mirror of
https://github.com/achlipala/frap.git
synced 2024-11-10 00:07:51 +00:00
470 lines
14 KiB
Coq
470 lines
14 KiB
Coq
Require Import Eqdep String NArith Arith Lia Program Sets Relations Map Var Invariant Bool ModelCheck.
|
|
Export Ascii String Arith Sets Relations Map Var Invariant Bool ModelCheck.
|
|
Require Import List.
|
|
Export List ListNotations.
|
|
Open Scope string_scope.
|
|
Open Scope list_scope.
|
|
|
|
Ltac inductN n :=
|
|
match goal with
|
|
| [ |- forall x : ?E, _ ] =>
|
|
match type of E with
|
|
| Prop =>
|
|
let H := fresh in intro H;
|
|
match n with
|
|
| 1 => dependent induction H
|
|
| S ?n' => inductN n'
|
|
end
|
|
| _ => intro; inductN n
|
|
end
|
|
end.
|
|
|
|
Ltac same_structure x y :=
|
|
match x with
|
|
| ?f ?a1 ?b1 ?c1 ?d1 =>
|
|
match y with
|
|
| f ?a2 ?b2 ?c2 ?d2 => same_structure a1 a2; same_structure b1 b2; same_structure c1 c2; same_structure d1 d2
|
|
| _ => fail 2
|
|
end
|
|
| ?f ?a1 ?b1 ?c1 =>
|
|
match y with
|
|
| f ?a2 ?b2 ?c2 => same_structure a1 a2; same_structure b1 b2; same_structure c1 c2
|
|
| _ => fail 2
|
|
end
|
|
| ?f ?a1 ?b1 =>
|
|
match y with
|
|
| f ?a2 ?b2 => same_structure a1 a2; same_structure b1 b2
|
|
| _ => fail 2
|
|
end
|
|
| ?f ?a1 =>
|
|
match y with
|
|
| f ?a2 => same_structure a1 a2
|
|
| _ => fail 2
|
|
end
|
|
| _ =>
|
|
match y with
|
|
| ?f ?a1 ?b1 ?c1 ?d1 =>
|
|
match x with
|
|
| f ?a2 ?b2 ?c2 ?d2 => same_structure a1 a2; same_structure b1 b2; same_structure c1 c2; same_structure d1 d2
|
|
| _ => fail 2
|
|
end
|
|
| ?f ?a1 ?b1 ?c1 =>
|
|
match x with
|
|
| f ?a2 ?b2 ?c2 => same_structure a1 a2; same_structure b1 b2; same_structure c1 c2
|
|
| _ => fail 2
|
|
end
|
|
| ?f ?a1 ?b1 =>
|
|
match x with
|
|
| f ?a2 ?b2 => same_structure a1 a2; same_structure b1 b2
|
|
| _ => fail 2
|
|
end
|
|
| ?f ?a1 =>
|
|
match x with
|
|
| f ?a2 => same_structure a1 a2
|
|
| _ => fail 2
|
|
end
|
|
| _ => idtac
|
|
end
|
|
end.
|
|
|
|
Ltac instantiate_obvious1 H :=
|
|
match type of H with
|
|
| _ ++ _ = _ ++ _ -> _ => fail 1
|
|
| ?x = ?y -> _ =>
|
|
(same_structure x y; specialize (H eq_refl))
|
|
|| (has_evar (x, y); fail 3)
|
|
| JMeq.JMeq ?x ?y -> _ =>
|
|
(same_structure x y; specialize (H JMeq.JMeq_refl))
|
|
|| (has_evar (x, y); fail 3)
|
|
| forall x : ?T, _ =>
|
|
match type of T with
|
|
| Prop => fail 1
|
|
| _ =>
|
|
let x' := fresh x in
|
|
evar (x' : T);
|
|
let x'' := eval unfold x' in x' in specialize (H x''); clear x';
|
|
instantiate_obvious1 H
|
|
end
|
|
end.
|
|
|
|
Ltac instantiate_obvious H :=
|
|
match type of H with
|
|
| context[@eq string _ _] => idtac
|
|
| _ => repeat instantiate_obvious1 H
|
|
end.
