frap/SeparationLogic.v
2020-04-11 14:33:14 -04:00

1368 lines
36 KiB
Coq

(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
* Chapter 14: Separation Logic
* Author: Adam Chlipala
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
Require Import Frap Setoid Classes.Morphisms SepCancel.
Set Implicit Arguments.
Set Asymmetric Patterns.
(** * Shared notations and definitions; main material starts afterward. *)
Definition heap := fmap nat nat.
Hint Extern 1 (_ <= _) => linear_arithmetic : core.
Hint Extern 1 (@eq nat _ _) => linear_arithmetic : core.
Ltac simp := repeat (simplify; subst; propositional;
try match goal with
| [ H : ex _ |- _ ] => invert H
end); try linear_arithmetic.
(** * Encore of last mixed-embedding language from last time *)
(* Let's work with a variant of the imperative language from last time. *)
Inductive loop_outcome acc :=
| Done (a : acc)
| Again (a : acc).
Inductive cmd : Set -> Type :=
| Return {result : Set} (r : result) : cmd result
| Bind {result result'} (c1 : cmd result') (c2 : result' -> cmd result) : cmd result
| Read (a : nat) : cmd nat
| Write (a v : nat) : cmd unit
| Loop {acc : Set} (init : acc) (body : acc -> cmd (loop_outcome acc)) : cmd acc
| Fail {result} : cmd result
(* But let's also add memory allocation and deallocation. *)
| Alloc (numWords : nat) : cmd nat
| Free (base numWords : nat) : cmd unit.
Notation "x <- c1 ; c2" := (Bind c1 (fun x => c2)) (right associativity, at level 80).
Notation "'for' x := i 'loop' c1 'done'" := (Loop i (fun x => c1)) (right associativity, at level 80).
(* These helper functions respectively initialize a new span of memory and
* remove a span of memory that the program is done with. *)
Fixpoint initialize (h : heap) (base numWords : nat) : heap :=
match numWords with
| O => h
| S numWords' => initialize h base numWords' $+ (base + numWords', 0)
end.
Fixpoint deallocate (h : heap) (base numWords : nat) : heap :=
match numWords with
| O => h
| S numWords' => deallocate (h $- base) (base+1) numWords'
end.
(* Let's do the semantics a bit differently this time, falling back on classic
* small-step operational semantics. *)
Inductive step : forall A, heap * cmd A -> heap * cmd A -> Prop :=
| StepBindRecur : forall result result' (c1 c1' : cmd result') (c2 : result' -> cmd result) h h',
step (h, c1) (h', c1')
-> step (h, Bind c1 c2) (h', Bind c1' c2)
| StepBindProceed : forall (result result' : Set) (v : result') (c2 : result' -> cmd result) h,
step (h, Bind (Return v) c2) (h, c2 v)
| StepLoop : forall (acc : Set) (init : acc) (body : acc -> cmd (loop_outcome acc)) h,
step (h, Loop init body) (h, o <- body init; match o with
| Done a => Return a
| Again a => Loop a body
end)
| StepRead : forall h a v,
h $? a = Some v
-> step (h, Read a) (h, Return v)
| StepWrite : forall h a v v',
h $? a = Some v
-> step (h, Write a v') (h $+ (a, v'), Return tt)
| StepAlloc : forall h numWords a,
(forall i, i < numWords -> h $? (a + i) = None)
-> step (h, Alloc numWords) (initialize h a numWords, Return a)
| StepFree : forall h a numWords,
step (h, Free a numWords) (deallocate h a numWords, Return tt).
Definition trsys_of (h : heap) {result} (c : cmd result) := {|
Initial := {(h, c)};
Step := step (A := result)
|}.
(* Now let's get into the first distinctive feature of separation logic: an
* assertion language that takes advantage of *partiality* of heaps. We give our
* definitions inside a module, which will shortly be used as a parameter to
* another module (from the book library), to get some free automation for
* implications between these assertions. *)
Module Import S <: SEP.
Definition hprop := heap -> Prop.
(* A [hprop] is a regular old assertion over heaps. *)
(* Implication *)
Definition himp (p q : hprop) := forall h, p h -> q h.
(* Equivalence *)
Definition heq (p q : hprop) := forall h, p h <-> q h.
(* Lifting a pure proposition: it must hold, and the heap must be empty. *)
Definition lift (P : Prop) : hprop :=
fun h => P /\ h = $0.
(* Separating conjunction, one of the two big ideas of separation logic.
* When does [star p q] apply to [h]? When [h] can be partitioned into two
* subheaps [h1] and [h2], respectively compatible with [p] and [q]. See book
* module [Map] for definitions of [split] and [disjoint]. *)
Definition star (p q : hprop) : hprop :=
fun h => exists h1 h2, split h h1 h2 /\ disjoint h1 h2 /\ p h1 /\ q h2.
(* Existential quantification *)
Definition exis A (p : A -> hprop) : hprop :=
fun h => exists x, p x h.
(* Convenient notations *)
Notation "[| P |]" := (lift P) : sep_scope.
Infix "*" := star : sep_scope.
Notation "'exists' x .. y , p" := (exis (fun x => .. (exis (fun y => p)) ..)) : sep_scope.
Delimit Scope sep_scope with sep.
