
Non-Personalized Recommender Assignment

In this assignment, you will implement some non-personalized recommenders. In par-
ticular, you will implement raw and damped item mean recommenders and simple and
advanced association rule recommenders.

You will implement these recommenders in the LensKit toolkit.

Downloads and Resources

• Project template (from Coursera)
• LensKit for Teaching website (links to relevant documentation)
• JavaDoc for included code
• Fastutil API docs documents the Fastutil optimized data structure classes that are

used in portions of LensKit.

The project template contains support code, the build file, and the input data that you will
use.

Input Data

The input data contains the following files:

• ratings.csv contains user ratings of movies
• movies.csv contains movie titles
• movielens.yml is a LensKit data manifest that describes the other input files

Getting Started

To get started with this assignment, unpack the template and import it in to your IDE as a
Gradle project. The assignment video demonstrates how to do this in IntelliJ IDEA.

Mean-Based Recommendation

The first two recommenders you will implement will recommend items with the highest
average rating.

With LensKit’s scorer-model-builder architecture, you will just need to write the recom-
mendation logic once, and you will implement two different mechanisms for computing
item mean ratings.

You will work with the following classes:
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• MeanItemBasedItemRecommender (the item recommender) computes top-N recommen-
dations based on mean ratings. You will implement the logic to compute such
recommendation lists.

• ItemMeanModel is a model class that stores precomputed item means. You will not
need to modify this class, but you will write code to construct instances of it and use
it in your item recommender implementation.

• ItemMeanModelProvider computes item mean ratings from rating data and con-
structs the model. It computes raw means with no damping.

• DampedItemMeanModelProvider is an alternate builder for item mean models that
computes damped means instead of raw means. It takes the damping term as a
parameter. The configuration file we provide you uses a damping term of 5.

There are // TODO comments in all places where you need to write new code.

Computing Item Means

Modify the ItemMeanModelProvider class to compute the mean rating for each item.

Recommending Items

Modify the MeanItemBasedItemRecommender class to compute recommendations based on
item mean ratings. For this, you need to:

1. Obtain the mean rating for each item
2. Order the items in decreasing order
3. Return the N highest-rated items

Computing Damped Item Means

Modify the DampedItemMeanModelProvider class to compute the damped mean rating for
each item. This formula uses a damping factor α, which is the number of ‘fake’ ratings
at the global mean to assume for each item. In the Java code, this is available as the field
damping.

The damped mean formula, as you may recall, is:

s(i) =
∑u∈Ui

rui + αµ

|Ui|+ α

where µ is the global mean rating.
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Example Outputs

To help you see if your output is correct, we have provided the following example correct
values:

ID Title Mean Damped Mean

2959 Fight Club 4.259 4.252
1203 12 Angry Men 4.246 4.227

Association Rules

In the second part of the assignment, you will implement two versions of an association
rule recommender.

The association rule implementation consists of the following code:

• AssociationItemBasedItemRecommender recommends items using association rules.
Unlike the mean recommenders, this recommender uses a reference item to compute
the recommendations.

• AssociationModel stores the association rule scores between pairs of items. You will
not need to modify this class.

• BasicAssociationModelProvider computes an association rule model using the
basic association rule formula (P(X ∧ Y)/P(X)).

• LiftAssociationModelProvider computes an association rule model using the lift
formula (P(X ∧ Y)/P(X)P(Y)).

Computing Association Scores

Like with the mean-based recommender, we pre-compute product association scores and
store them in a model before recommendation. We compute the scores between all pairs
of items, so that the model can be used to score any item. When computing a single
recommendation from the command line, this does not provide much benefit, but is
useful in the general case so that the model can be used to very quickly compute many
recommendations.

The BasicAssociationModelProvider class computes the association rule scores using the
following formula:

P(i|j) = P(i ∧ j)
P(j))

=
|Ui ∩ Uj|/|U|

|Uj|/|U|

In this case, j is the reference item and i is the item to be scored.
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We estimate probabilities by counting: P(i) is the fraction of users in the system who
purchased item i; P(i ∧ j) is the fraction that purchased both i and j.

