mirror of
https://github.com/achlipala/frap.git
synced 2024-11-09 16:07:49 +00:00
557 lines
16 KiB
Coq
557 lines
16 KiB
Coq
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
|
* Chapter 8: Abstract Interpretation and Dataflow Analysis
|
|
* Author: Adam Chlipala
|
|
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
|
|
|
Require Import Frap Imp.
|
|
Export Imp.
|
|
|
|
Set Implicit Arguments.
|
|
|
|
|
|
(* Reduced version of code from AbstractInterpretation.v *)
|
|
|
|
Record absint := {
|
|
Domain :> Set;
|
|
Top : Domain;
|
|
Constant : nat -> Domain;
|
|
Add : Domain -> Domain -> Domain;
|
|
Subtract : Domain -> Domain -> Domain;
|
|
Multiply : Domain -> Domain -> Domain;
|
|
Join : Domain -> Domain -> Domain;
|
|
Represents : nat -> Domain -> Prop
|
|
}.
|
|
|
|
Record absint_sound (a : absint) : Prop := {
|
|
TopSound : forall n, a.(Represents) n a.(Top);
|
|
|
|
ConstSound : forall n, a.(Represents) n (a.(Constant) n);
|
|
|
|
AddSound : forall n na m ma, a.(Represents) n na
|
|
-> a.(Represents) m ma
|
|
-> a.(Represents) (n + m) (a.(Add) na ma);
|
|
SubtractSound: forall n na m ma, a.(Represents) n na
|
|
-> a.(Represents) m ma
|
|
-> a.(Represents) (n - m) (a.(Subtract) na ma);
|
|
MultiplySound : forall n na m ma, a.(Represents) n na
|
|
-> a.(Represents) m ma
|
|
-> a.(Represents) (n * m) (a.(Multiply) na ma);
|
|
|
|
AddMonotone : forall na na' ma ma', (forall n, a.(Represents) n na -> a.(Represents) n na')
|
|
-> (forall n, a.(Represents) n ma -> a.(Represents) n ma')
|
|
-> (forall n, a.(Represents) n (a.(Add) na ma)
|
|
-> a.(Represents) n (a.(Add) na' ma'));
|
|
SubtractMonotone : forall na na' ma ma', (forall n, a.(Represents) n na -> a.(Represents) n na')
|
|
-> (forall n, a.(Represents) n ma -> a.(Represents) n ma')
|
|
-> (forall n, a.(Represents) n (a.(Subtract) na ma)
|
|
-> a.(Represents) n (a.(Subtract) na' ma'));
|
|
MultiplyMonotone : forall na na' ma ma', (forall n, a.(Represents) n na -> a.(Represents) n na')
|
|
-> (forall n, a.(Represents) n ma -> a.(Represents) n ma')
|
|
-> (forall n, a.(Represents) n (a.(Multiply) na ma)
|
|
-> a.(Represents) n (a.(Multiply) na' ma'));
|
|
|
|
JoinSoundLeft : forall x y n, a.(Represents) n x
|
|
-> a.(Represents) n (a.(Join) x y);
|
|
JoinSoundRight : forall x y n, a.(Represents) n y
|
|
-> a.(Represents) n (a.(Join) x y)
|
|
}.
|
|
|
|
Global Hint Resolve TopSound ConstSound AddSound SubtractSound MultiplySound
|
|
AddMonotone SubtractMonotone MultiplyMonotone
|
|
JoinSoundLeft JoinSoundRight : core.
|
|
|
|
|
|
|
|
Definition astate (a : absint) := fmap var a.
|
|
|
|
Fixpoint absint_interp (e : arith) a (s : astate a) : a :=
|
|
match e with
|
|
| Const n => a.(Constant) n
|
|
| Var x => match s $? x with
|
|
| None => a.(Top)
|
|
| Some xa => xa
|
|
end
|
|
| Plus e1 e2 => a.(Add) (absint_interp e1 s) (absint_interp e2 s)
|
|
| Minus e1 e2 => a.(Subtract) (absint_interp e1 s) (absint_interp e2 s)
|
|
| Times e1 e2 => a.(Multiply) (absint_interp e1 s) (absint_interp e2 s)
|
|
end.