|
|
|
|
Ltac instantiate_obviouses :=
|
|
repeat match goal with
|
|
| [ H : _ |- _ ] => instantiate_obvious H
|
|
end.
|
|
|
|
(** * Interlude: special notations and induction principle for [N] *)
|
|
|
|
(* Note: recurse is an identifier, but we will always use the name "recurse" by convention *)
|
|
Declare Scope N_recursion_scope.
|
|
Notation "recurse 'by' 'cases' | 0 => A | n + 1 => B 'end'" :=
|
|
(N.recursion A (fun n recurse => B))
|
|
(at level 11, A at level 200, n at level 0, B at level 200,
|
|
format "'[hv' recurse 'by' 'cases' '//' '|' 0 => A '//' '|' n + 1 => B '//' 'end' ']'")
|
|
: N_recursion_scope.
|
|
|
|
Open Scope N_recursion_scope.
|
|
|
|
Lemma indN: forall (P: N -> Prop),
|
|
P 0%N -> (* base case to prove *)
|
|
(forall n: N, P n -> P (n + 1)%N) -> (* inductive case to prove *)
|
|
forall n, P n. (* conclusion to enjoy *)
|
|
Proof. setoid_rewrite N.add_1_r. exact N.peano_ind. Qed.
|
|
|
|
Ltac induct e := (induction e using indN || inductN e || dependent induction e); instantiate_obviouses.
|
|
|
|
Ltac invert' H := inversion H; clear H; subst.
|
|
|
|
Ltac invertN n :=
|
|
match goal with
|
|
| [ |- forall x : ?E, _ ] =>
|
|
match type of E with
|
|
| Prop =>
|
|
let H := fresh in intro H;
|
|
match n with
|
|
| 1 => invert' H
|
|
| S ?n' => invertN n'
|
|
end
|
|
| _ => intro; invertN n
|
|
end
|
|
end.
|
|
|
|
Ltac invert e := invertN e || invert' e.
|
|
|
|
Ltac invert0 e := invert e; fail.
|
|
Ltac invert1 e := invert0 e || (invert e; []).
|
|
Ltac invert2 e := invert1 e || (invert e; [|]).
|
|
|
|
Ltac maps_neq :=
|
|
match goal with
|
|
| [ H : ?m1 = ?m2 |- _ ] =>
|
|
let rec recur E :=
|
|
match E with
|
|
| ?E' $+ (?k, _) =>
|
|
(apply (f_equal (fun m => m $? k)) in H; simpl in *; autorewrite with core in *; simpl in *; congruence)
|
|
|| recur E'
|
|
end in
|
|
recur m1 || recur m2
|
|
end.
|
|
|
|
Ltac fancy_neq :=
|
|
repeat match goal with
|
|
| _ => maps_neq
|
|
| [ H : @eq (nat -> _) _ _ |- _ ] => apply (f_equal (fun f => f 0)) in H
|
|
| [ H : @eq ?T _ _ |- _ ] =>
|
|
match eval compute in T with
|
|
| fmap _ _ => fail 1
|
|
| _ => invert H
|
|
end
|
|
end.
|
|
|
|
Ltac maps_equal' := progress Frap.Map.M.maps_equal; autorewrite with core; simpl.
|
|
|
|
Ltac removeDups :=
|
|
match goal with
|
|
| [ |- context[constant ?ls] ] =>
|
|
someMatch ls;
|
|
erewrite (@removeDups_ok _ ls)
|
|
by repeat (apply RdNil
|
|
|| (apply RdNew; [ simpl; intuition (congruence || solve [ fancy_neq ]) | ])
|
|
|| (apply RdDup; [ simpl; intuition (congruence || (repeat (maps_equal' || f_equal))) | ]))
|
|
end.
