
Testing,	Testing,	1.2.3,	Testing

CS3081	Program	Design	and	Development



The	Enemy	and	How	to	Combat	It

Good	design	and	good	development	practices	:

1. Simplify	and	isolate	future	modifications.

2. Find	errors	(now)	before	they	permeate	your	code!

Modifications	are	your	enemy.	
Modifications	are	necessary.

bug	fixes,	added	features,	requirement	 changes,	new	
hardware,	system	migration,	...



Organizing	Code	for	Large-Scale	Projects

• There	will	be	A	LOT	of	code,	thus	you	need	a	way	to	break	it	
down	and	organize	it,	so	that	each	piece	is	managable
(modularize).

• You	will	be	writing	only	a	portion	of	the	software,	not	the	
whole	thing,	thus	you	need	a	way	to	share	code	(integrate).

• There	is	a	good	chance	that	multiple	versions	will	be	
generated,	thus	you	need	to	reuse	code	among	projects	
(reuse).



And	what	about	those	errors	at	construction	...

Most	construction	errors	are	YOUR	fault.

• Why	YOU	construct	code	with	errors:
– typos.
– bad	logic.
– not	a	sufficient	understanding	of	the	design.
– not	a	sufficient	understanding	of	the	requirements.

• The	Good	News	...
– Most	errors	are	easy	to	fix.
– Errors	 tend	to	have	limited	scope.
– Common	errors	are,	well,	common	and	predictable.



Back	Up	a	Bit	...	The	Big	Picture	of	Testing

Type of	Testing What Who

Unit Class,	Routine,	or	Small	Program Single	Programmer or	Team
(You!)

Component	/	Module Class,	Package,	Small	Program Team
(You	and	Your Team)

Component	 Integration
Combined	 Execution	 of	Classes,
Packages,	Components,	 or	
Subsystems

Team
(Maybe	You,	Maybe	Not)

System On-Site,	Installed	 System
(Functional	and	Non-Functional)

Not	You,	probably	QA	
professionals.

“Use” System from	User’s	Perspective QA	Professionals.

Regression Everything	previously	tested. Anyone who	uses	your	code.
(You	and	everyone	else.)



Some	Tests

If	we	don’t	know	what	to	
expect,	maybe	it	really	

isn’t	a	test	 .?.



What	Is	A	Test	During Construction?

A	Test	is	a	comparison	of	
the	results	that	you	expect	to	get	against	the	actual	results.

Expected	Results	==	Actual	Results	è Test	Succeeded

Expected	Results	!=	Actual	Results	è Test	Failed

Expectations	are	based	on	the	requirements,
as	YOU	understand	them.



What	else	...

• A	test	“succeeds”	when	it	“fails”	(i.e.	it	breaks	your	code).

• Testing	can	never	prove	your	code	is	without	errors.

• Testing	does	not	improve	the	quality	of	your	software	(although	
it	might	demonstrate	the	presence	or	absence	of	it).

• You	must	want	and	hope	to	find	errors	in	your	code	through	
testing	(if	you	don’t,	somebody	else	will)!

“Yeah,	I	had	a	great	day.	I	found	20	errors	in	my	code!	
Isn’t	that	fantastic!!!			I	hope	I	find	some	more	tomorrow.”



What	to	Test

What do you mean I can’t find my errors? 
I can do it ...

• I’m	going	to	test	every	possible	input	to	my	code.

• I’m	going	to	test	every	path	through	my	code.

• I’m	going	to	test	every	line	of	code.



Black	and	White	Box	Testing

“Black-box”	Testing	
I	put	in	X,	and	I	get	back	Z.	I	don’t	care	how.

– Tests	 in	which	the	inner	workings	of	the	method	are	not	taken	into	
consideration.	

– Tests	are	based	on	the	requirements.

“White-box”	Testing
Is	my	logic	correct?	Will	control	go	where	I	think?

– Tests	developed	with	an	awareness	 of	the	inner	working	of	the	code.
– Tests	 that	consider	code	and/or	path	coverage.	



Different	Ways	to	Think	About	Testing

Equivalence	Partitioning:		Find	representative	test	cases	for	
equivalent	data	values	(i.e.	same	code	coverage).

Boundary	Analysis:		Test	around	boundaries	of	conditions	and	
input	values.

Bad	Data:		Unacceptable	values	or	input.

Good	Data:		Acceptable	but	extreme	(similar	to	boundary).



More	Testing	...

• Static	(Path)	Analysis	(does	not	execute	code).

– Finds	errors	like	unitialized	variables,	 unreachable	 code.
– Compilers	do	this	to	find	warnings	(you	can	change	the	warning	level).
– Sometimes	 referred	 to	as	“lint”	tools.

• Structured	Basis	Testing	:	Test	every	line	of	code.

How	many	test	cases	will	you	need,	at	a	minimum?

1. Start	with	1	for	the	straight	path	through	code.
2. Add	1	for	each	keyword	{	if,	while,	repeat,	for,	and,	or	}.
3. Add	1	for	each	case	in	a	switch	statement



Structured	Basis	 Testing
Test	Every	Line

McConnel	p.	507-508



Testing	Frameworks

It	provides	a	process	and	framework	for	writing	tests.	

• Part	of	the	programming	language	 (JUnit,	cxxTest,	 CPPUnit,Google Test)
• Tests	defined	using	special	assert	 statements.

• Test	suites	 (collection	of	single	tests)	defined	 in	a	file	external	 to	code.

• Tests	are	compiled	with	the	code,	but	run	separately.



Testing	Frameworks

It	provides	a	process	and	framework	for	writing	tests.	

WHY	use	one:

• A	universal	language	for	testing.
• Easy	to	generate	tests.
• Tests	and	debugging	statements	do	not	clutter	your	code.
• Tests	travel	with	code,	providing	easy	regression	tests.
• Tests	are	a	form	of	documentation.



What	to	Test	with	the	Framework	?

Let	Testing	Strategies	guide	your	test	writing.

–Structured	Basis	Testing	(test	every	line)

–Equivalence	Partitioning	(test	general	categories)

–Boundary	Analysis	(test	values	at	”boundary”)

–Bad	Data

–Good	Data