|
|
|
|
Definition merge_astate a : astate a -> astate a -> astate a :=
|
|
merge (fun x y =>
|
|
match x with
|
|
| None => None
|
|
| Some x' =>
|
|
match y with
|
|
| None => None
|
|
| Some y' => Some (a.(Join) x' y')
|
|
end
|
|
end).
|
|
|
|
Definition subsumed a (s1 s2 : astate a) :=
|
|
forall x, match s1 $? x with
|
|
| None => s2 $? x = None
|
|
| Some xa1 =>
|
|
forall xa2, s2 $? x = Some xa2
|
|
-> forall n, a.(Represents) n xa1
|
|
-> a.(Represents) n xa2
|
|
end.
|
|
|
|
Theorem subsumed_refl : forall a (s : astate a),
|
|
subsumed s s.
|
|
Proof.
|
|
unfold subsumed; simplify.
|
|
cases (s $? x); equality.
|
|
Qed.
|
|
|
|
Global Hint Resolve subsumed_refl : core.
|
|
|
|
Lemma subsumed_use : forall a (s s' : astate a) x n t0 t,
|
|
s $? x = Some t0
|
|
-> subsumed s s'
|
|
-> s' $? x = Some t
|
|
-> Represents a n t0
|
|
-> Represents a n t.
|
|
Proof.
|
|
unfold subsumed; simplify.
|
|
specialize (H0 x).
|
|
rewrite H in H0.
|
|
eauto.
|
|
Qed.
|
|
|
|
Lemma subsumed_use_empty : forall a (s s' : astate a) x n t0 t,
|
|
s $? x = None
|
|
-> subsumed s s'
|
|
-> s' $? x = Some t
|
|
-> Represents a n t0
|
|
-> Represents a n t.
|
|
Proof.
|
|
unfold subsumed; simplify.
|
|
specialize (H0 x).
|
|
rewrite H in H0.
|
|
equality.
|
|
Qed.
|
|
|
|
Global Hint Resolve subsumed_use subsumed_use_empty : core.
|
|
|
|
Lemma subsumed_trans : forall a (s1 s2 s3 : astate a),
|
|
subsumed s1 s2
|
|
-> subsumed s2 s3
|
|
-> subsumed s1 s3.
|
|
Proof.
|
|
unfold subsumed; simplify.
|
|
specialize (H x); specialize (H0 x).
|
|
cases (s1 $? x); simplify.
|
|
cases (s2 $? x); eauto.
|
|
cases (s2 $? x); eauto.
|
|
equality.
|
|
Qed.
|
|
|
|
Lemma subsumed_merge_left : forall a, absint_sound a
|
|
-> forall s1 s2 : astate a,
|
|
subsumed s1 (merge_astate s1 s2).
|
|
Proof.
|
|
unfold subsumed, merge_astate; simplify.
|
|
cases (s1 $? x); trivial.
|
|
cases (s2 $? x); simplify; try equality.
|
|
invert H0; eauto.
|
|
Qed.
|
|
|
|
Global Hint Resolve subsumed_merge_left : core.
|
|
|
|
Lemma subsumed_add : forall a, absint_sound a
|
|
-> forall (s1 s2 : astate a) x v1 v2,
|
|
subsumed s1 s2
|
|
-> (forall n, a.(Represents) n v1 -> a.(Represents) n v2)
|
|
-> subsumed (s1 $+ (x, v1)) (s2 $+ (x, v2)).
|
|
Proof.
|
|
unfold subsumed; simplify.
|
|
cases (x ==v x0); subst; simplify; eauto.
|
|
invert H2; eauto.
