frap/FrapWithoutSets.v
2017-03-21 19:27:36 -04:00

373 lines
11 KiB
Coq

Require Import Eqdep String Arith Omega Program Sets Relations Map Var Invariant Bool ModelCheck.
Export String Arith Sets Relations Map Var Invariant Bool ModelCheck.
Require Import List.
Export List ListNotations.
Open Scope string_scope.
Open Scope list_scope.
Ltac inductN n :=
match goal with
| [ |- forall x : ?E, _ ] =>
match type of E with
| Prop =>
let H := fresh in intro H;
match n with
| 1 => dependent induction H
| S ?n' => inductN n'
end
| _ => intro; inductN n
end
end.
Ltac same_structure x y :=
match x with
| ?f ?a1 ?b1 ?c1 ?d1 =>
match y with
| f ?a2 ?b2 ?c2 ?d2 => same_structure a1 a2; same_structure b1 b2; same_structure c1 c2; same_structure d1 d2
| _ => fail 2
end
| ?f ?a1 ?b1 ?c1 =>
match y with
| f ?a2 ?b2 ?c2 => same_structure a1 a2; same_structure b1 b2; same_structure c1 c2
| _ => fail 2
end
| ?f ?a1 ?b1 =>
match y with
| f ?a2 ?b2 => same_structure a1 a2; same_structure b1 b2
| _ => fail 2
end
| ?f ?a1 =>
match y with
| f ?a2 => same_structure a1 a2
| _ => fail 2
end
| _ =>
match y with
| ?f ?a1 ?b1 ?c1 ?d1 =>
match x with
| f ?a2 ?b2 ?c2 ?d2 => same_structure a1 a2; same_structure b1 b2; same_structure c1 c2; same_structure d1 d2
| _ => fail 2
end
| ?f ?a1 ?b1 ?c1 =>
match x with
| f ?a2 ?b2 ?c2 => same_structure a1 a2; same_structure b1 b2; same_structure c1 c2
| _ => fail 2
end
| ?f ?a1 ?b1 =>
match x with
| f ?a2 ?b2 => same_structure a1 a2; same_structure b1 b2
| _ => fail 2
end
| ?f ?a1 =>
match x with
| f ?a2 => same_structure a1 a2
| _ => fail 2
end
| _ => idtac
end
end.
Ltac instantiate_obvious1 H :=
match type of H with
| _ ++ _ = _ ++ _ -> _ => fail 1
| ?x = ?y -> _ =>
(same_structure x y; specialize (H eq_refl))
|| (has_evar (x, y); fail 3)
| JMeq.JMeq ?x ?y -> _ =>
(same_structure x y; specialize (H JMeq.JMeq_refl))
|| (has_evar (x, y); fail 3)
| forall x : ?T, _ =>
match type of T with
| Prop => fail 1
| _ =>
let x' := fresh x in
evar (x' : T);
let x'' := eval unfold x' in x' in specialize (H x''); clear x';
instantiate_obvious1 H
end
end.
Ltac instantiate_obvious H :=
match type of H with
| context[@eq string _ _] => idtac
| _ => repeat instantiate_obvious1 H
end.
Ltac instantiate_obviouses :=
repeat match goal with
| [ H : _ |- _ ] => instantiate_obvious H
end.
Ltac induct e := (inductN e || dependent induction e); instantiate_obviouses.
Ltac invert' H := inversion H; clear H; subst.
Ltac invertN n :=
match goal with
| [ |- forall x : ?E, _ ] =>
match type of E with
| Prop =>
let H := fresh in intro H;
match n with
| 1 => invert' H
| S ?n' => invertN n'
end
| _ => intro; invertN n
end
end.
Ltac invert e := invertN e || invert' e.
Ltac invert0 e := invert e; fail.
Ltac invert1 e := invert0 e || (invert e; []).
Ltac invert2 e := invert1 e || (invert e; [|]).
Ltac maps_neq :=
match goal with
| [ H : ?m1 = ?m2 |- _ ] =>
let rec recur E :=
match E with
| ?E' $+ (?k, _) =>
(apply (f_equal (fun m => m $? k)) in H; simpl in *; autorewrite with core in *; simpl in *; congruence)
|| recur E'
end in
recur m1 || recur m2
end.
