frap/ModelChecking.v
2016-02-14 17:55:59 -05:00

419 lines
11 KiB
Coq

(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
* Chapter 5: Model Checking
* Author: Adam Chlipala
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
Require Import Frap TransitionSystems.
Set Implicit Arguments.
Definition oneStepClosure_current {state} (sys : trsys state)
(invariant1 invariant2 : state -> Prop) :=
forall st, invariant1 st
-> invariant2 st.
Definition oneStepClosure_new {state} (sys : trsys state)
(invariant1 invariant2 : state -> Prop) :=
forall st st', invariant1 st
-> sys.(Step) st st'
-> invariant2 st'.
Definition oneStepClosure {state} (sys : trsys state)
(invariant1 invariant2 : state -> Prop) :=
oneStepClosure_current sys invariant1 invariant2
/\ oneStepClosure_new sys invariant1 invariant2.
Theorem prove_oneStepClosure : forall state (sys : trsys state) (inv1 inv2 : state -> Prop),
(forall st, inv1 st -> inv2 st)
-> (forall st st', inv1 st -> sys.(Step) st st' -> inv2 st')
-> oneStepClosure sys inv1 inv2.
Proof.
unfold oneStepClosure.
propositional.
Qed.
Theorem oneStepClosure_done : forall state (sys : trsys state) (invariant : state -> Prop),
(forall st, sys.(Initial) st -> invariant st)
-> oneStepClosure sys invariant invariant
-> invariantFor sys invariant.
Proof.
unfold oneStepClosure, oneStepClosure_current, oneStepClosure_new.
propositional.
apply invariant_induction.
assumption.
simplify.
eapply H2.
eassumption.
assumption.
Qed.
Inductive multiStepClosure {state} (sys : trsys state)
: (state -> Prop) -> (state -> Prop) -> Prop :=
| MscDone : forall inv,
oneStepClosure sys inv inv
-> multiStepClosure sys inv inv
| MscStep : forall inv inv' inv'',
oneStepClosure sys inv inv'
-> multiStepClosure sys inv' inv''
-> multiStepClosure sys inv inv''.
Lemma multiStepClosure_ok' : forall state (sys : trsys state) (inv inv' : state -> Prop),
multiStepClosure sys inv inv'
-> (forall st, sys.(Initial) st -> inv st)
-> invariantFor sys inv'.
Proof.
induct 1; simplify.
apply oneStepClosure_done.
assumption.
assumption.
apply IHmultiStepClosure.
simplify.
unfold oneStepClosure, oneStepClosure_current in *. (* <-- *)
propositional.
apply H3.
apply H1.
assumption.
Qed.
Theorem multiStepClosure_ok : forall state (sys : trsys state) (inv : state -> Prop),
multiStepClosure sys sys.(Initial) inv
-> invariantFor sys inv.
Proof.
simplify.
eapply multiStepClosure_ok'.
eassumption.
propositional.
Qed.
Theorem oneStepClosure_empty : forall state (sys : trsys state),
oneStepClosure sys (constant nil) (constant nil).
Proof.
unfold oneStepClosure, oneStepClosure_current, oneStepClosure_new; propositional.
Qed.
Theorem oneStepClosure_split : forall state (sys : trsys state) st sts (inv1 inv2 : state -> Prop),
(forall st', sys.(Step) st st' -> inv1 st')
-> oneStepClosure sys (constant sts) inv2
-> oneStepClosure sys (constant (st :: sts)) ({st} \cup inv1 \cup inv2).
Proof.
unfold oneStepClosure, oneStepClosure_current, oneStepClosure_new; propositional.
invert H0.
left.
left.
simplify.
propositional.
right.
apply H1.
assumption.
simplify.
propositional.
left.
right.
apply H.
equality.
right.
eapply H2.
eassumption.
assumption.
Qed.
Definition fact_correct (original_input : nat) (st : fact_state) : Prop :=
match st with
| AnswerIs ans => fact original_input = ans
| WithAccumulator _ _ => True
end.
