
Polymorphism	and	Classes

CS3081	Program	Design	and	Development



Coupling	and	Classes	:	Is	it	Composition	or	Inheritance	?

“has-a”	 =	Containment	 and	Composition

Employee	“has-a”	name	=	member	of	class.
Employee	“has-a”	UserAccount =	UserAccount object	is	member.	

“is-a”	=	Inheritance

Part-Time	Employee	 “is-a”	specialization	 of	Employee,
PartTime inherits	 from	Employee.	

McConnel Examples

• Liskov Principle	 “Subclasses	must	be	usable	through	the	base	class	 interface.”
– Bank	Accounts	 :	Interest	Bearing	VS	Interest	Charging	(p.	144)

• Overriding	routines	that	do	nothing.
– ScratchlessTaillessMicelssMilklessCat (p.	146)



Inheritance	and	Composition	:	not	as	distinct	as	you	think
class XClass {
private:

int i;
public:

XClass() : i(0) {}
void subtract(int in) { i = i - in; }
void add(int in) { i = i + in; }
void display() { printf("i in X: %d \n", i); }

};

class YClassInh : public XClass {
private:

int i;
public:

YClassInh() : i(0) {}
void subtract(int in) { i = i – 2*in; }
void display() { printf("i in Y: %d \n", i); }
void displayX() { XClass::display(); }

};

int main() {
YClassInh Y;
Y.display();
Y.displayX();

Y.add(10);
Y.display();
Y.displayX();

Y.subtract(10);
Y.display();
Y.displayX();

Y.XClass::display();

Inherited	Class

> ./a.out
i in Y: 0 
i in X: 0

i in Y: 0 
i in X: 10

i in Y: -20
i in X: 10 

class YClassPriv {
private:

int i;
XClass X;

public:
YClass() : i(0) {}
void change(int in) { i = i - in; }
void display() { printf("i in Y: %d \n", i); }
void changeX(int in) { X.change(in); }
void displayX() { X.display(); }

};

int main() {
YClassPriv Y;
Y.display();
Y.displayX();
Y.change(10);
Y.changeX(10);
Y.display();
Y.displayX();

Private	Embedded	Object

> ./a.out
i in Y: 0 
i in X: 0 
i in Y: -10 
i in X: 10 



Composition	Versus	 Inheritance	 :	Embedded	Objects	and	Private	Data

What	objects	and	data	are	available	in	the	
composed	(aggregate)	and	derived	class	?



DerivedClass
Private:

Protected:

Public:

ObjectClass::
Private:	

privateVar
Protected:

protectedVar
Public:

display()

DerivedClass
Private:
privateVar

Protected:

Public:

ObjectClass::
Private:	

privateVar
Protected:

protectedVar
Public:

display()

DerivedClass
Private:

Protected:

Public:
display()

ObjectClass::
Private:	

privateVar
Protected:

protectedVar
Public:

display()

DerivedClass
Private:

Protected:
protectedVar

Public:

ObjectClass::
Private:	

privateVar
Protected:

protectedVar
Public:

display()

privateVar
FAIL

protectedVar
ObjectClass::protectedVar

Display
ObjectClass::display()

privateVar
FAIL

protectedVar
ObjectClass::protectedVar

Display
DerivedClass::display()

Still	 call
ObjectClass::display()

privateVar

protectedVar
DerivedClass::protectedVar

Still	have	access	to
ObjectClass::protectedVar

Display

privateVar
DerivedClass::privateVar

Still	no	access	to	the	other

protectedVar

Display

Referenced	 inside	 DerivedClass ...



Reusability	:	Key	Motivation	for	Classes

• Reuse	for	efficiency.
• Reuse	for	safety.
• Reuse	for	easy	modification.
• Reuse	for	simplification.

Functions	are	a	reuse	of	code.
Embedded	objects	are	a	reuse	of	code.
Inheritance	can	be	a	reuse	of	design.

Design	Principle
Code	should	be	closed	to	change,

yet	open	to	extension.

Polymorphism



Inheritance	and	Composition	are	forms	of	Reuse

Types	of	Inheritance:

• Abstract	Overridable	 Routine :	derived	class	inherits	 interface,	 not	
implementation

• Overridable	 Routine	:		derived	class	inherits	 interface	 and	default	
implementation,	 can	override	 implementation.

• Non-Overridable	 Routine	:	derived	class	inherits	 interface	and	default	
implementation.	 No	override	 is	allowed.

“If	you	want	to	use	an	implementation	 but	not	its	interface,	use	containment,	
not	inheritance.”



Design	Patterns

• Originally	introduced	 in	Design	Patterns:	Elements	of	Reusable	Object-
Oriented	Software by	“Gang	of	Four	(aka	GOF)”	Erich	Gamma,	Richard	
Helm,	Ralph	Johnson	and	John	Vlissides.

• Head	First	Design	Patterns available	on-line	through	UMN	library.



Design	Patterns

Categories	of	Design
– Behavior	 (e.g.	Strategy,	Observer,	 ...)
– Compound	 (e.g.	Model-View-Controller,	 ...)
– Creation	 (e.g.	Factory,	Singleton,	...)
– Structure	 (e.g.	Adapter,	 Composite,	 ...)	

Design	Principle
Identify	aspects	of	your	application	 that	vary	
and	separate	 them	from	what	stays	the	same.

Design	Principle
Favor	composition	over	inheritance.

Design	Principle
Code	should	be	closed	 to	change,

yet	open	to	extension.