|
|
|
|
Ltac doSubtract :=
|
|
match goal with
|
|
| [ |- context[@minus ?A (@constant ?A1 ?ls) (@constant ?A2 ?ls0)] ] =>
|
|
match A with
|
|
| A1 => idtac
|
|
| _ => change (@constant A1 ls) with (@constant A ls)
|
|
end;
|
|
match A with
|
|
| A2 => idtac
|
|
| _ => change (@constant A2 ls0) with (@constant A ls0)
|
|
end;
|
|
erewrite (@doSubtract_ok A ls ls0)
|
|
by repeat (apply DsNil
|
|
|| (apply DsKeep; [ simpl; intuition (congruence || solve [ fancy_neq ]) | ])
|
|
|| (apply DsDrop; [ simpl; intuition (congruence || (repeat (maps_equal' || f_equal))) | ]))
|
|
end.
|
|
|
|
Ltac simpl_maps :=
|
|
repeat match goal with
|
|
| [ |- context[add ?m ?k1 ?v $? ?k2] ] =>
|
|
(rewrite (@lookup_add_ne _ _ m k1 k2 v) by (congruence || lia))
|
|
|| (rewrite (@lookup_add_eq _ _ m k1 k2 v) by (congruence || lia))
|
|
end.
|
|
|
|
Ltac simplify := repeat (unifyTails; pose proof I);
|
|
repeat match goal with
|
|
| [ H : True |- _ ] => clear H
|
|
end;
|
|
repeat progress (simpl in *; intros; try autorewrite with core in *; simpl_maps);
|
|
repeat (normalize_set || doSubtract).
|
|
Ltac propositional := intuition idtac.
|
|
|
|
Ltac linear_arithmetic := intros;
|
|
repeat match goal with
|
|
| [ |- context[max ?a ?b] ] =>
|
|
let Heq := fresh "Heq" in destruct (Max.max_spec a b) as [[? Heq] | [? Heq]];
|
|
rewrite Heq in *; clear Heq
|
|
| [ _ : context[max ?a ?b] |- _ ] =>
|
|
let Heq := fresh "Heq" in destruct (Max.max_spec a b) as [[? Heq] | [? Heq]];
|
|
rewrite Heq in *; clear Heq
|
|
| [ |- context[min ?a ?b] ] =>
|
|
let Heq := fresh "Heq" in destruct (Min.min_spec a b) as [[? Heq] | [? Heq]];
|
|
rewrite Heq in *; clear Heq
|
|
| [ _ : context[min ?a ?b] |- _ ] =>
|
|
let Heq := fresh "Heq" in destruct (Min.min_spec a b) as [[? Heq] | [? Heq]];
|
|
rewrite Heq in *; clear Heq
|
|
end; lia.
|
|
|
|
Ltac equality := intuition congruence.
|
|
|
|
Ltac cases E :=
|
|
((repeat match type of E with
|
|
| _ \/ _ => destruct E as [E | E]
|
|
end)
|
|
|| (is_var E; destruct E)
|
|
|| match type of E with
|
|
| {_} + {_} => destruct E
|
|
| _ => let Heq := fresh "Heq" in destruct E eqn:Heq
|
|
end);
|
|
repeat match goal with
|
|
| [ H : _ = left _ |- _ ] => clear H
|
|
| [ H : _ = right _ |- _ ] => clear H
|
|
end.
|
|
|
|
Global Opaque max min.
|
|
|
|
Infix "==n" := eq_nat_dec (no associativity, at level 50).
|
|
Infix "<=?" := le_lt_dec.
|
|
|
|
Export Frap.Map.
|
|
|
|
Ltac maps_equal := Frap.Map.M.maps_equal; simplify.
|
|
|
|
Ltac first_order := firstorder idtac.
|
|
|
|
|
|
(** * Model checking *)
|
|
|
|
Lemma eq_iff : forall P Q,
|
|
P = Q
|
|
-> (P <-> Q).
|
|
Proof.
|
|
equality.
|
|
Qed.
|
|
|
|
Ltac sets0 := Sets.sets ltac:(simpl in *; intuition (subst; auto; try equality; try linear_arithmetic)).
