exists r21, r2 = r21 ++ l2
/\ l1 = r1 ++ r21).
Proof.
induct l1; simplify; subst; eauto.
cases r1; simplify; subst.
right; eexists (_ :: _); simplify; eauto.
invert H.
first_order; subst; eauto.
apply IHl1 in H2; first_order; subst; eauto.
Qed.
Hint Rewrite app_length.
Lemma step_out_of_summarizeThreads : forall c cs1 c0 s cs2,
summarizeThreads c (cs1 ++ (c0, s) :: cs2)
-> forall h l c0' s' h' l', step (h, l, c0') (h', l', c0)
-> summarize c0' s'
-> exists c', summarizeThreads c' (cs1 ++ (c0', s') :: cs2)
/\ step (h, l, c') (h', l', c).
Proof.
induct 1; simplify.
apply split_center in x; first_order; subst.
eapply IHsummarizeThreads1 in H1; try reflexivity; eauto.
first_order.
change (cs1 ++ (c0', s') :: x ++ ss2) with (cs1 ++ ((c0', s') :: x) ++ ss2).
rewrite app_assoc.
eauto.
eapply IHsummarizeThreads2 in H1; try reflexivity; eauto.
first_order.
rewrite <- app_assoc.
eauto.
cases cs1; simplify.
invert x.
eauto using summarize_step.
invert x.
cases cs1; simplify; try equality.
Qed.
Lemma translate_trace_commute : forall i h l c h' l' c',
stepsi (S i) (h, l, c) (h', l', c')
-> (forall h'' l'' c'', step (h', l', c') (h'', l'', c'') -> False)
-> forall c0 s cs, summarizeThreads c ((c0, s) :: cs)
-> forall x, nextAction c0 x
-> Forall (fun c_s => summarize (fst c_s) (snd c_s) /\ commutes x (snd c_s)) cs
-> forall x0 x1 x2, step (h, l, c0) (x0, x1, x2)
-> exists h'' l'' c'', step (h, l, c0) (h'', l'', x2)
/\ summarizeThreads c'' ((x2, s) :: cs)
/\ stepsi i (h'', l'', c'') (h', l', c').
Proof.
induct 1; simplify.
invert H0.
clear IHstepsi.
eapply step_pick in H; eauto.
first_order; subst.
cases x3; simplify.
invert H.
eapply nextAction_det in H0; try eapply H5; eauto; propositional; subst.
eauto 10.
invert H.
change ((c0, s) :: x3 ++ (x4, x5) :: x6)
with (((c0, s) :: x3) ++ (x4, x5) :: x6) in H2.
eapply step_into_summarizeThreads in H2; eauto.
first_order.
apply Forall_app_fwd2 in H4.
invert H4; simplify; propositional.
eapply commutes_noblock in H3; eauto.
first_order.
eapply step_into_summarizeThreads with (cs1 := []) in H6; eauto.
first_order.
cases st2.
cases p.
cases st0.
cases p.
eapply step_pick in H; eauto.
first_order.
cases x3; simplify.
invert H.
eapply nextAction_det in H0; try eapply H5; eauto; propositional; subst.
eauto 10.
invert H.
change ((c0, s) :: x3 ++ (x4, x5) :: x6)
with (((c0, s) :: x3) ++ (x4, x5) :: x6) in H2.
eapply step_into_summarizeThreads in H2; eauto.
first_order.
specialize (Forall_app_fwd1 _ _ H4).
apply Forall_app_fwd2 in H4.
invert H4; simplify; propositional.
assert (Hn : nextAction c0 x) by assumption.
eapply commutes_noblock in H3; eauto.
first_order.
eapply IHstepsi in H3; clear IHstepsi; eauto using summarize_step.
first_order.
eapply commutes_sound with (c1 := c0) (c2 := x4) (c0 := x) in H10; eauto.
first_order.
eapply step_out_of_summarizeThreads with (cs1 := (x2, s) :: x3) in H11; eauto.
simplify; first_order.
eauto 10.
Qed.
Lemma summarizeThreads_Forall : forall c cs,
summarizeThreads c cs
-> Forall (fun c_s => summarize (fst c_s) (snd c_s)) cs.
Proof.
induct 1; eauto.
Qed.
(* The heart of the soundness proof! When a length-[i] derivation gets us to a
* stuck state that is about to fail, and when we have summarized the program,
* we can run that summary in the optimized semantics and also arrive at a state
* that is about to fail. Thus, if we explore the optimized state space and
* find no failures, we can conclude lack of reachable failures in the original
* state space. *)
Lemma translate_trace : forall i h l c h' l' c',
stepsi i (h, l, c) (h', l', c')
-> (forall h'' l'' c'', step (h', l', c') (h'', l'', c'') -> False)
-> notAboutToFail c' = false
-> forall cs, summarizeThreads c cs
-> exists h' l' cs', stepC^* (h, l, cs) (h', l', cs')
/\ Exists (fun c_s => notAboutToFail (fst c_s) = false) cs'.