|
|
specialize (H0 x0); eauto.
|
|
Qed.
|
|
|
|
Global Hint Resolve subsumed_add : core.
|
|
|
|
|
|
(** * Flow-sensitive analysis *)
|
|
|
|
Definition compatible a (s : astate a) (v : valuation) : Prop :=
|
|
forall x xa, s $? x = Some xa
|
|
-> exists n, v $? x = Some n
|
|
/\ a.(Represents) n xa.
|
|
|
|
Lemma compatible_add : forall a (s : astate a) v x na n,
|
|
compatible s v
|
|
-> a.(Represents) n na
|
|
-> compatible (s $+ (x, na)) (v $+ (x, n)).
|
|
Proof.
|
|
unfold compatible; simplify.
|
|
cases (x ==v x0); simplify; eauto.
|
|
invert H1; eauto.
|
|
Qed.
|
|
|
|
Global Hint Resolve compatible_add : core.
|
|
|
|
(* A similar result follows about soundness of expression interpretation. *)
|
|
Theorem absint_interp_ok : forall a, absint_sound a
|
|
-> forall (s : astate a) v e,
|
|
compatible s v
|
|
-> a.(Represents) (interp e v) (absint_interp e s).
|
|
Proof.
|
|
induct e; simplify; eauto.
|
|
cases (s $? x); auto.
|
|
unfold compatible in H0.
|
|
apply H0 in Heq.
|
|
invert Heq.
|
|
propositional.
|
|
rewrite H2.
|
|
assumption.
|
|
Qed.
|
|
|
|
Global Hint Resolve absint_interp_ok : core.
|
|
|
|
Definition astates (a : absint) := fmap cmd (astate a).
|
|
|
|
Fixpoint absint_step a (s : astate a) (c : cmd) (wrap : cmd -> cmd) : option (astates a) :=
|
|
match c with
|
|
| Skip => None
|
|
| Assign x e => Some ($0 $+ (wrap Skip, s $+ (x, absint_interp e s)))
|
|
| Sequence c1 c2 =>
|
|
match absint_step s c1 (fun c => wrap (Sequence c c2)) with
|
|
| None => Some ($0 $+ (wrap c2, s))
|
|
| v => v
|
|
end
|
|
| If _ then_ else_ => Some ($0 $+ (wrap then_, s) $+ (wrap else_, s))
|
|
| While e body => Some ($0 $+ (wrap Skip, s) $+ (wrap (Sequence body (While e body)), s))
|
|
end.
|
|
|
|
Lemma command_equal : forall c1 c2 : cmd, sumbool (c1 = c2) (c1 <> c2).
|
|
Proof.
|
|
repeat decide equality.
|
|
Qed.
|
|
|
|
Theorem absint_step_ok : forall a, absint_sound a
|
|
-> forall (s : astate a) v, compatible s v
|
|
-> forall c v' c', step (v, c) (v', c')
|
|
-> forall wrap, exists ss s', absint_step s c wrap = Some ss
|
|
/\ ss $? wrap c' = Some s'
|
|
/\ compatible s' v'.
|
|
Proof.
|
|
induct 2; simplify.
|
|
|
|
do 2 eexists; propositional.
|
|
simplify; equality.
|
|
eauto.
|
|
|
|
eapply IHstep in H0; auto.
|
|
invert H0.
|
|
invert H2.
|
|
propositional.
|
|
rewrite H2.
|
|
eauto.
|
|
|
|
do 2 eexists; propositional.
|
|
simplify; equality.
|
|
assumption.
|
|
|
|
do 2 eexists; propositional.
|
|
cases (command_equal (wrap c') (wrap else_)).
|
|
simplify; equality.
|
|
simplify; equality.
|
|
assumption.
|
|
|
|
do 2 eexists; propositional.
|
|
simplify; equality.
|
|
assumption.
|
|
|
|
do 2 eexists; propositional.
|
|
simplify; equality.
|
|
assumption.