Notation "p === q" := (heq p%sep q%sep) (no associativity, at level 70).
Notation "p ===> q" := (himp p%sep q%sep) (no associativity, at level 70).
Local Open Scope sep_scope.
(* And now we prove some key algebraic properties, whose details aren't so
* important. The library automation uses these properties. *)
Lemma iff_two : forall A (P Q : A -> Prop),
(forall x, P x <-> Q x)
-> (forall x, P x -> Q x) /\ (forall x, Q x -> P x).
Proof.
firstorder.
Qed.
Local Ltac t := (unfold himp, heq, lift, star, exis; propositional; subst);
repeat (match goal with
| [ H : forall x, _ <-> _ |- _ ] =>
apply iff_two in H
| [ H : ex _ |- _ ] => destruct H
| [ H : split _ _ $0 |- _ ] => apply split_empty_fwd in H
end; propositional; subst); eauto 15.
Theorem himp_heq : forall p q, p === q
<-> (p ===> q /\ q ===> p).
Proof.
t.
Qed.
Theorem himp_refl : forall p, p ===> p.
Proof.
t.
Qed.
Theorem himp_trans : forall p q r, p ===> q -> q ===> r -> p ===> r.
Proof.
t.
Qed.
Theorem lift_left : forall p (Q : Prop) r,
(Q -> p ===> r)
-> p * [| Q |] ===> r.
Proof.
t.
Qed.
Theorem lift_right : forall p q (R : Prop),
p ===> q
-> R
-> p ===> q * [| R |].
Proof.
t.
Qed.
Hint Resolve split_empty_bwd' : core.
Theorem extra_lift : forall (P : Prop) p,
P
-> p === [| P |] * p.
Proof.
t.
apply split_empty_fwd' in H1; subst; auto.
Qed.
Theorem star_comm : forall p q, p * q === q * p.
Proof.
t.
Qed.
Theorem star_assoc : forall p q r, p * (q * r) === (p * q) * r.
Proof.
t.
Qed.
Theorem star_cancel : forall p1 p2 q1 q2, p1 ===> p2
-> q1 ===> q2
-> p1 * q1 ===> p2 * q2.
Proof.
t.
Qed.
Theorem exis_gulp : forall A p (q : A -> _),
p * exis q === exis (fun x => p * q x).
Proof.
t.
Qed.
Theorem exis_left : forall A (p : A -> _) q,
(forall x, p x ===> q)
-> exis p ===> q.
Proof.
t.
Qed.
Theorem exis_right : forall A p (q : A -> _) x,
p ===> q x
-> p ===> exis q.
Proof.
t.
Qed.
End S.
Export S.
(* Instantiate our big automation engine to these definitions. *)
Module Import Se := SepCancel.Make(S).
(* ** Some extra predicates outside the set that the engine knows about *)
(* Capturing single-mapping heaps *)
Definition heap1 (a v : nat) : heap := $0 $+ (a, v).
Definition ptsto (a v : nat) : hprop :=
fun h => h = heap1 a v.
(* Helpful notations, some the same as above *)
Notation "[| P |]" := (lift P) : sep_scope.
Notation emp := (lift True).
Infix "*" := star : sep_scope.
Notation "'exists' x .. y , p" := (exis (fun x => .. (exis (fun y => p)) ..)) : sep_scope.
Delimit Scope sep_scope with sep.
Notation "p === q" := (heq p%sep q%sep) (no associativity, at level 70).
Notation "p ===> q" := (himp p%sep q%sep) (no associativity, at level 70).
Infix "|->" := ptsto (at level 30) : sep_scope.
(* For describing a "struct" in memory at consecutive addresses *)
Fixpoint multi_ptsto (a : nat) (vs : list nat) : hprop :=
match vs with
| nil => emp
| v :: vs' => a |-> v * multi_ptsto (a + 1) vs'
end%sep.
Infix "|-->" := multi_ptsto (at level 30) : sep_scope.
(* We'll use this one to describe the struct returned by [Alloc]. *)
Fixpoint zeroes (n : nat) : list nat :=
match n with
| O => nil
| S n' => zeroes n' ++ 0 :: nil
end.
(* For recording merely that a range of cells is mapped into our memory space *)
Fixpoint allocated (a n : nat) : hprop :=
match n with
| O => emp
| S n' => (exists v, a |-> v) * allocated (a+1) n'
end%sep.
Infix "|->?" := allocated (at level 30) : sep_scope.
(** * Finally, the Hoare logic *)
Inductive hoare_triple : forall {result}, hprop -> cmd result -> (result -> hprop) -> Prop :=
(* First, four basic rules that look exactly the same as before *)
| HtReturn : forall P {result : Set} (v : result),
hoare_triple P (Return v) (fun r => P * [| r = v |])%sep
| HtBind : forall P {result' result} (c1 : cmd result') (c2 : result' -> cmd result) Q R,
hoare_triple P c1 Q
-> (forall r, hoare_triple (Q r) (c2 r) R)
-> hoare_triple P (Bind c1 c2) R
| HtLoop : forall {acc : Set} (init : acc) (body : acc -> cmd (loop_outcome acc)) I,
(forall acc, hoare_triple (I (Again acc)) (body acc) I)
-> hoare_triple (I (Again init)) (Loop init body) (fun r => I (Done r))
| HtFail : forall {result},
hoare_triple (fun _ => False) (Fail (result := result)) (fun _ _ => False)
(* Now the new rules for primitive heap operations: *)
| HtRead : forall a R,
hoare_triple (exists v, a |-> v * R v)%sep (Read a) (fun r => a |-> r * R r)%sep
(* To read from an address, it must be mapped into the address space with some
* value. Afterward, that address is known to point to the result value [r].
