
const	and	C++

CS3081	Program	Design	and	Development



C++	Syntax

• C++
– const
– copy-constructor
– operator	overloading
– templates

Eckel does	a	thorough	job	of	laying	
out	the	 intricacies	 of	these	 complex	
constructs	and	concepts	 in	C++.

It	will	make	your	head	swim!



Why	use	const?

• Isolate	code	changes.
• Protect	your	data.

• Be	explicit	with	your	intentions.
– Communicate	with	users.
– Help	the	compiler	help	you.

• 3	audiences	of	your	code
– Fellow	programmers.	 (Users	 and	Team	Members)
– The	future	you.
– The	compiler	 (and	linker).



Isolating	Change

#define	SIZE	100
• preprocessor	directive
• no	type	(no	type	checking)
• no	scope	(preprocessed	

away)

const	int size	=	100;
• managed	by	compiler
• always	a	type
• no	scope	sometimes	

(compiled	away)
• constant	folding	(compile	

others	away	too)
• internal	linkage	(opposite	of	

global	non-const	variables)
• can’t define	at	runtime	

(unless	part	of	class)



Safe	Passage

• Constant	Pointers
• Pointers	to	Constants
• Passing	constant	values
• Returning	constant	values
• Passing	pointers	(or	references)	to	constants
• Returning	pointers	to	constants
• Passing	and	returning	“temporaries”



Constant	Pointers	and	Pointers	to	Constants

• Pointer	to	an	Integer

• Constant	 Integer

• Pointer	to	a	Constant	 Integer
• YES:	change	address	being	pointed	to	(i.e.	point	to	different	constant).
• NO:	change	what	pointer	points	to	(sort	of).

• Constant	Pointer	to	an	Integer
• YES:	change	the	contents	 of	the	address	pointed	to.
• NO:	change	the	address	pointed	to.

• Constant	Pointer	to	a	Constant	 Integer
• YES:	nothing.
• NO:	everything.	

const	int*	pointerToConstInt;

int const*	pointerToConstInt2;

const	int*	const	constPointerToConstInt);

int const*	const	constPointerToConstInt);

(const	int)*	pointerToConstInt;

(int const)*	pointerToConstInt2;

int*	pointerToInt;

const	int constInt;(const	int)	constInt;

int*	const	constPointerToInt;int*	(const	constPointerToInt);

(const	int)*	(const	constPointerToConstInt);

(int const)*	(const	constPointerToConstInt);



Coding	With	Pointers	to	Constant	Integers

• Pointer	to	a	Constant	Integer (const	int)*	pointerToConstInt;



Coding	With	Constant	Pointers	to	Integers

• Constant	Pointer	to	an	Integer int*	(const	constPointerToInt);



Rules	About	Constants	and	Parameter	Passing

• Pass	by	value	is	safe	and	easy,	but	can	be	inefficient.

• Passing	a	pointer	is	a	common	means	of	getting	data	back.
– It	is	explicit	and	a	good	way	to	communicate	to	the	user.

– void updatePos( Robot robot, Pos* updatedPos );

– updatePos( robot, &newPos );

• Pass-by-reference	is	efficient.
– It	is	quite	hidden	and	NOT	reassuring	 to	the	user.

– Pass-by-reference	 with	const	is	safe,	efficient,	 but	might	ripple	 through	
code.

– void updatePos( const Robot& robot, Pos* updatedPos );

– updatePos( robot, &newPos );



Rules	About	Constants	and	Parameter	Passing

• Passing	non-constants	 to	const	parameters	 is	OK.

• Passing	const	to	a	non-const	parameter	 is	NOT	OK.

• Compilers	create	temporary	objects	 that	are	ALWAYS	const.

• You	cannot	get	the	address	 of	a	temporary	object.

• Returning	a	const	user-defined	 object	means	 it	cannot	be	an	lvalue.

You	can	always	get	
more	restrictive,	but	
not	less.

This	comes	 into	play	
when	you	use	a	
function	result	as	a	
parameter.



The	Chain	Reaction	of	Adding	Pass-By-Reference



const	and	Classes



Rules	About	Constants	and	Classes

• const	data	members	must	be	initialized	with	an	initialization	
list	(except	for	static,	which	is	initialized	at	compile	time).
– Robot::Robot() : radius(50), color(0xFF0000) {}

• Class	methods	follow	same	rules	for	const	passing	and	
returning	as	other	methods.

• Using	const	class	objects	requires	assurances	to	the	compiler.
• int Robot::getSpeed() const { return speed; }

• Calling	a	const	method	with	a	non-const	class	object	is	OK.

• Calling	a	non-const	method	with	a	const	class	object	is	NOT	
OK.



The	Chain	Reaction	of	Adding	Pass-By-Reference

&	for	Efficiencyconst	to	
assure	users.

const	to	play	
nice	with	
const	objects.

const	to	use	
temporary	
parameters.