Reusing	Code	Through	Inheritance	and	Composition

Duck

size

display()
fly()

quack()

MallardLame Rubber	Duck



Reusing	Code	Through	Inheritance	and	Composition

Lame

//	can’t	fly

Rubber	Duck

//	can’t	fly
//	squeak,	not	quack

Duck

size

display()
fly()

quack()

Mallard

Problem	:	You	don’t	want	the	subclass	 to	inherit	everything!



Reusing	Code	Through	Inheritance	 and	Composition

Lame

fly()	

Duck

size

display()
fly()

quack()

RubberDuck

quack()
fly()	

2

Duck

size

display()

Mallard

fly()
quack()

Lame

quack()	

1 Duck

size
bool canFly

bool canQuack

fly()	{	if	tFly==fly1	{...}	
}
quack()

Mallard

FLY	tFly =	fly1;

3 Duck

size

display()

NoFlyDuck

fly()	{}

SqueakingDuck

quack()	{“squeak”}

Rubber	Duck

QuackingDuck

quack()

FlyingDuck

fly()

4

Group	Time	 (Look	at	Code)
1) Where	is	code	reused.
2) Where	is	 it	duplicated?
3) Closed	 to	Change?

NoFly,	Flying,	Squeaking,	Quacking	
all	inherit	from	Duck

RubberDuck inherits	from	
both	fly	and	quack	classes

4



A	Strategy	Pattern	defines	a	family	of	algorithms,	 encapsulates	 each	one,	and	makes	 them	
interchangeable.	 (Design	solution	to	the	ScratchlessTaillessMicelssMilklessCat.)

Design	Principle
Identify	aspects	of	your	application	that	vary	
and	separate	them	from	what	stays	the	same.

Design	Principle
Favor	composition	over	inheritance.



Duck	Behaviors

• Add	NoFly
• Add	Rocket	flying

• Review	the	output.
• What	is	wrong	??

Look	at	Code	duckStrategy.cpp
1) Where	is	code	reused.
2) Where	is	it	duplicated?
3) Closed	to	Change?



Polymorphism

Polymorphism:	 generally	defined	as	“the	ability	to	create	a	variable,	a	
function,	or	an	object	that	has	more	than	one	form.”	The	result	is	that	
you	get	different	 behavior	 (i.e.	different	 pieces	of	code	are	executed)	
depending	on	the	type	of	object	or	objects	that	are	being	acted	upon.

• Operator	Overloading:	 One	operator	can	be	applied	 to	different	 types.	

• Method	Overriding	 (Ad-hoc	polymorphism):	 Derived	class	redefining	
base	class	method.

• Method	Overloading	 (Ad-hoc	polymorphism):	 Multiple	function	
definitions	with	different	 parameter	 lists.

• Subtype	Polymorphism:	 Upcasting – derived	class	object	can	be	used	in	
place	of	base	class	object.

• Parametric	Polymorphism:	 Templates	 – one	function	with	same	behavior	
across	multiple	 types.	(	Stack	of	ints,	strings,	ClassA,	 ...	)

cite:	Wikipedia	and	http://www.catonmat.net/blog/cpp-polymorphism/



Achieving	Polymorphism

Early	Binding:	a	call	to	a	class	
method	is	bound	at	compile-
time.

Late	Binding	(or	dynamic):	a	
call	to	a	class	method	 is	
bound	at	runtime.

virtual

& (or *)

(or * with new)



Polymorphic	Ducks

Strive	for	This.
What	needs	to	change?



Ducks,	All	in	a	Row

Dynamic	Behavior!!

Strive	for	This.
What	needs	to	change?



Design	Principles	and	Polymorphism

// to an implementation
Dog d = new Dog();
d.bark();

// to an interface
Animal animal = new Dog;
animal.speak();

Design	Principle
Code	should	be	closed	to	change,

yet	open	to	extension.

Design	Principle
Favor	composition	 over	inheritance.

Design	Principle
Identify	aspects	 of	your	application	 that	vary	
and	separate	them	from	what	stays	the	same.

Design	Principle
Program	to	an	interface,	not	an	implementation.



Visitor	Pattern

SITUATIONS:
- Need	class	member	data,	but	only	if	of	a	certain	 subtype.
- Need	to	access	or	modify	class	member	data,	but	application	is	different	 if	

subtype	is	different.

If	subtypes	are	treated	like	parent	class	objects,	 type	information	 is	lost.

ObjectThatNeedsData ...
for (int i; i<count; i++) {

localData = SubtypeObject[i].getRelevantData()
... Do something with data ...

}

Subtype1::getRelevantData() { return -1; }
Subtype2::getRelevantData() { return relevantData; }



PARENTCLASS
----------------------
void	accept(Visitor	v)	{	v.visit(this);	}

SUBCLASS1
----------------------
void	accept(Visitor	v)

SUBCLASS2
----------------------
void	accept(Visitor	v)

VISITOR	CLASS
----------------------
void	visit(	SUBCLASS1)
void	visit(SUBCLASS2)

NeedsStuff1
----------------------
void	visit(	SUBCLASS1)	{	//	do	nothing	}
void	visit(	SUBCLASS2	{	//get	stuff	}

NeedsStuff2
----------------------
void	visit(	SUBCLASS1)	{	//	get	stuff	}
void	visit(	SUBCLASS2	{	//	do	nothing	}

//Putting	It	All	Together

NeedsStuff1	ns1;

//	define	array	of	objects	of	various	subtypes
PARENTCLASS	objects[]	...

for	(i=0;i<objCount;i++)	{
objects[i].accept(	 ns1	);

}

To	accept	a	visitor,	means	that	you	will	
pass	yourself	to	the	visitor.	The	visitor	
has	a	separate	visit()	 for	each	subtype,	
therefore	the	compiler	will	match	
subtype	to	specific	action.