* An additional *frame* predicate [R] is along for the ride. *)
| HtWrite : forall a v',
hoare_triple (exists v, a |-> v)%sep (Write a v') (fun _ => a |-> v')%sep
(* To write to an address, just show that it's mapped into the address space.
* Afterward, that address points to the value we've written. Note that this
* rule is in the *small-footprint* style, with no frame predicate baked in. *)
| HtAlloc : forall numWords,
hoare_triple emp%sep (Alloc numWords) (fun r => r |--> zeroes numWords)%sep
(* Allocation works in any memory, transitioning to a state where the result
* value points to a sequence of zeroes. *)
| HtFree : forall a numWords,
hoare_triple (a |->? numWords)%sep (Free a numWords) (fun _ => emp)%sep
(* Deallocation requires an argument pointing to the appropriate number of
* words, taking us to a state where those addresses are unmapped. *)
| HtConsequence : forall {result} (c : cmd result) P Q (P' : hprop) (Q' : _ -> hprop),
hoare_triple P c Q
-> P' ===> P
-> (forall r, Q r ===> Q' r)
-> hoare_triple P' c Q'
(* This is essentially the same rule of consequence from before. *)
| HtFrame : forall {result} (c : cmd result) P Q R,
hoare_triple P c Q
-> hoare_triple (P * R)%sep c (fun r => Q r * R)%sep.
(* The *frame rule* is the other big idea of separation logic. We can extend
* any Hoare triple by starring an arbitrary assertion [R] into both
* precondition and postcondition. Note that rule [HtRead] built in a variant
* of the frame rule, where the frame predicate [R] may depend on the value [v]
* being read. The other operations can use this generic frame rule instead. *)
Notation "{{ P }} c {{ r ~> Q }}" :=
(hoare_triple P%sep c (fun r => Q%sep)) (at level 90, c at next level).
Lemma HtStrengthen : forall {result} (c : cmd result) P Q (Q' : _ -> hprop),
hoare_triple P c Q
-> (forall r, Q r ===> Q' r)
-> hoare_triple P c Q'.
Proof.
simplify.
eapply HtConsequence; eauto.
reflexivity.
Qed.
Lemma HtWeaken : forall {result} (c : cmd result) P Q (P' : hprop),
hoare_triple P c Q
-> P' ===> P
-> hoare_triple P' c Q.
Proof.
simplify.
eapply HtConsequence; eauto.
reflexivity.
Qed.
(* Now, we carry out a moderately laborious soundness proof! It's safe to skip
* ahead to the text "Examples", but a few representative lemma highlights
* include [invert_Read], [preservation], [progress], and the main theorem
* [hoare_triple_sound]. *)
Lemma invert_Return : forall {result : Set} (r : result) P Q,
hoare_triple P (Return r) Q
-> forall h, P h -> Q r h.
Proof.
induct 1; propositional; eauto.
exists h, $0; propositional; eauto.
unfold lift; propositional.
unfold himp in *; eauto.
unfold star, himp in *; simp; eauto 7.
Qed.
Hint Constructors hoare_triple : core.
Lemma invert_Bind : forall {result' result} (c1 : cmd result') (c2 : result' -> cmd result) P Q,
hoare_triple P (Bind c1 c2) Q
-> exists R, hoare_triple P c1 R
/\ forall r, hoare_triple (R r) (c2 r) Q.
Proof.
induct 1; propositional; eauto.
invert IHhoare_triple; propositional.
eexists; propositional.
eapply HtWeaken.
eassumption.
auto.
eapply HtStrengthen.
apply H4.
auto.
simp.
exists (fun r => x r * R)%sep.
propositional.
eapply HtFrame; eauto.
eapply HtFrame; eauto.
Qed.
Lemma invert_Loop : forall {acc : Set} (init : acc) (body : acc -> cmd (loop_outcome acc)) P Q,
hoare_triple P (Loop init body) Q
-> exists I, (forall acc, hoare_triple (I (Again acc)) (body acc) I)
/\ (forall h, P h -> I (Again init) h)
/\ (forall r h, I (Done r) h -> Q r h).
Proof.
induct 1; propositional; eauto.
invert IHhoare_triple; propositional.
exists x; propositional; eauto.
unfold himp in *; eauto.
simp.
exists (fun o => x o * R)%sep; propositional; eauto.
unfold star in *; simp; eauto 7.
unfold star in *; simp; eauto 7.
Qed.
Lemma invert_Fail : forall result P Q,
hoare_triple P (Fail (result := result)) Q
-> forall h, P h -> False.
Proof.
induct 1; propositional; eauto.
unfold star in *; simp; eauto.
Qed.
(* Now that we proved enough basic facts, let's hide the definitions of all
* these predicates, so that we reason about them only through automation. *)
Opaque heq himp lift star exis ptsto.