|
|
|
|
do 2 eexists; propositional.
|
|
cases (command_equal (wrap Skip) (wrap (body;; while e loop body done))).
|
|
simplify; equality.
|
|
simplify; equality.
|
|
assumption.
|
|
Qed.
|
|
|
|
Inductive abs_step a : astate a * cmd -> astate a * cmd -> Prop :=
|
|
| AbsStep : forall s c ss s' c',
|
|
absint_step s c (fun x => x) = Some ss
|
|
-> ss $? c' = Some s'
|
|
-> abs_step (s, c) (s', c').
|
|
|
|
Global Hint Constructors abs_step : core.
|
|
|
|
Definition absint_trsys a (c : cmd) := {|
|
|
Initial := {($0, c)};
|
|
Step := abs_step (a := a)
|
|
|}.
|
|
|
|
Inductive Rabsint a : valuation * cmd -> astate a * cmd -> Prop :=
|
|
| RAbsint : forall v s c,
|
|
compatible s v
|
|
-> Rabsint (v, c) (s, c).
|
|
|
|
Global Hint Constructors abs_step Rabsint : core.
|
|
|
|
Theorem absint_simulates : forall a v c,
|
|
absint_sound a
|
|
-> simulates (Rabsint (a := a)) (trsys_of v c) (absint_trsys a c).
|
|
Proof.
|
|
simplify.
|
|
constructor; simplify.
|
|
|
|
exists ($0, c); propositional.
|
|
subst.
|
|
constructor.
|
|
unfold compatible.
|
|
simplify.
|
|
equality.
|
|
|
|
invert H0.
|
|
cases st1'.
|
|
eapply absint_step_ok in H1; eauto.
|
|
invert H1.
|
|
invert H0.
|
|
propositional.
|
|
eauto.
|
|
Qed.
|
|
|
|
Definition merge_astates a : astates a -> astates a -> astates a :=
|
|
merge (fun x y =>
|
|
match x with
|
|
| None => y
|
|
| Some x' =>
|
|
match y with
|
|
| None => Some x'
|
|
| Some y' => Some (merge_astate x' y')
|
|
end
|
|
end).
|
|
|
|
Inductive oneStepClosure a : astates a -> astates a -> Prop :=
|
|
| OscNil :
|
|
oneStepClosure $0 $0
|
|
| OscCons : forall ss c s ss' ss'',
|
|
oneStepClosure ss ss'
|
|
-> match absint_step s c (fun x => x) with
|
|
| None => ss'
|
|
| Some ss'' => merge_astates ss'' ss'
|
|
end = ss''
|
|
-> oneStepClosure (ss $+ (c, s)) ss''.
|
|
|
|
Definition subsumeds a (ss1 ss2 : astates a) :=
|
|
forall c s1, ss1 $? c = Some s1
|
|
-> exists s2, ss2 $? c = Some s2
|
|
/\ subsumed s1 s2.
|
|
|
|
Theorem subsumeds_refl : forall a (ss : astates a),
|
|
subsumeds ss ss.
|
|
Proof.
|
|
unfold subsumeds; simplify; eauto.
|
|
Qed.
|
|
|
|
Global Hint Resolve subsumeds_refl : core.
|
|
|
|
Lemma subsumeds_add : forall a (ss1 ss2 : astates a) c s1 s2,
|
|
subsumeds ss1 ss2
|
|
-> subsumed s1 s2
|
|
-> subsumeds (ss1 $+ (c, s1)) (ss2 $+ (c, s2)).
|
|
Proof.
|
|
unfold subsumeds; simplify.
|
|
cases (command_equal c c0); subst; simplify; eauto.
|
|
invert H1; eauto.
|
|
Qed.
|
|
|
|
Global Hint Resolve subsumeds_add : core.
|
|
|
|
Lemma subsumeds_empty : forall a (ss : astates a),
|
|
subsumeds $0 ss.
|
|
Proof.
