Testing, Testing, 1.2.3, Testing

CS3081 Program Design and Development

The Enemy and How to Combat It

Good design and good development practices :

1. Simplify and isolate future modifications.

2. Find errors (now) before they permeate your code!

Moaodifications are your enemy.
Modifications are necessary.

Organizing Code for Large-Scale Projects

* Therewill be A LOT of code, thus you need a way to break it
down and organize it, so that each piece is managable
(modularize).

* Youwill be writingonly a portion of the software, not the
whole thing, thusyou need a way to share code (integrate).

* Thereis agoodchancethat multiple versions will be

generated, thus you need to reuse code among projects
(reuse).

And what about those errors at construction...

Most construction errors are YOUR fault.

* WhyYOU construct code with errors:
— typos.
— bad logic.
— not a sufficient understanding of the design.

— not a sufficient understanding of the requirements.

e The Good News...

— Most errors are easy to fix.
— Errors tend to have limited scope.
— Common errors are, well, common and predictable.

Back Up a Bit ... The Big Picture of Testing

Type of Testing

What

Who

Unit

Class, Routine, or Small Program

Single Programmer or Team
(You!)

Component / Module

Class, Package, Small Program

Team
(You and Your Team)

Component Integration

Combined Execution of Classes,
Packages, Components, or
Subsystems

Team
(Maybe You, Maybe Not)

System On-Site, Installed System Not You, probably QA
(Functional and Non-Functional) professionals.
“Use” System from User’s Perspective QA Professionals.
: : : Anyone who uses your code.
Regression Everything previously tested.

(You and everyone else.)

Some Tests

int y,z;

double x = 23.5;

y = div2(x); // Expecting a truncation of 23.5/2
cout << "div2(23.5) = " << y;

int z[8] = {1, 5, 6, B8, 14, 3, 2, 11};

max = 0;
for (i=0; i<B; i++) {
if (z[1i] > max) { If we don’t know what to
max = z[1]; .
} expect, maybe it really
} ien’ 3
// OR max = findMax(z):; Isn"t atest .r.
cout << "max should be 14. max is " << max << endl;

myObjects: :addMember(0,0,"");
cout << "Displaying object with values of @. Does it crash ?77: ";
myObjects::displayObjects();

myObjects: :addMember(23458976558925999205559628, 89830468305863018745463829, 2626353637);
cout << "Displaying object with too big value. What happens?: ";
myObjects::displayObjects();

What Is A Test During Construction?

A Test is a comparison of

the results that you expect to get against the actual results.

Expected Results == Actual Results = Test Succeeded

Expected Results != Actual Results = Test Failed

Expectations are based on the requirements,
as YOU understand them.

* Atest“succeeds” when it “fails” (i.e. it breaks your code).

e Testingcan never prove your codeis without errors.

* Testingdoesnotimprove the quality of your software (although
it might demonstrate the presence or absence of it).

* Youmustwantand hopeto find errorsin your code through
testing (if you don’t, somebody else will)!

“Yeah, | had a great day. | found 20 errors in my code!
Isn’t that fantastic!!! | hope | find some more tomorrow.”

What do you mean I can’t find my errors?

[cando it...

* I'm goingto test every possible input to my code.

* I’'mgoingto test every path through my code.

* I'mgoingto testevery line of code.

Black and White Box Testing

“Black-box” Testing
| putin X, and | get back Z. | don’t care how.

— Tests in which the inner workings of the method are not taken into
consideration.

— Tests are based on the requirements.

“White-box” Testing

Is my logic correct? Will control go where | think?

— Tests developed with an awareness of the inner working of the code.
— Tests that consider code and/or path coverage.

Different Ways to Think About Testing

Equivalence Partitioning: Find representative test cases for
equivalent data values (i.e. same code coverage).

Boundary Analysis: Test around boundaries of conditions and
input values.

Bad Data: Unacceptablevaluesorinput.

Good Data: Acceptable but extreme (similar to boundary).

More Testing...

e Static (Path) Analysis (does not execute code).

— Finds errors like unitialized variables, unreachable code.
— Compilers do this to find warnings (you can change the warning level).