Lemma unit_not_nat : unit = nat -> False.
Proof.
simplify.
assert (exists x : unit, forall y : unit, x = y).
exists tt; simplify.
cases y; reflexivity.
rewrite H in H0.
invert H0.
specialize (H1 (S x)).
linear_arithmetic.
Qed.
Lemma invert_Read : forall a P Q,
hoare_triple P (Read a) Q
-> exists R, (P ===> exists v, a |-> v * R v)%sep
/\ forall r, a |-> r * R r ===> Q r.
Proof.
induct 1; simp; eauto.
exists R; simp.
cancel; auto.
cancel; auto.
apply unit_not_nat in x0; simp.
apply unit_not_nat in x0; simp.
eauto 7 using himp_trans.
exists (fun n => x n * R)%sep; simp.
rewrite H1.
cancel.
rewrite <- H2.
cancel.
Qed.
Lemma invert_Write : forall a v' P Q,
hoare_triple P (Write a v') Q
-> exists R, (P ===> (exists v, a |-> v) * R)%sep
/\ a |-> v' * R ===> Q tt.
Proof.
induct 1; simp; eauto.
symmetry in x0.
apply unit_not_nat in x0; simp.
exists emp; simp.
cancel; auto.
cancel; auto.
symmetry in x0.
apply unit_not_nat in x0; simp.
eauto 7 using himp_trans.
exists (x * R)%sep; simp.
rewrite H1.
cancel.
cancel.
rewrite <- H2.
cancel.
Qed.
Lemma invert_Alloc : forall numWords P Q,
hoare_triple P (Alloc numWords) Q
-> forall r, P * r |--> zeroes numWords ===> Q r.
Proof.
induct 1; simp; eauto.
apply unit_not_nat in x0; simp.
cancel.
apply unit_not_nat in x0; simp.
rewrite H0.
eauto using himp_trans.
rewrite <- IHhoare_triple.
cancel.
Qed.
(* Temporarily transparent again! *)
Transparent heq himp lift star exis ptsto.
Lemma zeroes_initialize' : forall h a v,
h $? a = None
-> (fun h' : heap => h' = h $+ (a, v)) ===> (fun h' => h' = h) * a |-> v.
Proof.
unfold himp, star, split, ptsto, disjoint; simp.
exists h, (heap1 a v).
propositional.
maps_equal.
unfold heap1.
rewrite lookup_join2.
simp.
simp.
apply lookup_None_dom in H.
propositional.
cases (h $? k).
rewrite lookup_join1; auto.
eauto using lookup_Some_dom.
rewrite lookup_join2; auto.
unfold heap1; simp.
eauto using lookup_None_dom.
unfold heap1 in *.
cases (a ==n a0); simp.
Qed.
(* Opaque again! *)
Opaque heq himp lift star exis ptsto.
Lemma multi_ptsto_app : forall ls2 ls1 a,
a |--> ls1 * (a + length ls1) |--> ls2 ===> a |--> (ls1 ++ ls2).
Proof.
induct ls1; simp; cancel; auto.
replace (a + 0) with a by linear_arithmetic.
cancel.
rewrite <- IHls1.
cancel.
replace (a0 + 1 + length ls1) with (a0 + S (length ls1)) by linear_arithmetic.
cancel.
Qed.
Lemma length_zeroes : forall n,
length (zeroes n) = n.
Proof.
induct n; simplify; auto.
rewrite app_length; simplify.
linear_arithmetic.
Qed.
Lemma initialize_fresh : forall a' h a numWords,
a' >= a + numWords
-> initialize h a numWords $? a' = h $? a'.
Proof.
induct numWords; simp; auto.
Qed.
Lemma zeroes_initialize : forall numWords a h,
(forall i, i < numWords -> h $? (a + i) = None)
-> (fun h' => h' = initialize h a numWords) ===> (fun h' => h' = h) * a |--> zeroes numWords.
Proof.
induct numWords; simp.
cancel; auto.
rewrite <- multi_ptsto_app.
rewrite zeroes_initialize'.
erewrite IHnumWords.
simp.
rewrite length_zeroes.
cancel; auto.
auto.
rewrite initialize_fresh; auto.
Qed.
Lemma invert_Free : forall a numWords P Q,
hoare_triple P (Free a numWords) Q
-> P ===> a |->? numWords * Q tt.
Proof.
induct 1; simp; eauto.
symmetry in x0.
apply unit_not_nat in x0; simp.
symmetry in x0.
apply unit_not_nat in x0; simp.
cancel; auto.
rewrite H0.
rewrite IHhoare_triple.
cancel; auto.
rewrite IHhoare_triple.
cancel; auto.
Qed.
(* Temporarily transparent again! *)
Transparent heq himp lift star exis ptsto.
Lemma do_deallocate' : forall a Q h,
((exists v, a |-> v) * Q)%sep h
-> Q (h $- a).
Proof.
unfold ptsto, star, split, heap1; simp.
invert H1.
replace ($0 $+ (a, x1) $++ x0 $- a) with x0; auto.
maps_equal.
cases (k ==n a); simp.
specialize (H a).
simp.
cases (x0 $? a); auto.
exfalso; apply H; equality.
rewrite lookup_join2; auto.
apply lookup_None_dom.
simp.