|
|
unfold subsumeds; simplify.
|
|
equality.
|
|
Qed.
|
|
|
|
Lemma subsumeds_add_left : forall a (ss1 ss2 : astates a) c s,
|
|
ss2 $? c = Some s
|
|
-> subsumeds ss1 ss2
|
|
-> subsumeds (ss1 $+ (c, s)) ss2.
|
|
Proof.
|
|
unfold subsumeds; simplify.
|
|
cases (command_equal c c0); subst; simplify; eauto.
|
|
invert H1; eauto.
|
|
Qed.
|
|
|
|
Inductive interpret a : astates a -> astates a -> astates a -> Prop :=
|
|
| InterpretDone : forall ss1 any ss2,
|
|
oneStepClosure ss1 ss2
|
|
-> subsumeds ss2 ss1
|
|
-> interpret ss1 any ss1
|
|
| InterpretStep : forall ss worklist ss' ss'',
|
|
oneStepClosure worklist ss'
|
|
-> interpret (merge_astates ss ss') ss' ss''
|
|
-> interpret ss worklist ss''.
|
|
|
|
Lemma oneStepClosure_sound : forall a, absint_sound a
|
|
-> forall ss ss' : astates a, oneStepClosure ss ss'
|
|
-> forall c s s' c', ss $? c = Some s
|
|
-> abs_step (s, c) (s', c')
|
|
-> exists s'', ss' $? c' = Some s''
|
|
/\ subsumed s' s''.
|
|
Proof.
|
|
induct 2; simplify.
|
|
|
|
equality.
|
|
|
|
cases (command_equal c c0); subst; simplify.
|
|
|
|
invert H2.
|
|
invert H3.
|
|
rewrite H5.
|
|
unfold merge_astates; simplify.
|
|
rewrite H7.
|
|
cases (ss' $? c').
|
|
eexists; propositional.
|
|
unfold subsumed; simplify.
|
|
unfold merge_astate; simplify.
|
|
cases (s' $? x); try equality.
|
|
cases (a0 $? x); simplify; try equality.
|
|
invert H1; eauto.
|
|
eauto.
|
|
|
|
apply IHoneStepClosure in H3; auto.
|
|
invert H3; propositional.
|
|
cases (absint_step s c (fun x => x)); eauto.
|
|
unfold merge_astates; simplify.
|
|
rewrite H3.
|
|
cases (a0 $? c'); eauto.
|
|
eexists; propositional.
|
|
unfold subsumed; simplify.
|
|
unfold merge_astate; simplify.
|
|
specialize (H4 x0).
|
|
cases (s' $? x0).
|
|
cases (a1 $? x0); try equality.
|
|
cases (x $? x0); try equality.
|
|
invert 1.
|
|
eauto.
|
|
|
|
rewrite H4.
|
|
cases (a1 $? x0); equality.
|
|
Qed.
|
|
|
|
Lemma absint_step_monotone_None : forall a (s : astate a) c wrap,
|
|
absint_step s c wrap = None
|
|
-> forall s' : astate a, absint_step s' c wrap = None.
|
|
Proof.
|
|
induct c; simplify; try equality.
|
|
cases (absint_step s c1 (fun c => wrap (c;; c2))); equality.
|
|
Qed.
|
|
|
|
Lemma absint_interp_monotone : forall a, absint_sound a
|
|
-> forall (s : astate a) e s' n,
|
|
a.(Represents) n (absint_interp e s)
|
|
-> subsumed s s'
|
|
-> a.(Represents) n (absint_interp e s').
|
|
Proof.
|
|
induct e; simplify; eauto.
|
|
|
|
cases (s' $? x); eauto.
|
|
cases (s $? x); eauto.
|
|
Qed.
|
|
|
|
Global Hint Resolve absint_interp_monotone : core.