Proof.
induct i; simplify.
invert H.
eauto 10.
cases cs.
exfalso; eauto.
cases p.
destruct (classic (exists c1 h' l' c', nextAction c0 c1
/\ Forall (fun c_s => commutes c1 (snd c_s)) cs
/\ step (h, l, c0) (h', l', c'))).
first_order.
eapply translate_trace_commute in H; eauto.
first_order.
eapply IHi in H7; eauto.
first_order.
do 3 eexists; propositional.
eapply TrcFront.
eauto.
eassumption.
assumption.
apply summarizeThreads_Forall in H2.
invert H2.
eauto using Forall2.
invert H.
cases st2.
cases p.
eapply translate_trace_matching in H5; eauto.
first_order.
eapply IHi in H6; eauto.
first_order.
eauto 6.
Qed.
Lemma Forall_Exists_contra : forall A (f : A -> bool) ls,
Exists (fun x => f x = false) ls
-> Forall (fun x => f x = true) ls
-> False.
Proof.
induct 1; invert 1; equality.
Qed.
(* This theorem brings it all together, to reduce one invariant-proof problem to
* another that uses the optimized semantics. *)
Theorem step_stepC : forall h l c (cs : list (cmd * summary)) n,
summarizeThreads c cs
-> boundRunningTime c n
-> invariantFor (trsys_ofC h l cs) (fun p => let '(_, _, cs) := p in
List.Forall (fun c_s => notAboutToFail (fst c_s) = true) cs)
-> invariantFor (trsys_of h l c) (fun p =>
let '(_, _, c) := p in
notAboutToFail c = true).
Proof.
simplify.
apply NNPP; propositional.
unfold invariantFor in H2.
apply not_all_ex_not in H2; first_order.
apply imply_to_and in H2; propositional.
apply not_all_ex_not in H4; first_order.
apply imply_to_and in H2; propositional.
cases x0.
cases p.
subst.
simplify.
cases (notAboutToFail c0); propositional.
assert (exists n', boundRunningTime c0 n' /\ n' <= n) by eauto using boundRunningTime_steps.
first_order.
eapply complete_trace in H2; eauto.
first_order.
specialize (trc_trans H4 H2); simplify.
assert (notAboutToFail x2 = false) by eauto using notAboutToFail_steps.
unfold invariantFor in H1; simplify.
apply steps_stepsi in H7; first_order.
eapply translate_trace in H7; eauto.
first_order.
apply H1 in H7; auto.
eapply Forall_Exists_contra.
apply H9.
assumption.
Qed.
(* Now we define some tactics to help us apply this technique automatically for
* concrete programs. As usual, we won't explain how the tactics work. *)
Ltac analyzer := repeat (match goal with
| [ |- context[if ?E then _ else _] ] => cases E
| _ => econstructor
end; simplify; try solve [ sets ]).
Ltac por_solve := simplify; repeat econstructor; sets; linear_arithmetic.
Ltac por_lister :=
repeat match goal with
| [ H : ?ls ++ _ = _ :: _ |- _ ] => cases ls; simplify; invert H
| [ H : @eq (list _) _ _ |- _ ] => apply (f_equal (@length _)) in H; simplify; linear_arithmetic
end.
Ltac por_invert1 :=
match goal with
| [ H : forall (c0 : cmd) (h'' : heap) (l'' : locks) (c'' : cmd), _ -> _ |- _ ] =>
(exfalso; eapply H; try por_solve; por_lister; por_solve) || (clear H; por_lister)
| _ => model_check_invert1
end.
Ltac por_invert := simplify; repeat por_invert1.
Ltac por_closure :=
repeat (apply oneStepClosure_empty
|| (apply oneStepClosure_split; [ por_invert; try equality; solve [ singletoner ] | ])).
Ltac por_step :=
eapply MscStep; [ por_closure | simplify ].
Ltac por_done :=
apply MscDone; eapply oneStepClosure_solve; [ por_closure | simplify; solve [ sets ] ].
(* OK, ready to return to our last example! This time we will see state-space
* exploration that steps a single thread at a time, where the final invariant
* includes no states with multiple *partially executed* threads. *)
Theorem independent_threads_ok_again :
invariantFor (trsys_of $0 {} independent_threads)
(fun p => let '(_, _, c) := p in
notAboutToFail c = true).
Proof.
(* We need to supply the summary when invoking the proof principle, though we
* could also have used Ltac to compute it automatically. *)
eapply step_stepC with (cs := [(_, {| Reads := {0, 1};
Writes := {1};
Locks := {} |})]
++ [(_, {| Reads := {2};
Writes := {2};
Locks := {} |})]).
analyzer.
analyzer.
simplify.
eapply invariant_weaken.
apply multiStepClosure_ok; simplify.
por_step.
por_step.
por_step.
por_step.
por_step.
por_step.
por_step.
por_step.
por_step.
por_done.
sets.
(* We computed an inexact running time. By filling in zeroes for some
* existential variables, we commit to a concrete bound. *)
Grab Existential Variables.
exact 0.
exact 0.
exact 0.
exact 0.
exact 0.
exact 0.
Qed.