Theorem fact_init_is : forall original_input,
fact_init original_input = {WithAccumulator original_input 1}.
Proof.
simplify.
apply sets_equal; simplify.
propositional.
invert H.
equality.
rewrite <- H0.
constructor.
Qed.
Theorem singleton_in : forall {A} (x : A),
{x} x.
Proof.
simplify.
equality.
Qed.
Theorem factorial_ok_2 :
invariantFor (factorial_sys 2) (fact_correct 2).
Proof.
simplify.
eapply invariantFor_weaken.
apply multiStepClosure_ok.
simplify.
rewrite fact_init_is.
eapply MscStep.
apply oneStepClosure_split; simplify.
invert H; simplify.
apply singleton_in.
apply oneStepClosure_empty.
simplify.
eapply MscStep.
apply oneStepClosure_split; simplify.
invert H; simplify.
apply singleton_in.
apply oneStepClosure_split; simplify.
invert H; simplify.
apply singleton_in.
apply oneStepClosure_empty.
simplify.
eapply MscStep.
apply oneStepClosure_split; simplify.
invert H; simplify.
apply singleton_in.
apply oneStepClosure_split; simplify.
invert H; simplify.
apply singleton_in.
apply oneStepClosure_split; simplify.
invert H; simplify.
apply singleton_in.
apply oneStepClosure_empty.
simplify.
apply MscDone.
apply prove_oneStepClosure; simplify.
propositional.
propositional; invert H0; try equality.
invert H; equality.
invert H1; equality.
simplify.
propositional; subst; simplify; propositional.
(* ^-- *)
Qed.
Hint Rewrite fact_init_is.
Ltac model_check_done :=
apply MscDone; apply prove_oneStepClosure; simplify; propositional; subst;
repeat match goal with
| [ H : _ |- _ ] => invert H
end; simplify; equality.
Ltac model_check_step :=
eapply MscStep; [
repeat ((apply oneStepClosure_empty; simplify)
|| (apply oneStepClosure_split; [ simplify;
repeat match goal with
| [ H : _ |- _ ] => invert H
end; apply singleton_in | ]))
| simplify ].
Ltac model_check_steps1 := model_check_done || model_check_step.
Ltac model_check_steps := repeat model_check_steps1.
Ltac model_check_finish := simplify; propositional; subst; simplify; equality.
Ltac model_check_find_invariant :=
simplify; eapply invariantFor_weaken; [
apply multiStepClosure_ok; simplify; model_check_steps
| ].
Ltac model_check := model_check_find_invariant; model_check_finish.
Theorem factorial_ok_2_snazzy :
invariantFor (factorial_sys 2) (fact_correct 2).
Proof.
model_check.
Qed.
Theorem factorial_ok_3 :
invariantFor (factorial_sys 3) (fact_correct 3).
Proof.
model_check.
Qed.
Theorem factorial_ok_4 :
invariantFor (factorial_sys 4) (fact_correct 4).
Proof.
model_check.
Qed.
(** * Getting smarter about not exploring from the same state twice *)
(*Theorem oneStepClosure_new_done : forall state (sys : trsys state) (invariant : state -> Prop),
(forall st, sys.(Initial) st -> invariant st)
-> oneStepClosure_new sys invariant invariant
-> invariantFor sys invariant.
Proof.
unfold oneStepClosure_new.
propositional.
apply invariant_induction.
assumption.
simplify.
eapply H2.
eassumption.
assumption.
Qed.*)
Inductive multiStepClosure_smarter {state} (sys : trsys state)
: (state -> Prop) -> (state -> Prop) -> (state -> Prop) -> Prop :=
| MscsDone : forall inv worklist,
oneStepClosure sys inv inv
-> multiStepClosure_smarter sys inv worklist inv
| MscsStep : forall inv worklist inv' inv'',
oneStepClosure_new sys worklist inv'
-> multiStepClosure_smarter sys (inv \cup inv') (inv' \setminus inv) inv''
-> multiStepClosure_smarter sys inv worklist inv''.