|
|
|
|
Lemma absint_step_monotone : forall a, absint_sound a
|
|
-> forall (s : astate a) c wrap ss,
|
|
absint_step s c wrap = Some ss
|
|
-> forall s', subsumed s s'
|
|
-> exists ss', absint_step s' c wrap = Some ss'
|
|
/\ subsumeds ss ss'.
|
|
Proof.
|
|
induct c; simplify.
|
|
|
|
equality.
|
|
|
|
invert H0.
|
|
eexists; propositional.
|
|
eauto.
|
|
apply subsumeds_add; eauto.
|
|
|
|
cases (absint_step s c1 (fun c => wrap (c;; c2))).
|
|
|
|
invert H0.
|
|
eapply IHc1 in Heq; eauto.
|
|
invert Heq; propositional.
|
|
rewrite H2; eauto.
|
|
|
|
invert H0.
|
|
eapply absint_step_monotone_None in Heq; eauto.
|
|
rewrite Heq; eauto.
|
|
|
|
invert H0; eauto.
|
|
|
|
invert H0; eauto.
|
|
Qed.
|
|
|
|
Lemma abs_step_monotone : forall a, absint_sound a
|
|
-> forall (s : astate a) c s' c',
|
|
abs_step (s, c) (s', c')
|
|
-> forall s1, subsumed s s1
|
|
-> exists s1', abs_step (s1, c) (s1', c')
|
|
/\ subsumed s' s1'.
|
|
Proof.
|
|
invert 2; simplify.
|
|
eapply absint_step_monotone in H4; eauto.
|
|
invert H4; propositional.
|
|
apply H3 in H6.
|
|
invert H6; propositional; eauto.
|
|
Qed.
|
|
|
|
Lemma interpret_sound' : forall c a, absint_sound a
|
|
-> forall ss worklist ss' : astates a, interpret ss worklist ss'
|
|
-> ss $? c = Some $0
|
|
-> invariantFor (absint_trsys a c) (fun p => exists s, ss' $? snd p = Some s
|
|
/\ subsumed (fst p) s).
|
|
Proof.
|
|
induct 2; simplify; subst.
|
|
|
|
apply invariant_induction; simplify; propositional; subst; simplify; eauto.
|
|
|
|
invert H3; propositional.
|
|
cases s.
|
|
cases s'.
|
|
simplify.
|
|
eapply abs_step_monotone in H4; eauto.
|
|
invert H4; propositional.
|
|
eapply oneStepClosure_sound in H4; eauto.
|
|
invert H4; propositional.
|
|
eapply H1 in H4.
|
|
invert H4; propositional.
|
|
eauto using subsumed_trans.
|
|
|
|
apply IHinterpret.
|
|
unfold merge_astates; simplify.
|
|
rewrite H2.
|
|
cases (ss' $? c); trivial.
|
|
unfold merge_astate; simplify; equality.
|
|
Qed.
|
|
|
|
Theorem interpret_sound : forall c a (ss : astates a),
|
|
absint_sound a
|
|
-> interpret ($0 $+ (c, $0)) ($0 $+ (c, $0)) ss
|
|
-> invariantFor (absint_trsys a c) (fun p => exists s, ss $? snd p = Some s
|
|
/\ subsumed (fst p) s).
|
|
Proof.
|
|
simplify.
|
|
eapply interpret_sound'; eauto.
|
|
simplify; equality.
|
|
Qed.
|
|
|
|
Ltac interpret_simpl := unfold merge_astates, merge_astate;
|
|
simplify; repeat simplify_map.
|
|
Ltac oneStepClosure := apply OscNil
|
|
|| (eapply OscCons; [ oneStepClosure
|
|
| interpret_simpl; reflexivity ]).
|
|
Ltac interpret1 := eapply InterpretStep; [ oneStepClosure | interpret_simpl ].
|
|
Ltac interpret_done := eapply InterpretDone; [ oneStepClosure
|
|
| repeat (apply subsumeds_add_left || apply subsumeds_empty); (simplify; equality) ].
|