
Iteration	2	Submission	 :	Due	THURSDAY	at	11:55pm.			
PULLING	at	midnight!

ITEM SUBMISSION
Priority	1,	2,	3	Implemented
Iteration 2	folder!!!

Merge	into	master	branch
Tag	with	v.2.0

Bug	Report “BugReport.*” in	/docs	OR	as	part	
of	Doxygen along	with	todo list

Design	Document
Major	design	decisions	with	justification	including	
other	options	that	you	considered.

“DesignDocument.*”	 in	/docs

UML	to	match	your	code UML.pdf in	/docs

Mainpage.h (do	you	need	to	change	this?)
COMPILE YOUR	DOXYGEN.	Don’t	leave	stuff	around.

Do	not	submit the	html	folder.	
We	will	compile.

Google Style	Compliant	 :	Check	Naming	Conventions! Run	cpplint – no	errors!

Github Usage	:	branches,	issues,	regular	commits,	good	
messages!!

We look	at	history	and	a	usage	
report

Google	Tests	 :	tests	for	sensors. Visual	inspection	 – not	passing.

Bug	Report

Identify	all	known	bugs.
Describe	the	bug.
If	you	don’t	have	any	known	bugs,	report	that.	

Bugs	are	not	todo lists	– they	are	for	implementation	 that	is	not	
working	as	required	or	desired!

ALSO,
if	you	do	have	incomplete	 functionality	include	it	here	making	it	clear	
what	is	not	implemented	and	what	is	buggy.

OR,
If	you	are	doing	this	in	doxygen,	use	@bug	and	@todo.	

You	will	be	docked	points	
if	we	find	a	bug	that	you	did	not	report.

Templates	and	Containers

CS3081	Program	Design	and	Development

Polymorphism

Polymorphism:	generally	defined	as	“the	ability	to	create	a	variable,	a	
function,	or	an	object	that	has	more	than	one	form.”	The	result	is	that	
you	get	different	behavior	 (i.e.	different	pieces	of	code	are	executed)	
depending	on	the	type	of	object	or	objects	that	are	being	acted	upon.

• Operator	Overloading:	One	operator	can	be	applied	to	different	 types.	

• Method	Overriding	 (Ad-hoc	polymorphism):	Derived	class	redefining	
base	class	method.

• Method	Overloading	 (Ad-hoc	polymorphism):	Multiple	function	
definitions	with	different	parameter	lists.

• Subtype	Polymorphism:	Upcasting – derived	class	object	can	be	used	in	
place	of	base	class	object.

• Parametric	Polymorphism:	Templates – one	function	with	same	behavior	
across	multiple	types.	(Stack	of	ints,	strings,	ClassA,	...)

cite:	Wikipedia	and	http://www.catonmat.net/blog/cpp-polymorphism/

Templates

“Inheritance	and	composition	provide	a	way	to	reuse	
object	code.	The	template feature	 in	C++	provides	a	way	to	

reuse	source code.”

A	way	for	you	to	write	generic,	type-less	code.

Example:
class	IntegerArray and	class	FloatArray and	class	CharArray

.....

instead
template<class	Type>	class	Array

Strong	Type	Checking*

• A	type	can	be	defined	as
– a	set	of	permitted	values	and	
– a	set	of	operations	permitted	on	these	values

• Important	operations	 in	programming	languages	related	to	
types:
– defining	a	new	type
– declaring	variables	to	be	of	a	certain	type
– checking	that	no	type	errors	can	occur	– type	checking

*	from	Gopalan Nadathur via	Eric	VanWyk

Type	Checking

• Types	and	type	checking	help	us	avoid	type	errors.

• Type	error	occurs	when	sequence	of	bits	that	represent	one	kind	
of	data	is	interpreted	as	another	kind	of	data.	(e.g.	...	
– reading	sequence	of	bits	that	store	an	int value	as	a	char	*	
– reading	the	representation	of	an	object	as	a	string

• The	nature	of	research	in	type	systems:
– preserve	 strong	typing	while	
– making	the	type	system	more	liberal.

That	is,		continue	to	disallow	any	bad	programs	but	allow	more	
good	programs.

A	major	advance:	parametric	polymorphism.

*	from	Gopalan Nadathur via	Eric	VanWyk

Implementation	 techniques

To	implement	a	function	that	has	parameterized	 types	a	
compiler	can:

1. Create	a	single	function	that	works	on	all	types	(in	machine	
language)

2. Determine	what	types	are	passed	as	parameters	to	the	
functions	and	generate	a	special	case	function	for	each	of	
these	types.		This	is	what	C++	does	for	template	types.*

Vector	Template

The	Need	for	Polymorphism

Wouldn’t	it	be	nice	to	...
int x,y;
float v,w;
swap(x,y);
swap(v,w);

Overloaded	Functions	(Better)

Wouldn’t	 it	be	nice	to	
write	1	piece	of	code	

for	all	types!

Generic	Swap	with	Templates

...	and	all	other	
types	we	might	
swap.

Wouldn’t	 it	be	nice	to	...
int i;
float f;
swap(i, f);

Templates	and	Classes

Classes	of	Different	Types

Wouldn’t	it	be	nice	to	...
Position<float> fP(1.5, 1.2);
Position<int> iP(10, 10);
cout << (iP + fP) << endl;
cout << (fP + iP) << endl;

Mixed	Types	 in	Swap

...	and	all	other	
types	we	might	
swap.

Wouldn’t	it	be	nice	to	...
Position<float> fP(1.5, 1.2);
Position<int> iP(10, 10);
cout << (iP + fP) << endl;
cout << (fP + iP) << endl;

Cast	a	class	?
x +	y ??

Array

Define	a	class	called	Array	that	holds	N	objects	of	type	T
template<class	T,	int N>

Overload	the	operator	 []	for	indexing	the	array.
Be	sure	to	check	bounds	when	indexing

C++	Containers

• http://en.cppreference.com/w/cpp/container (there	are	other	containers)

Built-In	Functionality	 of	Containers

Modifying	a	Container

• Delete	Elements

– vector.pop_back();	 //	remove	last	element
– vector.erase(iterator);	//	remove	element	at	iterator location
– vector.clear();	 //	remove	all	elements

• Access	Elements
– vector.front();	 //	first	element
– vector.back();	 //	last	element
– vector.at(position);	 //	check	bounds
– vector[#];

• Iterator (special	“smart”	pointers	for	accessing	containers)
– vector.begin();	 //	returns	 iterator to	first	element
– vector.end();	 //	returns	iterator to	last	element

Iterators

Notice	the	dereference	operator	– iterator is	a	pointer!

How	you	declare	an	iterator.

It	helps	to	have	“someone	else”	keep	track	of	the	size.
This	is	an	okay	method	for	looping	to	initialize,	but	access	with	iterators.

Iterators resolve	the	array	access	issues	 (seg faults).

Templates	and	Containers

• Templates
– Compiler	creates	a	class/function	for	each	needed	 type.
– Defining	(put	it	all	in	header)
– Methods	in	template	must	be	defined	for	class.

• Containers
– For	safety	and	ease.
– Use	iterators (declared	as	a	specific	container	type	iterator).