|
|
|
|
Ltac sets := propositional;
|
|
try match goal with
|
|
| [ |- @eq (?T -> Prop) _ _ ] =>
|
|
change (T -> Prop) with (set T)
|
|
end;
|
|
try match goal with
|
|
| [ |- @eq (set _) _ _ ] =>
|
|
let x := fresh "x" in
|
|
apply sets_equal; intro x;
|
|
repeat match goal with
|
|
| [ H : @eq (set _) _ _ |- _ ] => apply (f_equal (fun f => f x)) in H;
|
|
apply eq_iff in H
|
|
end
|
|
end; sets0;
|
|
try match goal with
|
|
| [ H : @eq (set ?T) _ _, x : ?T |- _ ] =>
|
|
repeat match goal with
|
|
| [ H : @eq (set T) _ _ |- _ ] => apply (f_equal (fun f => f x)) in H;
|
|
apply eq_iff in H
|
|
end;
|
|
solve [ sets0 ]
|
|
end.
|
|
|
|
Ltac model_check_invert1 :=
|
|
match goal with
|
|
| [ H : ?P |- _ ] =>
|
|
match type of P with
|
|
| Prop => invert H;
|
|
repeat match goal with
|
|
| [ H : existT _ ?x _ = existT _ ?x _ |- _ ] =>
|
|
apply inj_pair2 in H; subst
|
|
end; simplify
|
|
end
|
|
end.
|
|
|
|
Ltac model_check_invert := simplify; subst; repeat model_check_invert1.
|
|
|
|
Lemma oneStepClosure_solve : forall A (sys : trsys A) I I',
|
|
oneStepClosure sys I I'
|
|
-> I = I'
|
|
-> oneStepClosure sys I I.
|
|
Proof.
|
|
equality.
|
|
Qed.
|
|
|
|
Ltac singletoner := try (exfalso; solve [ sets ]);
|
|
repeat match goal with
|
|
(* | _ => apply singleton_in *)
|
|
| [ |- _ ?S ] => idtac S; apply singleton_in
|
|
| [ |- (_ \cup _) _ ] => apply singleton_in_other
|
|
end.
|
|
|
|
Ltac closure :=
|
|
repeat (apply oneStepClosure_empty
|
|
|| (apply oneStepClosure_split; [ model_check_invert; try equality; solve [ singletoner ] | ])).
|
|
|
|
Ltac model_check_done :=
|
|
apply MscDone; eapply oneStepClosure_solve; [ closure | simplify; solve [ sets ] ].
|
|
|
|
Ltac model_check_step0 :=
|
|
eapply MscStep; [ closure | simplify ].
|
|
|
|
Ltac model_check_step :=
|
|
match goal with
|
|
| [ |- multiStepClosure _ ?inv1 _ _ ] =>
|
|
model_check_step0;
|
|
match goal with
|
|
| [ |- multiStepClosure _ ?inv2 _ _ ] =>
|
|
(assert (inv1 = inv2) by compare_sets; fail 3)
|
|
|| idtac
|
|
end
|
|
end.
|
|
|
|
Ltac model_check_steps1 := model_check_step || model_check_done.
|
|
Ltac model_check_steps := repeat model_check_steps1.
|
|
|
|
Ltac model_check_finish := simplify; propositional; subst; simplify; try equality; try linear_arithmetic.
|
|
|
|
Ltac model_check_infer :=
|
|
apply multiStepClosure_ok; simplify; model_check_steps.
|
|
|
|
Ltac model_check_find_invariant :=
|
|
simplify; eapply invariant_weaken; [ model_check_infer | ]; cbv beta in *.
|
|
|
|
Ltac model_check := model_check_find_invariant; model_check_finish.
|
|
|
|
Inductive ordering (n m : nat) :=
|
|
| Lt (_ : n < m)
|
|
| Eq (_ : n = m)
|
|
| Gt (_ : n > m).
|
|
|
|
Local Hint Constructors ordering : core.
|
|
Local Hint Extern 1 (_ < _) => lia : core.
|
|
Local Hint Extern 1 (_ > _) => lia : core.
|
|
|
|
Theorem totally_ordered : forall n m, ordering n m.
|
|
Proof.
|
|
induction n; destruct m; simpl; eauto.
|
|
destruct (IHn m); eauto.
|
|
Qed.
|
|
|
|
Ltac total_ordering N M := destruct (totally_ordered N M).
|
|
|
|
Ltac inList x xs :=
|
|
match xs with
|
|
| (x, _) => true
|
|
| (_, ?xs') => inList x xs'
|
|
| _ => false
|
|
end.