Qed.
Lemma do_deallocate : forall Q numWords a h,
(a |->? numWords * Q)%sep h
-> Q (deallocate h a numWords).
Proof.
induct numWords; simp.
unfold star, exis, lift in H; simp.
apply split_empty_fwd' in H0; simp.
apply IHnumWords.
clear IHnumWords.
apply do_deallocate'.
Opaque heq himp lift star exis ptsto.
match goal with
| [ H : ?P h |- ?Q h ] => assert (P ===> Q) by cancel
end.
Transparent himp.
apply H0; auto.
Opaque himp.
Qed.
Lemma HtReturn' : forall P {result : Set} (v : result) Q,
P ===> Q v
-> hoare_triple P (Return v) Q.
Proof.
simp.
eapply HtStrengthen.
constructor.
simp.
cancel.
Qed.
(* Temporarily transparent again! *)
Transparent heq himp lift star exis ptsto.
Lemma preservation : forall {result} (c : cmd result) h c' h',
step (h, c) (h', c')
-> forall Q, hoare_triple (fun h' => h' = h) c Q
-> hoare_triple (fun h'' => h'' = h') c' Q.
Proof.
induct 1; simplify.
apply invert_Bind in H0; simp.
eauto.
apply invert_Bind in H; simp.
specialize (invert_Return H); eauto using HtWeaken.
apply invert_Loop in H; simp.
econstructor.
eapply HtWeaken.
eauto.
assumption.
simp.
cases r.
apply HtReturn'.
unfold himp; simp; eauto.
eapply HtStrengthen.
eauto.
unfold himp; simp; eauto.
apply invert_Read in H0; simp.
apply HtReturn'.
assert ((exists v, a |-> v * x v)%sep h') by auto.
unfold exis, star in H1; simp.
unfold ptsto in H4; subst.
unfold split in H1; subst.
unfold heap1 in H.
rewrite lookup_join1 in H by (simp; sets).
unfold himp; simp.
invert H.
apply H2.
unfold star.
exists (heap1 a v), x2; propositional.
unfold split; reflexivity.
unfold ptsto; reflexivity.
apply invert_Write in H0; simp.
apply HtReturn'.
simp.
assert (((exists v : nat, a |-> v) * x)%sep h) by auto.
unfold star in H1; simp.
invert H4.
unfold ptsto in H5; subst.
unfold split in H3; subst.
unfold heap1 in H.
rewrite lookup_join1 in H by (simp; sets).
unfold himp; simp.
invert H.
apply H2.
unfold star.
exists ($0 $+ (a, v')), x1; propositional.
unfold split.
unfold heap1.
maps_equal.
rewrite lookup_join1 by (simp; sets).
simp.
repeat rewrite lookup_join2 by (simp; sets); reflexivity.
unfold disjoint in *; simp.
cases (a0 ==n a); simp.
apply H1 with (a0 := a).
unfold heap1; simp.
equality.
assumption.
unfold ptsto; reflexivity.
apply invert_Alloc with (r := a) in H0.
apply HtReturn'.
unfold himp; simp.
eapply himp_trans in H0; try apply zeroes_initialize.
auto.
assumption.
apply invert_Free in H.
assert ((a |->? numWords * Q tt)%sep h) by auto.
apply HtReturn'.
unfold himp; simp.
eapply do_deallocate.
eauto.
Qed.
Lemma deallocate_None : forall a' numWords h a,
h $? a' = None
-> deallocate h a numWords $? a' = None.
Proof.
induct numWords; simp.
rewrite IHnumWords; simp.
cases (a ==n a'); simp.
Qed.
Lemma preservation_finite : forall {result} (c : cmd result) h c' h' bound,
step (h, c) (h', c')
-> (forall a, a >= bound -> h $? a = None)
-> exists bound', forall a, a >= bound' -> h' $? a = None.
Proof.
induct 1; simplify; eauto.
exists bound; simp.
cases (a ==n a0); simp.
rewrite H0 in H; equality.
auto.
exists (max bound (a + numWords)); simp.
rewrite initialize_fresh; auto.
exists bound; simp.
eauto using deallocate_None.
Qed.
Hint Constructors step : core.
Lemma progress : forall {result} (c : cmd result) P Q,
hoare_triple P c Q
-> forall h h1 h2, split h h1 h2
-> disjoint h1 h2
-> P h1
-> (exists bound, forall a, a >= bound -> h $? a = None)
-> (exists r, c = Return r)
\/ (exists h' c', step (h, c) (h', c')).