Ltac fancy_neq :=
repeat match goal with
| _ => maps_neq
| [ H : @eq (nat -> _) _ _ |- _ ] => apply (f_equal (fun f => f 0)) in H
| [ H : @eq ?T _ _ |- _ ] =>
match eval compute in T with
| fmap _ _ => fail 1
| _ => invert H
end
end.
Ltac maps_equal' := progress Frap.Map.M.maps_equal; autorewrite with core; simpl.
Ltac removeDups :=
match goal with
| [ |- context[constant ?ls] ] =>
someMatch ls;
erewrite (@removeDups_ok _ ls)
by repeat (apply RdNil
|| (apply RdNew; [ simpl; intuition (congruence || solve [ fancy_neq ]) | ])
|| (apply RdDup; [ simpl; intuition (congruence || (repeat (maps_equal' || f_equal))) | ]))
end.
Ltac doSubtract :=
match goal with
| [ |- context[constant ?ls \setminus constant ?ls0] ] =>
erewrite (@doSubtract_ok _ ls ls0)
by repeat (apply DsNil
|| (apply DsKeep; [ simpl; intuition (congruence || solve [ fancy_neq ]) | ])
|| (apply DsDrop; [ simpl; intuition (congruence || (repeat (maps_equal' || f_equal))) | ]))
end.
Ltac simpl_maps :=
repeat match goal with
| [ |- context[add ?m ?k1 ?v $? ?k2] ] =>
(rewrite (@lookup_add_ne _ _ m k1 k2 v) by (congruence || omega))
|| (rewrite (@lookup_add_eq _ _ m k1 k2 v) by (congruence || omega))
end.
Ltac simplify := repeat (unifyTails; pose proof I);
repeat match goal with
| [ H : True |- _ ] => clear H
end;
repeat progress (simpl in *; intros; try autorewrite with core in *; simpl_maps);
repeat (normalize_set || doSubtract).
Ltac propositional := intuition idtac.
Ltac linear_arithmetic := intros;
repeat match goal with
| [ |- context[max ?a ?b] ] =>
let Heq := fresh "Heq" in destruct (Max.max_spec a b) as [[? Heq] | [? Heq]];
rewrite Heq in *; clear Heq
| [ _ : context[max ?a ?b] |- _ ] =>
let Heq := fresh "Heq" in destruct (Max.max_spec a b) as [[? Heq] | [? Heq]];
rewrite Heq in *; clear Heq
| [ |- context[min ?a ?b] ] =>
let Heq := fresh "Heq" in destruct (Min.min_spec a b) as [[? Heq] | [? Heq]];
rewrite Heq in *; clear Heq
| [ _ : context[min ?a ?b] |- _ ] =>
let Heq := fresh "Heq" in destruct (Min.min_spec a b) as [[? Heq] | [? Heq]];
rewrite Heq in *; clear Heq
end; omega.
Ltac equality := intuition congruence.
Ltac cases E :=
((is_var E; destruct E)
|| match type of E with
| {_} + {_} => destruct E
| _ => let Heq := fresh "Heq" in destruct E eqn:Heq
end);
repeat match goal with
| [ H : _ = left _ |- _ ] => clear H
| [ H : _ = right _ |- _ ] => clear H
end.
Global Opaque max min.
Infix "==n" := eq_nat_dec (no associativity, at level 50).
Infix "<=?" := le_lt_dec.
Export Frap.Map.
Ltac maps_equal := Frap.Map.M.maps_equal; simplify.
Ltac first_order := firstorder idtac.
(** * Model checking *)
Lemma eq_iff : forall P Q,
P = Q
-> (P <-> Q).
Proof.
equality.
Qed.
Ltac sets0 := Sets.sets ltac:(simpl in *; intuition (subst; auto; try equality; try linear_arithmetic)).