|
|
|
|
Ltac maybe_simplify_map m found kont :=
|
|
match m with
|
|
| @empty ?A ?B => kont (@empty A B)
|
|
| ?m' $+ (?k, ?v) =>
|
|
let iL := inList k found in
|
|
match iL with
|
|
| true => maybe_simplify_map m' found kont
|
|
| false =>
|
|
maybe_simplify_map m' (k, found) ltac:(fun m' => kont (m' $+ (k, v)))
|
|
end
|
|
end.
|
|
|
|
Ltac simplify_map' m found kont :=
|
|
match m with
|
|
| ?m' $+ (?k, ?v) =>
|
|
let iL := inList k found in
|
|
match iL with
|
|
| true => maybe_simplify_map m' found kont
|
|
| false =>
|
|
simplify_map' m' (k, found) ltac:(fun m' => kont (m' $+ (k, v)))
|
|
end
|
|
end.
|
|
|
|
Ltac simplify_map :=
|
|
match goal with
|
|
| [ |- context[@add ?A ?B ?m ?k ?v] ] =>
|
|
simplify_map' (m $+ (k, v)) tt ltac:(fun m' =>
|
|
replace (@add A B m k v) with m' by maps_equal)
|
|
end.
|
|
|
|
Require Import Classical.
|
|
Ltac excluded_middle P := destruct (classic P).
|
|
|
|
Lemma join_idempotent: forall (A B : Type) (m : fmap A B), (m $++ m) = m.
|
|
Proof.
|
|
simplify; apply fmap_ext; simplify.
|
|
cases (m $? k).
|
|
- rewrite lookup_join1; auto.
|
|
eauto using lookup_Some_dom.
|
|
- rewrite lookup_join2; auto.
|
|
eauto using lookup_None_dom.
|
|
Qed.
|
|
|
|
Lemma includes_refl: forall (A B : Type) (m : fmap A B), m $<= m.
|
|
Proof.
|
|
simplify.
|
|
apply includes_intro; auto.
|
|
Qed.
|
|
|
|
Ltac dep_cases E :=
|
|
let x := fresh "x" in
|
|
remember E as x; simpl in x; dependent destruction x;
|
|
try match goal with
|
|
| [ H : _ = E |- _ ] => try rewrite <- H in *; clear H
|
|
end.
|
|
|
|
(** * More with [N] *)
|
|
|
|
Lemma recursion_step: forall {A: Type} (a: A) (f: N -> A -> A) (n: N),
|
|
N.recursion a f (n + 1) = f n (N.recursion a f n).
|
|
Proof.
|
|
intros until f. setoid_rewrite N.add_1_r.
|
|
eapply N.recursion_succ; cbv; intuition congruence.
|
|
Qed.
|
|
|
|
Ltac head f :=
|
|
match f with
|
|
| ?g _ => head g
|
|
| _ => constr:(f)
|
|
end.
|
|
|
|
(* If a function f is defined as
|
|
|
|
recurse by cases
|
|
| 0 => base
|
|
| k + 1 => step recurse k
|
|
end.
|
|
|
|
and we have an occurrence of (f (k + 1)) in our goal, we can use
|
|
"unfold_recurse f k" to replace (f (k + 1)) by (step (f k) k),
|
|
ie it allows us to unfold one recursive step. *)
|
|
Ltac unfold_recurse f k :=
|
|
let h := head f in
|
|
let rhs := eval unfold h in f in
|
|
lazymatch rhs with
|
|
| N.recursion ?base ?step =>
|
|
let g := eval cbv beta in (step k (f k)) in
|
|
rewrite (recursion_step base step k : f (k + 1) = g) in *
|
|
| _ => let expected := open_constr:(N.recursion _ _) in
|
|
fail "The provided term" f "expands to" rhs "which is not of the expected form" expected
|
|
end.
|
|
|
|
(* This will make "simplify" a bit less nice in some cases (but these are easily worked around using
|
|
linear_arithmetic). *)
|
|
Arguments N.mul: simpl never.
|
|
Arguments N.add: simpl never.
|