Proof.
induct 1; simp;
repeat match goal with
| [ H : forall _ h1 _, _ -> _ -> ?P h1 -> _, H' : ?P _ |- _ ] => eapply H in H'; clear H; try eassumption; simp
end; eauto.
invert H1.
right; exists h, (Return x0).
constructor.
unfold split, ptsto, heap1 in *; simp.
unfold star in H2; simp.
unfold split in H; simp.
rewrite lookup_join1; simp.
rewrite lookup_join1; simp.
sets.
eapply lookup_Some_dom.
rewrite lookup_join1; simp.
sets.
right; exists (h $+ (a, v')), (Return tt).
unfold split, exis, ptsto, heap1 in *; simp.
econstructor.
rewrite lookup_join1; simp.
sets.
unfold lift in H1; simp.
apply split_empty_fwd' in H; simp.
right; exists (initialize h2 x numWords), (Return x).
constructor.
simp; auto.
unfold star in H2; simp.
apply IHhoare_triple with (h := h) (h1 := x0) (h2 := h2 $++ x1); eauto.
unfold split in *; simp.
rewrite (@join_comm _ _ h2 x1).
apply join_assoc.
sets.
cases (h2 $? x2).
cases (x1 $? x2).
specialize (H2 x2).
specialize (H1 x2).
rewrite lookup_join2 in H1.
apply H1; equality.
unfold not.
simplify.
cases (x0 $? x2).
exfalso; apply H2; equality.
apply lookup_None_dom in Heq1; propositional.
apply lookup_None_dom in Heq0; propositional.
apply lookup_None_dom in Heq; propositional.
unfold split, disjoint in *; simp.
cases (h2 $? a).
rewrite lookup_join1 in H8.
apply H1 with (a := a); auto.
rewrite lookup_join1; auto.
cases (x0 $? a); try equality.
eauto using lookup_Some_dom.
eauto using lookup_Some_dom.
rewrite lookup_join2 in H8.
eapply H2; eassumption.
eauto using lookup_None_dom.
Qed.
Lemma hoare_triple_sound' : forall P {result} (c : cmd result) Q,
hoare_triple P c Q
-> P $0
-> invariantFor (trsys_of $0 c)
(fun p =>
(exists bound, forall a, a >= bound -> fst p $? a = None)
/\ hoare_triple (fun h' => h' = fst p)
(snd p)
Q).
Proof.
simplify.
apply invariant_induction; simplify.
propositional; subst; simplify.
exists 0; simp.
eapply HtWeaken; eauto.
unfold himp; simplify; equality.
cases s.
cases s'.
simp.
eauto using preservation_finite.
eauto using preservation.
Qed.
Theorem hoare_triple_sound : forall P {result} (c : cmd result) Q,
hoare_triple P c Q
-> P $0
-> invariantFor (trsys_of $0 c)
(fun p => (exists r, snd p = Return r)
\/ (exists p', step p p')).
Proof.
simplify.
eapply invariant_weaken.
eapply hoare_triple_sound'; eauto.
simp.
specialize (progress H3); simplify.
specialize (H2 (fst s) (fst s) $0).
assert (split (fst s) (fst s) $0) by auto.
assert (disjoint (fst s) $0) by auto.
assert (exists bound, forall a, a >= bound -> fst s $? a = None) by eauto.
cases s; simp; eauto.
Qed.
(* Fancy theorem to help us rewrite within preconditions and postconditions *)
Instance hoare_triple_morphism : forall A,
Proper (heq ==> eq ==> (eq ==> heq) ==> iff) (@hoare_triple A).
Proof.
Transparent himp.
repeat (hnf; intros).
unfold pointwise_relation in *; intuition subst.
eapply HtConsequence; eauto.
rewrite H; reflexivity.
intros.
hnf in H1.
specialize (H1 r _ eq_refl).
rewrite H1; reflexivity.
eapply HtConsequence; eauto.
rewrite H; reflexivity.
intros.
hnf in H1.
specialize (H1 r _ eq_refl).
rewrite H1; reflexivity.
Opaque himp.
Qed.
(** * Examples *)
Opaque heq himp lift star exis ptsto.
(* Here comes some automation that we won't explain in detail, instead opting to
* use examples. *)
Theorem use_lemma : forall result P' (c : cmd result) (Q : result -> hprop) P R,
hoare_triple P' c Q
-> P ===> P' * R
-> hoare_triple P c (fun r => Q r * R)%sep.
Proof.
simp.
eapply HtWeaken.
eapply HtFrame.
eassumption.
eauto.
Qed.
Theorem HtRead' : forall a v,
hoare_triple (a |-> v)%sep (Read a) (fun r => a |-> v * [| r = v |])%sep.
Proof.
simp.
apply HtWeaken with (exists r, a |-> r * [| r = v |])%sep.
eapply HtStrengthen.
apply HtRead.
simp.
cancel; auto.
subst; cancel.
cancel; auto.
Qed.
Theorem HtRead'' : forall p P R,
P ===> (exists v, p |-> v * R v)
-> hoare_triple P (Read p) (fun r => p |-> r * R r)%sep.
Proof.
simp.
eapply HtWeaken.
apply HtRead.
assumption.
Qed.
Ltac basic := apply HtReturn' || eapply HtWrite || eapply HtAlloc || eapply HtFree.
Ltac step0 := basic || eapply HtBind || (eapply use_lemma; [ basic | cancel; auto ])
|| (eapply use_lemma; [ eapply HtRead' | solve [ cancel; auto ] ])
|| (eapply HtRead''; solve [ cancel ])
|| (eapply HtStrengthen; [ eapply use_lemma; [ basic | cancel; auto ] | ])
|| (eapply HtConsequence; [ apply HtFail | .. ]).
Ltac step := step0; simp.
Ltac ht := simp; repeat step.
Ltac conseq := simplify; eapply HtConsequence.
Ltac use_IH H := conseq; [ apply H | .. ]; ht.