Lemma multiStepClosure_smarter_ok' : forall state (sys : trsys state)
(inv worklist inv' : state -> Prop),
multiStepClosure_smarter sys inv worklist inv'
-> (forall st, sys.(Initial) st -> inv st)
-> invariantFor sys inv'.
Proof.
induct 1; simplify.
apply oneStepClosure_done.
assumption.
assumption.
apply IHmultiStepClosure_smarter.
simplify.
left.
apply H1.
assumption.
Qed.
Theorem multiStepClosure_smarter_ok : forall state (sys : trsys state) (inv : state -> Prop),
multiStepClosure_smarter sys sys.(Initial) sys.(Initial) inv
-> invariantFor sys inv.
Proof.
simplify.
eapply multiStepClosure_smarter_ok'.
eassumption.
propositional.
Qed.
Theorem oneStepClosure_new_empty : forall state (sys : trsys state),
oneStepClosure_new sys (constant nil) (constant nil).
Proof.
unfold oneStepClosure_new; propositional.
Qed.
Theorem oneStepClosure_new_split : forall state (sys : trsys state) st sts (inv1 inv2 : state -> Prop),
(forall st', sys.(Step) st st' -> inv1 st')
-> oneStepClosure_new sys (constant sts) inv2
-> oneStepClosure_new sys (constant (st :: sts)) (inv1 \cup inv2).
Proof.
unfold oneStepClosure_new; propositional.
invert H1.
left.
apply H.
assumption.
right.
eapply H0.
eassumption.
assumption.
Qed.
Theorem factorial_ok_2_smarter :
invariantFor (factorial_sys 2) (fact_correct 2).
Proof.
simplify.
eapply invariantFor_weaken.
apply multiStepClosure_smarter_ok.
simplify.
eapply MscsStep.
apply oneStepClosure_new_split; simplify.
invert H; simplify.
apply singleton_in.
apply oneStepClosure_new_empty.
simplify.
eapply MscsStep.
apply oneStepClosure_new_split; simplify.
invert H; simplify.
apply singleton_in.
apply oneStepClosure_empty.
simplify.
eapply MscsStep.
apply oneStepClosure_new_split; simplify.
invert H; simplify.
apply singleton_in.
apply oneStepClosure_empty.
simplify.
apply MscsDone.
apply prove_oneStepClosure; simplify.
propositional.
propositional; invert H0; try equality.
invert H; equality.
invert H1; equality.
simplify.
propositional; subst; simplify; propositional.
Qed.
Ltac smodel_check_done :=
apply MscsDone; apply prove_oneStepClosure; simplify; propositional; subst;
repeat match goal with
| [ H : _ |- _ ] => invert H
end; simplify; equality.
Ltac smodel_check_step :=
eapply MscsStep; [
repeat ((apply oneStepClosure_new_empty; simplify)
|| (apply oneStepClosure_new_split; [ simplify;
repeat match goal with
| [ H : _ |- _ ] => invert H
end; apply singleton_in | ]))
| simplify ].
Ltac smodel_check_steps1 := smodel_check_done || smodel_check_step.
Ltac smodel_check_steps := repeat smodel_check_steps1.
Ltac smodel_check_find_invariant :=
simplify; eapply invariantFor_weaken; [
apply multiStepClosure_smarter_ok; simplify; smodel_check_steps
| ].
Ltac smodel_check := smodel_check_find_invariant; model_check_finish.
Theorem factorial_ok_2_smarter_snazzy :
invariantFor (factorial_sys 2) (fact_correct 2).
Proof.
smodel_check.
Qed.
Theorem factorial_ok_3_smarter_snazzy :
invariantFor (factorial_sys 3) (fact_correct 3).
Proof.
smodel_check.
Qed.
Theorem factorial_ok_5_smarter_snazzy :
invariantFor (factorial_sys 5) (fact_correct 5).
Proof.
smodel_check.
Qed.