Ltac sets := propositional;
try match goal with
| [ |- @eq (set _) _ _ ] =>
let x := fresh "x" in
apply sets_equal; intro x;
repeat match goal with
| [ H : @eq (set _) _ _ |- _ ] => apply (f_equal (fun f => f x)) in H;
apply eq_iff in H
end
end; sets0;
try match goal with
| [ H : @eq (set ?T) _ _, x : ?T |- _ ] =>
repeat match goal with
| [ H : @eq (set T) _ _ |- _ ] => apply (f_equal (fun f => f x)) in H;
apply eq_iff in H
end;
solve [ sets0 ]
end.
Ltac model_check_invert1 :=
match goal with
| [ H : ?P |- _ ] =>
match type of P with
| Prop => invert H;
repeat match goal with
| [ H : existT _ ?x _ = existT _ ?x _ |- _ ] =>
apply inj_pair2 in H; subst
end; simplify
end
end.
Ltac model_check_invert := simplify; subst; repeat model_check_invert1.
Lemma oneStepClosure_solve : forall A (sys : trsys A) I I',
oneStepClosure sys I I'
-> I = I'
-> oneStepClosure sys I I.
Proof.
equality.
Qed.
Ltac singletoner := try (exfalso; solve [ sets ]);
repeat match goal with
(* | _ => apply singleton_in *)
| [ |- _ ?S ] => idtac S; apply singleton_in
| [ |- (_ \cup _) _ ] => apply singleton_in_other
end.
Ltac closure :=
repeat (apply oneStepClosure_empty
|| (apply oneStepClosure_split; [ model_check_invert; try equality; solve [ singletoner ] | ])).
Ltac model_check_done :=
apply MscDone; eapply oneStepClosure_solve; [ closure | simplify; solve [ sets ] ].
Ltac model_check_step0 :=
eapply MscStep; [ closure | simplify ].
Ltac model_check_step :=
match goal with
| [ |- multiStepClosure _ ?inv1 _ _ ] =>
model_check_step0;
match goal with
| [ |- multiStepClosure _ ?inv2 _ _ ] =>
(assert (inv1 = inv2) by compare_sets; fail 3)
|| idtac
end
end.
Ltac model_check_steps1 := model_check_step || model_check_done.
Ltac model_check_steps := repeat model_check_steps1.
Ltac model_check_finish := simplify; propositional; subst; simplify; try equality; try linear_arithmetic.
Ltac model_check_infer :=
apply multiStepClosure_ok; simplify; model_check_steps.
Ltac model_check_find_invariant :=
simplify; eapply invariant_weaken; [ model_check_infer | ]; cbv beta in *.
Ltac model_check := model_check_find_invariant; model_check_finish.
Inductive ordering (n m : nat) :=
| Lt (_ : n < m)
| Eq (_ : n = m)
| Gt (_ : n > m).
Local Hint Constructors ordering.
Local Hint Extern 1 (_ < _) => omega.
Local Hint Extern 1 (_ > _) => omega.
Theorem totally_ordered : forall n m, ordering n m.
Proof.
induction n; destruct m; simpl; eauto.
destruct (IHn m); eauto.
Qed.
Ltac total_ordering N M := destruct (totally_ordered N M).
Ltac inList x xs :=
match xs with
| (x, _) => true
| (_, ?xs') => inList x xs'
| _ => false
end.
Ltac maybe_simplify_map m found kont :=
match m with
| @empty ?A ?B => kont (@empty A B)
| ?m' $+ (?k, ?v) =>
let iL := inList k found in
match iL with
| true => maybe_simplify_map m' found kont
| false =>
maybe_simplify_map m' (k, found) ltac:(fun m' => kont (m' $+ (k, v)))
end
end.
Ltac simplify_map' m found kont :=
match m with
| ?m' $+ (?k, ?v) =>
let iL := inList k found in
match iL with
| true => maybe_simplify_map m' found kont
| false =>
simplify_map' m' (k, found) ltac:(fun m' => kont (m' $+ (k, v)))
end
end.
Ltac simplify_map :=
match goal with
| [ |- context[@add ?A ?B ?m ?k ?v] ] =>
simplify_map' (m $+ (k, v)) tt ltac:(fun m' =>
replace (@add A B m k v) with m' by maps_equal)
end.
Require Import Classical.
Ltac excluded_middle P := destruct (classic P).