Ltac loop_inv0 Inv := (eapply HtWeaken; [ apply HtLoop with (I := Inv) | .. ])
|| (eapply HtConsequence; [ apply HtLoop with (I := Inv) | .. ]).
Ltac loop_inv Inv := loop_inv0 Inv; ht.
Ltac use H := (eapply use_lemma; [ eapply H | cancel; auto ])
|| (eapply HtStrengthen; [ eapply use_lemma; [ eapply H | cancel; auto ] | ]).
Ltac heq := intros; apply himp_heq; split.
(* That's the end of the largely unexplained automation. Let's prove some
* programs! *)
(** ** Swapping with two pointers *)
Definition swap p q :=
tmpp <- Read p;
tmpq <- Read q;
_ <- Write p tmpq;
Write q tmpp.
(* Looking at the precondition here, note how we no longer work with explicit
* functions over heaps. All that is hidden within the assertion language.
* Also note that the definition of [*] gives us nonaliasing of [p] and [q] for
* free! *)
Theorem swap_ok : forall p q a b,
{{p |-> a * q |-> b}}
swap p q
{{_ ~> p |-> b * q |-> a}}.
Proof.
unfold swap.
(* [simp] is our generic simplifier for this file. *)
simp.
(* We generally just keep calling [step] to advance forward by one atomic
* statement. *)
step.
step.
(* We do often want to use [simp] to clean up the goal after [step] infers an
* intermediate assertion. *)
simp.
step.
step.
simp.
step.
step.
simp.
step.
(* The [cancel] procedure repeatedly finds matching subformulas on the two
* sides of [===>], removing them and recurring, possibly learning the values
* of some unification variables each time. *)
cancel.
subst.
cancel.
Qed.
Opaque swap.
(* This command prevents later proofs from peeking inside the implementation of
* [swap]. Instead, we only reason about it through [swap_ok]. *)
(* Two swaps in a row provide a kind of rotation across three addresses. *)
Definition rotate p q r :=
_ <- swap p q;
swap q r.
Theorem rotate_ok : forall p q r a b c,
{{p |-> a * q |-> b * r |-> c}}
rotate p q r
{{_ ~> p |-> b * q |-> c * r |-> a}}.
Proof.
unfold rotate.
simp.
step.
(* Now we invoke our earlier theorem by name. Note that its precondition only
* matches a subset of our current precondition. The rest of state is left
* alone, which we can prove "for free" by the frame rule. *)
use swap_ok.
simp.
use swap_ok.
simp.
cancel.
Qed.
Opaque rotate.
(** ** Initializing a fresh object *)
Definition init :=
p <- Alloc 2;
_ <- Write p 7;
_ <- Write (p+1) 8;
Return p.
Theorem init_ok :
{{emp}}
init
{{p ~> p |--> [7; 8]}}.
Proof.
unfold init.
simp.
step.
step.
simp.
step.
step.
simp.
step.
step.
simp.
step.
cancel.
Qed.
Opaque init.
Theorem the_circle_of_life_ok :
{{emp}}
p <- init;
Free p 2
{{_ ~> emp}}.
Proof.
step.
use init_ok.
simp.
step.
cancel.
Qed.
Theorem ultra_combo_ok :
{{emp}}
p <- init;
_ <- swap p (p+1);
Return p
{{p ~> p |--> [8; 7]}}.
Proof.
step.
use init_ok.
simp.
step.
use swap_ok.
simp.
step.
cancel.
Qed.
(** ** In-place reversal of a singly linked list *)
(* Let's give a recursive definition of how a linked list should be laid out in
* memory. *)
Fixpoint linkedList (p : nat) (ls : list nat) :=
match ls with
| nil => [| p = 0 |]
(* An empty list is associated with a null pointer and no memory
* contents. *)
| x :: ls' => [| p <> 0 |]
* exists p', p |--> [x; p'] * linkedList p' ls'
(* A nonempty list is associated with a nonnull pointer and a two-cell
* struct, which points to a further list. *)
end%sep.
(* The definition of [linkedList] is recursive in the list. Let's also prove
* lemmas for simplifying [linkedList] invocations based on values of [p]. *)
Theorem linkedList_null : forall ls,
linkedList 0 ls === [| ls = nil |].
Proof.
(* Tactic [heq] breaks an equivalence into two implications. *)
heq; cases ls; cancel.
Qed.
Theorem linkedList_nonnull : forall {p ls},
p <> 0
-> linkedList p ls === exists x ls' p', [| ls = x :: ls' |] * p |--> [x; p'] * linkedList p' ls'.
Proof.
heq; cases ls; cancel; match goal with
| [ H : _ = _ :: _ |- _ ] => invert H
end; cancel.
Qed.
Hint Rewrite <- rev_alt.
Hint Rewrite rev_involutive.
(* Let's hide the definition of [linkedList], so that we *only* reason about it
* via the two lemmas we just proved. *)
Opaque linkedList.
(* In-place linked-list reverse, the "hello world" of separation logic! *)
Definition reverse p :=
pr <- for pr := (p, 0) loop
let (p, r) := pr in
if p ==n 0 then
Return (Done pr)
else
tmp <- Read (p + 1);
_ <- Write (p+1) r;
Return (Again (tmp, p))
done;
Return (snd pr).
