frap/SharedMemory.v

127 lines
3.4 KiB
Coq

(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
* Chapter 13: Operational Semantics for Shared-Memory Concurrency
* Author: Adam Chlipala
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
Require Import Frap.
Set Implicit Arguments.
Set Asymmetric Patterns.
(** * Shared notations and definitions; main material starts afterward. *)
Notation "m $! k" := (match m $? k with Some n => n | None => O end) (at level 30).
Definition heap := fmap nat nat.
Definition assertion := heap -> Prop.
Hint Extern 1 (_ <= _) => linear_arithmetic.
Hint Extern 1 (@eq nat _ _) => linear_arithmetic.
Ltac simp := repeat (simplify; subst; propositional;
try match goal with
| [ H : ex _ |- _ ] => invert H
end); try linear_arithmetic.
(** * An object language with shared-memory concurrency *)
(* Let's simplify the encoding by only working with commands that generate
* [nat]. *)
Inductive loop_outcome :=
| Done (a : nat)
| Again (a : nat).
Inductive cmd :=
| Return (r : nat)
| Bind (c1 : cmd) (c2 : nat -> cmd)
| Read (a : nat)
| Write (a v : nat)
| Fail
(* Now here's the new part: parallel composition of commands. *)
| Par (c1 c2 : cmd)
(* Let's also add locking commands, where locks are named by [nat]s. *)
| Lock (a : nat)
| Unlock (a : nat).
Notation "x <- c1 ; c2" := (Bind c1 (fun x => c2)) (right associativity, at level 80).
Infix "||" := Par.
Definition locks := set nat.
Inductive step : heap * locks * cmd -> heap * locks * cmd -> Prop :=
| StepBindRecur : forall c1 c1' c2 h h' l l',
step (h, l, c1) (h', l', c1')
-> step (h, l, Bind c1 c2) (h', l', Bind c1' c2)
| StepBindProceed : forall v c2 h l,
step (h, l, Bind (Return v) c2) (h, l, c2 v)
| StepRead : forall h l a,
step (h, l, Read a) (h, l, Return (h $! a))
| StepWrite : forall h l a v,
step (h, l, Write a v) (h $+ (a, v), l, Return 0)
| StepParRecur1 : forall h l c1 c2 h' l' c1',
step (h, l, c1) (h', l', c1')
-> step (h, l, Par c1 c2) (h', l', Par c1' c2)
| StepParRecur2 : forall h l c1 c2 h' l' c2',
step (h, l, c2) (h', l', c2')
-> step (h, l, Par c1 c2) (h', l', Par c1 c2')
| StepParProceed : forall h l,
step (h, l, Par (Return 0) (Return 0)) (h, l, Return 0)
| StepLock : forall h l a,
~a \in l
-> step (h, l, Lock a) (h, l \cup {a}, Return 0)
| StepUnlock : forall h l a,
a \in l
-> step (h, l, Unlock a) (h, l \setminus {a}, Return 0).
Definition trsys_of (h : heap) (l : locks) (c : cmd) := {|
Initial := {(h, l, c)};
Step := step
|}.
Example two_increments_thread :=
_ <- Lock 0;
n <- Read 0;
_ <- Write 0 (n + 1);
Unlock 0.
Example two_increments := two_increments_thread || two_increments_thread.
Theorem two_increments_ok :
invariantFor (trsys_of $0 {} two_increments)
(fun p => let '(h, l, c) := p in
c = Return 0
-> h $! 0 = 2).
Proof.
unfold two_increments, two_increments_thread.
simplify.
eapply invariant_weaken.
apply multiStepClosure_ok; simplify.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_step.
model_check_done.
simplify.
propositional; subst; try equality.
simplify.
reflexivity.
Qed.