logical-foundations/ImpParser.v
2020-06-03 21:46:06 -05:00

465 lines
13 KiB
Coq

(** * ImpParser: Lexing and Parsing in Coq *)
(** The development of the Imp language in [Imp.v] completely ignores
issues of concrete syntax -- how an ascii string that a programmer
might write gets translated into abstract syntax trees defined by
the datatypes [aexp], [bexp], and [com]. In this chapter, we
illustrate how the rest of the story can be filled in by building
a simple lexical analyzer and parser using Coq's functional
programming facilities. *)
(** It is not important to understand all the details here (and
accordingly, the explanations are fairly terse and there are no
exercises). The main point is simply to demonstrate that it can
be done. You are invited to look through the code -- most of it
is not very complicated, though the parser relies on some
"monadic" programming idioms that may require a little work to
make out -- but most readers will probably want to just skim down
to the Examples section at the very end to get the punchline. *)
Set Warnings "-notation-overridden,-parsing".
From Coq Require Import Strings.String.
From Coq Require Import Strings.Ascii.
From Coq Require Import Arith.Arith.
From Coq Require Import Init.Nat.
From Coq Require Import Arith.EqNat.
From Coq Require Import Lists.List.
Import ListNotations.
From LF Require Import Maps Imp.
(* ################################################################# *)
(** * Internals *)
(* ================================================================= *)
(** ** Lexical Analysis *)
Definition isWhite (c : ascii) : bool :=
let n := nat_of_ascii c in
orb (orb (n =? 32) (* space *)
(n =? 9)) (* tab *)
(orb (n =? 10) (* linefeed *)
(n =? 13)). (* Carriage return. *)
Notation "x '<=?' y" := (x <=? y)
(at level 70, no associativity) : nat_scope.
Definition isLowerAlpha (c : ascii) : bool :=
let n := nat_of_ascii c in
andb (97 <=? n) (n <=? 122).
Definition isAlpha (c : ascii) : bool :=
let n := nat_of_ascii c in
orb (andb (65 <=? n) (n <=? 90))
(andb (97 <=? n) (n <=? 122)).
Definition isDigit (c : ascii) : bool :=
let n := nat_of_ascii c in
andb (48 <=? n) (n <=? 57).
Inductive chartype := white | alpha | digit | other.
Definition classifyChar (c : ascii) : chartype :=
if isWhite c then
white
else if isAlpha c then
alpha
else if isDigit c then
digit
else
other.
Fixpoint list_of_string (s : string) : list ascii :=
match s with
| EmptyString => []
| String c s => c :: (list_of_string s)
end.
Fixpoint string_of_list (xs : list ascii) : string :=
fold_right String EmptyString xs.
Definition token := string.
Fixpoint tokenize_helper (cls : chartype) (acc xs : list ascii)
: list (list ascii) :=
let tk := match acc with [] => [] | _::_ => [rev acc] end in
match xs with
| [] => tk
| (x::xs') =>
match cls, classifyChar x, x with
| _, _, "(" =>
tk ++ ["("]::(tokenize_helper other [] xs')
| _, _, ")" =>
tk ++ [")"]::(tokenize_helper other [] xs')
| _, white, _ =>
tk ++ (tokenize_helper white [] xs')
| alpha,alpha,x =>
tokenize_helper alpha (x::acc) xs'
| digit,digit,x =>
tokenize_helper digit (x::acc) xs'
| other,other,x =>
tokenize_helper other (x::acc) xs'
| _,tp,x =>
tk ++ (tokenize_helper tp [x] xs')
end
end %char.
Definition tokenize (s : string) : list string :=
map string_of_list (tokenize_helper white [] (list_of_string s)).
Example tokenize_ex1 :
tokenize "abc12=3 223*(3+(a+c))" %string
= ["abc"; "12"; "="; "3"; "223";
"*"; "("; "3"; "+"; "(";
"a"; "+"; "c"; ")"; ")"]%string.
Proof. reflexivity. Qed.
(* ================================================================= *)
(** ** Parsing *)
(* ----------------------------------------------------------------- *)
(** *** Options With Errors *)
(** An [option] type with error messages: *)
Inductive optionE (X:Type) : Type :=
| SomeE (x : X)
| NoneE (s : string).
Arguments SomeE {X}.
Arguments NoneE {X}.