Implement the association rule computation in this class.

Computing Recommendations

Implement the recommendation logic in AssociationItemBasedItemRecommender to rec-
ommend items related to a given reference item. As with the mean recommender, it should
compute the top N recommendations and return them.

Computing Advanced Association Rules

The LiftAssociationModelProvider recommender uses the lift metric that computes how
much more likely someone is to rate a movie i when they have rated j than they would
have if we do not know anything about whether they have rated j:

s(i|j) = P(j ∧ i)
P(i)P(j)

Example Outputs

Following is the correct output for the basic association rules with reference item 260 (Star
Wars), as generated with ./gradlew runBasicAssoc -PreferenceItemm=260:

2571 (Matrix, The (1999)): 0.916

1196 (Star Wars: Episode V - The Empire Strikes Back (1980)): 0.899

4993 (Lord of the Rings: The Fellowship of the Ring, The (2001)): 0.892

1210 (Star Wars: Episode VI - Return of the Jedi (1983)): 0.847

356 (Forrest Gump (1994)): 0.843

5952 (Lord of the Rings: The Two Towers, The (2002)): 0.841

7153 (Lord of the Rings: The Return of the King, The (2003)): 0.830

296 (Pulp Fiction (1994)): 0.828

1198 (Raiders of the Lost Ark (Indiana Jones and the Raiders of the Lost Ark) (1981)): 0.791

480 (Jurassic Park (1993)): 0.789

And lift-based association rules for item 2761 (The Iron Giant):

631 (All Dogs Go to Heaven 2 (1996)): 4.898

2532 (Conquest of the Planet of the Apes (1972)): 4.810

3615 (Dinosaur (2000)): 4.546

1649 (Fast, Cheap & Out of Control (1997)): 4.490

340 (War, The (1994)): 4.490

1016 (Shaggy Dog, The (1959)): 4.490
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2439 (Affliction (1997)): 4.490

332 (Village of the Damned (1995)): 4.377

2736 (Brighton Beach Memoirs (1986)): 4.329

3213 (Batman: Mask of the Phantasm (1993)): 4.317

Running your code

The Gradle build file we have provided is set up to automatically run all four of your
recommenders. The following Gradle targets will do this:

• runMean runs the raw mean recommender
• runDampedMean runs the damped mean recommender
• runBasicAssoc runs the basic association rule recommender
• runLiftAssoc runs the advanced (lift-based) association rule recommender

You can run these using the IntelliJ Gradle runner (open the Gradle panel, browse the tree
to find a task, and double-click it), or from the command line:

./gradlew runMean

The association rule recommenders can also take the reference item ID on the command
line as a referenceItem parameter. For example:

./gradlew runLiftAssoc -PreferenceItem=1

The IntelliJ ‘Run Configuration’ dialog will allow you to specify additional ‘script parame-
ters’ to the Gradle invocation.

Debugging

If you run the Gradle tasks using IntelliJ’s Gradle runner, you can run them under the
debugger to debug your code.

The Gradle file also configures LensKit to write log output to log files under the build

directory. If you use the SLF4J logger (the logger field on the classes we provide) to emit
debug messages, you can find them there when you run one of the recommender tasks
such as runDampedMean.

Submitting

You will submit a compiled jar file containing your solution. To prepare your project for
submission, run the Gradle prepareSubmission task:

./gradlew prepareSubmission
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This will create file nonpers-submission.jar under build/distributions that contains
your final solution code in a format the grader will understand. Upload this jar file to the
Coursera assignment grader.

Grading

Your grade for each part will be based on two components:

• Outputting items in the correct order: 75%
• Computing correct scores for items (within an error tolerance): 25%

The parts themselves are weighted equally.
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