— Sometimes referred to as “lint” tools.

e Structured Basis Testing : Test every line of code.

How many test cases will you need, at a minimum?

1. Start with 1 for the straight path through code.
2. Add 1 for each keyword { if while, repeat, for, and, or }.
3. Add 1for each case in a switch statement

Example of Computing the Number of Cases Needed for Basis Testing Structured Basis TESting
of a Java Program

Count “1" for the routine =1 // Compute Net Pay 9
itself. 2 totalwithholdings = 0; Te'St Every Llne
3
Count “2" for the for. }—»4 for (id = 0; id < numEmployees; id++) { Mcconnel p 507'508
5
6 // compute social security withholding, if below the maximum
Count “3" for the if. 1—»7 if (m_employee[id].governmentRetirementwithheld < MAX_GOVT_RETIREMENT) {
8 governmentRetirement = ComputeGovernmentRetirement(m_employee[id]);
2 }
10
11 // set default to no retirement contribution
12 i .0
13 gt b . Case Test Description Test Data
14 // determine discretionary employee retirement contributic Nonﬂﬁ§<35e : Alibosleanehcitonsiaio tie
Count “4" for the ifand 5" 15 if (m_employee[id].wantsRetirement && The |‘n|t|al for condi- numEmployees < 1
for the &8&. 16 EligibleForretirement(m_employee[id 1)) { tion is false A . .
17 companyRetirement = GetRetirement(m_employee[id]); 3 The first if is false m_employee| id].governmentRetirementWith-
18 } held >=MAX_GOVT_RETIREMENT
19 4 The second if is false not m_employee[id]. WantsRetirement
20 grossPay = ComputeGrossPay (m_employee[id]); because the first part
21 of the and is false
22 // determine IRA contribution 5 The second if is false not EligibleForRetirement(m_employeelid])

because the second

23 personalRetirement = 0; :
Count "6" for the if. '——> 24 if (EligibleForPersonalRetirement(m_employee[id])) { parfeitheianaisabe
bt personalRetirement = personalRetirementcontribution(m. 6 The third if is false not EligibleForPersonalRetirement(m_employee[
26 companyRetirement, grossPay); ia])
27 } Note: This table will be extended with additional test cases throughout the chapter.
28
29 // make weekly paycheck
30 withholding = Computewithholding(m_employee[id]);
31 netPay = grossPay - withholding - companyRetirement - governmentRetirement -
32 personalRetirement;
33 pPayEmployee(m_employee[id], netPay);
35 // add this employee's paycheck to total for accounting
36 totalwithholdings = totalwithholdings + withholding;
37 totalGovernmentRetirement = totalGovernmentRetirement + governmentRetirement;
38 totalRetirement = totalRetirement + companyRetirement;
39 }
40

41 savePayRecords(totalwithholdings, totalGovernmentRetirement, totalRetirement);

Testing Frameworks

It provides a process and framework for writing tests.

Part of the programming language (JUnit, cxxTest, CPPUnit,Google Test)

Tests defined using special assert statements.

#include <cxxtest/TestSuite.h>
#include "maxExample.h"
class MaxTest : public CxxTest::TestSuite

{

public:

void | ()

{
1Nt [5] = {ov 1, 2, 3, 4};
int = findMax(myArray,5);
TS_ASSERT_EQUALS(maxIdx, 4);

}

}

Test suites (collection of single tests) defined in a file external to code.

Tests are compiled with the code, but run separately.

g++ -Wall -Icxxtest -0 MaxTests MaxTest.cpp maxExample.o

Testing Frameworks

It provides a process and framework for writing tests.

WHY use one:

* A universallanguage for testing.

* Easyto generate tests.

* Testsand debugging statements do not clutter your code.
* Teststravel with code, providing easy regression tests.

* Testsare a form of documentation.

What to Test with the Framework ?

Let Testing Strategies guide your test writing.
—Structured Basis Testing (test every line)
—Equivalence Partitioning (test general categories)
—Boundary Analysis (test values at "boundary”)
—Bad Data

—Good Data