(** Some syntactic sugar to make writing nested match-expressions on
optionE more convenient. *)
Notation "' p <- e1 ;; e2"
:= (match e1 with
| SomeE p => e2
| NoneE err => NoneE err
end)
(right associativity, p pattern, at level 60, e1 at next level).
Notation "'TRY' ' p <- e1 ;; e2 'OR' e3"
:= (match e1 with
| SomeE p => e2
| NoneE _ => e3
end)
(right associativity, p pattern,
at level 60, e1 at next level, e2 at next level).
(* ----------------------------------------------------------------- *)
(** *** Generic Combinators for Building Parsers *)
Open Scope string_scope.
Definition parser (T : Type) :=
list token -> optionE (T * list token).
Fixpoint many_helper {T} (p : parser T) acc steps xs :=
match steps, p xs with
| 0, _ =>
NoneE "Too many recursive calls"
| _, NoneE _ =>
SomeE ((rev acc), xs)
| S steps', SomeE (t, xs') =>
many_helper p (t :: acc) steps' xs'
end.
(** A (step-indexed) parser that expects zero or more [p]s: *)
Fixpoint many {T} (p : parser T) (steps : nat) : parser (list T) :=
many_helper p [] steps.
(** A parser that expects a given token, followed by [p]: *)
Definition firstExpect {T} (t : token) (p : parser T)
: parser T :=
fun xs => match xs with
| x::xs' =>
if string_dec x t
then p xs'
else NoneE ("expected '" ++ t ++ "'.")
| [] =>
NoneE ("expected '" ++ t ++ "'.")
end.
(** A parser that expects a particular token: *)
Definition expect (t : token) : parser unit :=
firstExpect t (fun xs => SomeE (tt, xs)).
(* ----------------------------------------------------------------- *)
(** *** A Recursive-Descent Parser for Imp *)
(** Identifiers: *)
Definition parseIdentifier (xs : list token)
: optionE (string * list token) :=
match xs with
| [] => NoneE "Expected identifier"
| x::xs' =>
if forallb isLowerAlpha (list_of_string x) then
SomeE (x, xs')
else
NoneE ("Illegal identifier:'" ++ x ++ "'")
end.
(** Numbers: *)
Definition parseNumber (xs : list token)
: optionE (nat * list token) :=
match xs with
| [] => NoneE "Expected number"
| x::xs' =>
if forallb isDigit (list_of_string x) then
SomeE (fold_left
(fun n d =>
10 * n + (nat_of_ascii d -
nat_of_ascii "0"%char))
(list_of_string x)
0,
xs')
else
NoneE "Expected number"
end.
(** Parse arithmetic expressions *)
Fixpoint parsePrimaryExp (steps:nat)
(xs : list token)
: optionE (aexp * list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
TRY ' (i, rest) <- parseIdentifier xs ;;
SomeE (AId i, rest)
OR
TRY ' (n, rest) <- parseNumber xs ;;
SomeE (ANum n, rest)
OR
' (e, rest) <- firstExpect "(" (parseSumExp steps') xs ;;
' (u, rest') <- expect ")" rest ;;
SomeE (e,rest')
end
with parseProductExp (steps:nat)
(xs : list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
' (e, rest) <- parsePrimaryExp steps' xs ;;
' (es, rest') <- many (firstExpect "*" (parsePrimaryExp steps'))
steps' rest ;;
SomeE (fold_left AMult es e, rest')
end
with parseSumExp (steps:nat) (xs : list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
' (e, rest) <- parseProductExp steps' xs ;;
' (es, rest') <-
many (fun xs =>
TRY ' (e,rest') <-
firstExpect "+"
(parseProductExp steps') xs ;;
SomeE ( (true, e), rest')
OR
' (e, rest') <-
firstExpect "-"
(parseProductExp steps') xs ;;
SomeE ( (false, e), rest'))
steps' rest ;;
SomeE (fold_left (fun e0 term =>
match term with
| (true, e) => APlus e0 e
| (false, e) => AMinus e0 e
end)
es e,
rest')
end.
Definition parseAExp := parseSumExp.
