frap/Map.v
2015-12-31 15:44:34 -05:00

216 lines
6 KiB
Coq

Require Import Classical Sets ClassicalEpsilon FunctionalExtensionality.
Set Implicit Arguments.
Module Type S.
Parameter map : Type -> Type -> Type.
Parameter empty : forall A B, map A B.
Parameter add : forall A B, map A B -> A -> B -> map A B.
Parameter join : forall A B, map A B -> map A B -> map A B.
Parameter lookup : forall A B, map A B -> A -> option B.
Parameter includes : forall A B, map A B -> map A B -> Prop.
Notation "$0" := (empty _ _).
Notation "m $+ ( k , v )" := (add m k v) (at level 50, left associativity).
Infix "$++" := join (at level 50, left associativity).
Infix "$?" := lookup (at level 50, no associativity).
Infix "$<=" := includes (at level 90).
Parameter dom : forall A B, map A B -> set A.
Axiom map_ext : forall A B (m1 m2 : map A B),
(forall k, m1 $? k = m2 $? k)
-> m1 = m2.
Axiom lookup_empty : forall A B k, empty A B $? k = None.
Axiom includes_lookup : forall A B (m m' : map A B) k v,
m $? k = Some v
-> m $<= m'
-> lookup m' k = Some v.
Axiom includes_add : forall A B (m m' : map A B) k v,
m $<= m'
-> add m k v $<= add m' k v.
Axiom lookup_add_eq : forall A B (m : map A B) k v,
add m k v $? k = Some v.
Axiom lookup_add_ne : forall A B (m : map A B) k k' v,
k' <> k
-> add m k v $? k' = m $? k'.
Axiom lookup_join1 : forall A B (m1 m2 : map A B) k,
k \in dom m1
-> (m1 $++ m2) $? k = m1 $? k.
Axiom lookup_join2 : forall A B (m1 m2 : map A B) k,
~k \in dom m1
-> (m1 $++ m2) $? k = m2 $? k.
Axiom join_comm : forall A B (m1 m2 : map A B),
dom m1 \cap dom m2 = {}
-> m1 $++ m2 = m2 $++ m1.
Axiom join_assoc : forall A B (m1 m2 m3 : map A B),
(m1 $++ m2) $++ m3 = m1 $++ (m2 $++ m3).
Axiom empty_includes : forall A B (m : map A B), empty A B $<= m.
Axiom dom_empty : forall A B, dom (empty A B) = {}.
Axiom dom_add : forall A B (m : map A B) (k : A) (v : B),
dom (add m k v) = {k} \cup dom m.
Hint Extern 1 => match goal with
| [ H : lookup (empty _ _) _ = Some _ |- _ ] =>
rewrite lookup_empty in H; discriminate
end.
Hint Resolve includes_lookup includes_add empty_includes.
Hint Rewrite lookup_add_eq lookup_add_ne using congruence.
Ltac maps_equal :=
apply map_ext; intros;
repeat (subst; autorewrite with core; try reflexivity;
match goal with
| [ |- context[lookup (add _ ?k _) ?k' ] ] => destruct (classic (k = k')); subst
end).
Hint Extern 3 (_ = _) => maps_equal.
End S.
Module M : S.
Definition map (A B : Type) := A -> option B.
Definition empty A B : map A B := fun _ => None.
Section decide.
Variable P : Prop.
Lemma decided : inhabited (sum P (~P)).
Proof.
destruct (classic P).
constructor; exact (inl _ H).
constructor; exact (inr _ H).
Qed.
Definition decide : sum P (~P) :=
epsilon decided (fun _ => True).
End decide.
Definition add A B (m : map A B) (k : A) (v : B) : map A B :=
fun k' => if decide (k' = k) then Some v else m k'.
Definition join A B (m1 m2 : map A B) : map A B :=
fun k => match m1 k with
| None => m2 k
| x => x
end.
Definition lookup A B (m : map A B) (k : A) := m k.
Definition includes A B (m1 m2 : map A B) :=
forall k v, m1 k = Some v -> m2 k = Some v.
Definition dom A B (m : map A B) : set A := fun x => m x <> None.
Theorem map_ext : forall A B (m1 m2 : map A B),
(forall k, lookup m1 k = lookup m2 k)
-> m1 = m2.
Proof.
intros; extensionality k; auto.
Qed.
Theorem lookup_empty : forall A B (k : A), lookup (empty B) k = None.
Proof.
auto.
Qed.
Theorem includes_lookup : forall A B (m m' : map A B) k v,
lookup m k = Some v
-> includes m m'
-> lookup m' k = Some v.
Proof.
auto.
Qed.
Theorem includes_add : forall A B (m m' : map A B) k v,
includes m m'
-> includes (add m k v) (add m' k v).
Proof.
unfold includes, add; intuition.
destruct (decide (k0 = k)); auto.
Qed.
Theorem lookup_add_eq : forall A B (m : map A B) k v,
lookup (add m k v) k = Some v.
Proof.
unfold lookup, add; intuition.
destruct (decide (k = k)); tauto.
Qed.
Theorem lookup_add_ne : forall A B (m : map A B) k k' v,
k' <> k
-> lookup (add m k v) k' = lookup m k'.
Proof.
unfold lookup, add; intuition.
destruct (decide (k' = k)); intuition.
Qed.
Theorem lookup_join1 : forall A B (m1 m2 : map A B) k,
k \in dom m1
-> lookup (join m1 m2) k = lookup m1 k.
Proof.
unfold lookup, join, dom, In; intros.
destruct (m1 k); congruence.
Qed.
Theorem lookup_join2 : forall A B (m1 m2 : map A B) k,
~k \in dom m1
-> lookup (join m1 m2) k = lookup m2 k.
Proof.
unfold lookup, join, dom, In; intros.
destruct (m1 k); try congruence.
exfalso; apply H; congruence.
Qed.
Theorem join_comm : forall A B (m1 m2 : map A B),
dom m1 \cap dom m2 = {}
-> join m1 m2 = join m2 m1.
Proof.
intros; apply map_ext; unfold join, lookup; intros.
apply (f_equal (fun f => f k)) in H.
unfold dom, intersection, constant in H; simpl in H.
destruct (m1 k), (m2 k); auto.
exfalso; rewrite <- H.
intuition congruence.
Qed.
Theorem join_assoc : forall A B (m1 m2 m3 : map A B),
join (join m1 m2) m3 = join m1 (join m2 m3).
Proof.
intros; apply map_ext; unfold join, lookup; intros.
destruct (m1 k); auto.
Qed.
Theorem empty_includes : forall A B (m : map A B), includes (empty (A := A) B) m.
Proof.
unfold includes, empty; intuition congruence.
Qed.
Theorem dom_empty : forall A B, dom (empty (A := A) B) = {}.
Proof.
unfold dom, empty; intros; sets idtac.
Qed.
Theorem dom_add : forall A B (m : map A B) (k : A) (v : B),
dom (add m k v) = {k} \cup dom m.
Proof.
unfold dom, add; simpl; intros.
sets ltac:(simpl in *; try match goal with
| [ _ : context[if ?E then _ else _] |- _ ] => destruct E
end; intuition congruence).
Qed.
End M.
Export M.