frap/Invariant.v
2016-02-15 16:04:40 -05:00

44 lines
1.2 KiB
Coq

Require Import Relations.
Set Implicit Arguments.
Record trsys state := {
Initial : state -> Prop;
Step : state -> state -> Prop
}.
Definition invariantFor {state} (sys : trsys state) (invariant : state -> Prop) :=
forall s, sys.(Initial) s
-> forall s', sys.(Step)^* s s'
-> invariant s'.
Theorem use_invariant : forall {state} (sys : trsys state) (invariant : state -> Prop) s s',
invariantFor sys invariant
-> sys.(Step)^* s s'
-> sys.(Initial) s
-> invariant s'.
Proof.
firstorder.
Qed.
Theorem invariantFor_monotone : forall {state} (sys : trsys state)
(invariant1 invariant2 : state -> Prop),
invariantFor sys invariant1
-> (forall s, invariant1 s -> invariant2 s)
-> invariantFor sys invariant2.
Proof.
unfold invariantFor; intuition eauto.
Qed.
Theorem invariant_induction : forall {state} (sys : trsys state)
(invariant : state -> Prop),
(forall s, sys.(Initial) s -> invariant s)
-> (forall s, invariant s -> forall s', sys.(Step) s s' -> invariant s')
-> invariantFor sys invariant.
Proof.
unfold invariantFor; intros.
assert (invariant s) by eauto.
clear H1.
induction H2; eauto.
Qed.