(** Parsing boolean expressions: *)
Fixpoint parseAtomicExp (steps:nat)
(xs : list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
TRY ' (u,rest) <- expect "true" xs ;;
SomeE (BTrue,rest)
OR
TRY ' (u,rest) <- expect "false" xs ;;
SomeE (BFalse,rest)
OR
TRY ' (e,rest) <- firstExpect "~"
(parseAtomicExp steps')
xs ;;
SomeE (BNot e, rest)
OR
TRY ' (e,rest) <- firstExpect "("
(parseConjunctionExp steps')
xs ;;
' (u,rest') <- expect ")" rest ;;
SomeE (e, rest')
OR
' (e, rest) <- parseProductExp steps' xs ;;
TRY ' (e', rest') <- firstExpect "="
(parseAExp steps') rest ;;
SomeE (BEq e e', rest')
OR
TRY ' (e', rest') <- firstExpect "<="
(parseAExp steps') rest ;;
SomeE (BLe e e', rest')
OR
NoneE "Expected '=' or '<=' after arithmetic expression"
end
with parseConjunctionExp (steps:nat)
(xs : list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
' (e, rest) <- parseAtomicExp steps' xs ;;
' (es, rest') <- many (firstExpect "&&"
(parseAtomicExp steps'))
steps' rest ;;
SomeE (fold_left BAnd es e, rest')
end.
Definition parseBExp := parseConjunctionExp.
Check parseConjunctionExp.
Definition testParsing {X : Type}
(p : nat ->
list token ->
optionE (X * list token))
(s : string) :=
let t := tokenize s in
p 100 t.
(*
Eval compute in
testParsing parseProductExp "x.y.(x.x).x".
Eval compute in
testParsing parseConjunctionExp "~(x=x&&x*x<=(x*x)*x)&&x=x".
*)
(** Parsing commands: *)
Fixpoint parseSimpleCommand (steps:nat)
(xs : list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
TRY ' (u, rest) <- expect "SKIP" xs ;;
SomeE (SKIP%imp, rest)
OR
TRY ' (e,rest) <-
firstExpect "TEST"
(parseBExp steps') xs ;;
' (c,rest') <-
firstExpect "THEN"
(parseSequencedCommand steps') rest ;;
' (c',rest'') <-
firstExpect "ELSE"
(parseSequencedCommand steps') rest' ;;
' (tt,rest''') <-
expect "END" rest'' ;;
SomeE(TEST e THEN c ELSE c' FI%imp, rest''')
OR
TRY ' (e,rest) <-
firstExpect "WHILE"
(parseBExp steps') xs ;;
' (c,rest') <-
firstExpect "DO"
(parseSequencedCommand steps') rest ;;
' (u,rest'') <-
expect "END" rest' ;;
SomeE(WHILE e DO c END%imp, rest'')
OR
TRY ' (i, rest) <- parseIdentifier xs ;;
' (e, rest') <- firstExpect "::=" (parseAExp steps') rest ;;
SomeE ((i ::= e)%imp, rest')
OR
NoneE "Expecting a command"
end
with parseSequencedCommand (steps:nat)
(xs : list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
' (c, rest) <- parseSimpleCommand steps' xs ;;
TRY ' (c', rest') <-
firstExpect ";;"
(parseSequencedCommand steps') rest ;;
SomeE ((c ;; c')%imp, rest')
OR
SomeE (c, rest)
end.
Definition bignumber := 1000.
Definition parse (str : string) : optionE com :=
let tokens := tokenize str in
match parseSequencedCommand bignumber tokens with
| SomeE (c, []) => SomeE c
| SomeE (_, t::_) => NoneE ("Trailing tokens remaining: " ++ t)
| NoneE err => NoneE err
end.
(* ################################################################# *)
(** * Examples *)
Example eg1 : parse "
TEST x = y + 1 + 2 - y * 6 + 3 THEN
x ::= x * 1;;
y ::= 0
ELSE
SKIP
END "
=
SomeE (
TEST "x" = "y" + 1 + 2 - "y" * 6 + 3 THEN
"x" ::= "x" * 1;;
"y" ::= 0
ELSE
SKIP
FI)%imp.
Proof. cbv. reflexivity. Qed.
Example eg2 : parse "
SKIP;;
z::=x*y*(x*x);;
WHILE x=x DO
TEST (z <= z*z) && ~(x = 2) THEN
x ::= z;;
y ::= z
ELSE
SKIP
END;;
SKIP
END;;
x::=z "
=
SomeE (
SKIP;;
"z" ::= "x" * "y" * ("x" * "x");;
WHILE "x" = "x" DO
TEST ("z" <= "z" * "z") && ~("x" = 2) THEN
"x" ::= "z";;
"y" ::= "z"
ELSE
SKIP
FI;;
SKIP
END;;
"x" ::= "z")%imp.
Proof. cbv. reflexivity. Qed.
(* Wed Jan 9 12:02:46 EST 2019 *)