(* Helper function to peel away the [Done]/[Again] status of a [loop_outcome] *)
Definition valueOf {A} (o : loop_outcome A) :=
match o with
| Done v => v
| Again v => v
end.
Theorem reverse_ok : forall p ls,
{{linkedList p ls}}
reverse p
{{r ~> linkedList r (rev ls)}}.
Proof.
unfold reverse.
simp.
step.
(* When we reach a loop, we give the invariant with a special tactic. *)
loop_inv (fun o => exists ls1 ls2, [| ls = rev_append ls1 ls2 |]
* linkedList (fst (valueOf o)) ls2
* linkedList (snd (valueOf o)) ls1
* [| match o with
| Done (p, _) => p = 0
| _ => True
end |])%sep.
cases (a ==n 0); simp.
step.
cancel.
step.
(* We use [setoid_rewrite] for rewriting under binders ([exists], in this
* case). Note that we also specify hypothesis [n] explicitly, since
* [setoid_rewrite] isn't smart enough to infer parameters otherwise. *)
setoid_rewrite (linkedList_nonnull n).
step.
simp.
step.
step.
simp.
step.
setoid_rewrite (linkedList_nonnull n).
cancel.
simp.
setoid_rewrite linkedList_null.
cancel.
equality.
simp.
step.
cancel.
simp.
setoid_rewrite linkedList_null.
cancel.
simp.
cancel.
Qed.
Opaque reverse.
(* ** Calling [reverse] twice, to illustrate the *frame rule* *)
Theorem reverse_two_ok : forall p1 ls1 p2 ls2,
{{linkedList p1 ls1 * linkedList p2 ls2}}
p1 <- reverse p1;
p2 <- reverse p2;
Return (p1, p2)
{{ps ~> linkedList (fst ps) (rev ls1) * linkedList (snd ps) (rev ls2)}}.
Proof.
simp.
step.
use reverse_ok.
simp.
step.
use reverse_ok.
simp.
step.
cancel.
Qed.
(* Note that the intuitive correctness theorem would be *false* for lists
* sharing any cells in common! The inherent disjointness of [*] saves us from
* worrying about those cases. *)
(* ** Computing the length of a linked list *)
(* To state a good loop invariant, it will be helpful to define
* *list segments* that end with some pointer beside null. *)
Fixpoint linkedListSegment (p : nat) (ls : list nat) (q : nat) :=
match ls with
| nil => [| p = q |]
| x :: ls' => [| p <> 0 |] * exists p', p |--> [x; p'] * linkedListSegment p' ls' q
end%sep.
(* Next, two [linkedListSegment] lemmas analogous to those for [linkedList]
* above *)
Lemma linkedListSegment_empty : forall p ls,
linkedList p ls ===> linkedList p ls * linkedListSegment p nil p.
Proof.
cancel.
Qed.
Lemma linkedListSegment_append : forall q r x ls p,
q <> 0
-> linkedListSegment p ls q * q |--> [x; r] ===> linkedListSegment p (ls ++ x :: nil) r.
Proof.
induct ls; cancel; auto.
subst; cancel.
rewrite <- IHls; cancel; auto.
Qed.
(* One more [linkedList] lemma will be helpful. We'll re-reveal the predicate's
* definition to prove the lemma. *)
Transparent linkedList.
Lemma linkedListSegment_null : forall ls p,
linkedListSegment p ls 0 ===> linkedList p ls.
Proof.
induct ls; cancel; auto.
Qed.
Opaque linkedList linkedListSegment.
(* A few algebraic properties of list operations: *)
Hint Rewrite <- app_assoc.
Hint Rewrite app_length app_nil_r.
(* We tie a few of them together into this lemma. *)
Lemma move_along : forall A (ls : list A) x2 x1 x0 x,
ls = x2 ++ x1
-> x1 = x0 :: x
-> ls = (x2 ++ [x0]) ++ x.
Proof.
simp.
Qed.
Hint Resolve move_along : core.
Theorem length_ok : forall p ls,
{{linkedList p ls}}
q_len <- for q_len := (p, 0) loop
let (q, len) := q_len in
if q ==n 0 then
Return (Done q_len)
else
tmp <- Read (q + 1);
Return (Again (tmp, len+1))
done;
Return (snd q_len)
{{len ~> linkedList p ls * [| len = length ls |]}}.
Proof.
simp.
step.
loop_inv (fun o => exists ls1 ls2, [| ls = ls1 ++ ls2 |]
* linkedListSegment p ls1 (fst (valueOf o))
* linkedList (fst (valueOf o)) ls2
* [| snd (valueOf o) = length ls1 |]
* [| match o with
| Done (q, _) => q = 0 /\ ls2 = nil
| _ => True
end |])%sep.
cases (a ==n 0); simp.
step.
setoid_rewrite linkedList_null.
cancel.
simp.
step.
setoid_rewrite (linkedList_nonnull n).
step.
simp.
step.
cancel.
simp.
setoid_rewrite <- linkedListSegment_append.
cancel.
auto.
simp.
simp.
rewrite linkedListSegment_empty.
cancel.
simp.
step.
cancel.
simp.
rewrite linkedListSegment_null.
rewrite linkedList_null.
cancel.
simp.
Qed.