Polymorphism and Classes

CS3081 Program Design and Development

Coupling and Classes : Is it Composition or Inheritance?

“has-a” = Containment and Composition

Employee “has-a” name = member of class.
Employee “has-a” UserAccount = UserAccount object is member.

“is-2” = Inheritance

Part-Time Employee “is-a” specialization of Employee,
PartTime inherits from Employee.

McConnel Examples

* Liskov Principle “Subclasses must be usable through the base class interface.”
— Bank Accounts : Interest Bearing VS Interest Charging (p. 144)

* Overriding routines that do nothing.
— ScratchlessTaillessMicelssMilklessCat (p. 146)

Inheritance and Composition : not as distinct as you think

class XClass {

private:
int i;
public:
XClass() = 1(0) {}
void subtract(int in) { i =i - in; }

void add(int in) { i =i + in; }
void display() { printf("i in X: %d \n", i); }
}i

}i

class YClassPriv {
private:

int i;

XClass X;

YClass() : 1i(0) {}

void change(int in) { i = i - in; }

void display() { printf("i in Y: %d \n", i); }
void changeX(int in) { X.change(in); }

void displayX() { X.display(); }

int main() {
YClassInh Y;

Y.display();
class YClassInh : public XClass { Y.displayX();
private:

int i; . Y.add(10);
public: Inherited Class Y.display();

YClassInh() : i(0) {} Y.displayX();

void subtract(int in) { i = i — 2*in; }

void display() { printf("i in Y: %d \n", i); } Y.subtract(10);

void displayX() { XClass::display(); } Y.display();

.displayX();

.XClass::display();

in
in

=20
10

public: Private Embedded Obiject

int main() {
YClassPriv Y;
Y.display();

KKK KK

.displayX();
.change(10);
.changeX(10);
.display();
.displayX();

O s

./a.out

in
in
in
in

Y:
X:
Y:
X:

0

0
-10
10

Composition Versus Inheritance : Embedded Objects and Private Data

objectClass() : objectVar(10)

objectClass(int a) : objectVar
oid print() {
cout << "in objectClass. ";
cout << "objectVar: " << obj
pm { | What objects and data are availablein the
cout << "un conpozectl composed (aggregate) and derived class ?

// cout << ob]ectVar

// cout << "objectVar "
object.print();

}

1.

pid print() {

cout << "1in derivedClass. ";
//cout << "objectVar " << objec
//cout << "objectVar " << objec

objectClass::print();
}_} cout << endl << "Embedded ob in b i 1 ~omposed." << endl;
compo edOb]ect print(); Embedded objects in both inherited and composed.

der1ved0b ect rint(): ; in composedClass. in objectClass. objectVar: 10
] P in derivedClass. in objectClass. objectVar: 10

DerivedClass DerivedClass DerivedClass DerivedClass
Private: Private: Private: Private:
privateVar
Protected: Protected: Protected: Protected:
protectedVar
Public: Public: Public: Public:
display()
ObjectClass:: ObjectClass:: ObjectClass:: ObjectClass::
Private: Private: Private: Private:
privateVar privateVar privateVar privateVar
Protected: Protected: Protected: Protected:
protectedVar protectedVar protectedVar protectedVar
Public: Public: Public: Public:
display() display() display() display()
Referenced inside DerivedClass
privateVar privateVar privateVar privateVar
FAIL FAIL DerivedClass::privateVar
protectedVar protectedVar protectedVar Still no access to the other

ObjectClass::protectedVar

Display
ObjectClass::display()

ObjectClass::protectedVar

Display
DerivedClass::display()

Still call
ObjectClass::display()

DerivedClass::protectedVar

Still have access to
ObjectClass::protectedVar

Display

protectedVar

Display

Reusability : Key Motivation for Classes

Reuse for efficiency.

Reuse for safety.

Reuse for easy modification.
Reuse for simplification.

Functions are a reuse of code.
Embedded objects are a reuse of code.
Inheritance can be a reuse of design.

Polymorphism

Design Principle
Code should be closed to change,
yet open to extension.

Inheritance and Composition are forms of Reuse

Types of Inheritance:

* Abstract Overridable Routine : derived class inherits interface, not
implementation

 Overridable Routine : derived class inherits interface and default
implementation, can override implementation.

* Non-Overridable Routine : derived class inherits interface and default
implementation. No override is allowed.

You don’t need to know
these terms, just
understand that there
might be different
agendas when
combining classes.

“If you want to use an implementation but not its interface, use containment,
not inheritance.”

Design Patterns

e Originally introduced in Design Patterns: Elements of Reusable Object-

Oriented Software by “Gang of Four (aka GOF)” Erich Gamma, Richard
Helm, Ralph Johnson and John Vlissides.

* Head First Design Patterns available on-line through UMN library.

LOOF -INSIDE!

A RralnPrémdy Gulde

to LOOK INSIDE!

Head First : \
Design Patterns Desion I m(mx

Elum.nh of Reusable
Object-Oriented Software

Ln h Gamma

iwchard Helm
l alph Johnson
John Viissides

VNSS4 B4V NOSK MY -

-
-
=
>
=
"
-
”
-
o
-~
i

Faresond by Geatly Bool

Design Patterns

Categories of Design
— Behavior (e.g. Strategy, Observer, ...)
— Compound (e.g. Model-View-Controller, ...)
— Creation (e.g. Factory, Singleton, ...)
— Structure (e.g. Adapter, Composite, ...)

Design Principle
Favor composition over inheritance.

Design Principle
Identify aspects of your application that vary
and separate them from what stays the same.

Design Principle
Code should be closed to change,
yet open to extension.

Reusing Code Through Inheritance and Composition

Duck

size

display()
fly()
quack()

/\

Lame

Mallard

Rubber Duck

Reusing Code Through Inheritance and Composition

Duck
size
- display()
Wt fiy()
00 o™ quack()

AN

Lame Mallard Rubber Duck
// can’t fly // can’t fly
// squeak, not quack

Problem : You don’t want the subclass to inherit everything!

Reusing Code Through Inheritance and Composition

: Duck
size

bool canFly
bool canQuack

-

Duck

size

display() 1

}

quack()

fly() {if tFly==fly1 {...}

—

NoFlyDuck

<::> Duck
size
display()
AN
Mallard Lame
fly() quack()
quack()
<::> Duck
size
display()
fly()
quack()
VAN
Lame RubberDuck
quack()
fly() fly()

Mallard

FLY tFly = fly1;

Group Time (Look at Code)
1) Where is code reused.
2) Where is it duplicated?
3) Closed to Change?

[:Eﬂy() {} FlyingDuck

fly()

SqueakingDuck

QuackingDuck yyacK() {“squeak”}

quack()

T

NoFly, Flying, Squeaking, Quacking
all inherit from Duck
RubberDuck inherits from Q

both fly and quack classes

Rubber Duck

A Strategy Pattern defines a family of algorithms, encapsulates each one, and makes them

interchangeable. (Design solution to the ScratchlessTaillessMicelssMilklessCat.)

Clicn{’, makes use 0§ an

i .EQami\\/ of aloorithws Encapﬁulated ﬂY.‘Eehavior

{ <<interface>>

. |
{30\“ both Q\J%rsg and O\ua{ikmg- | PBehatior o
{ / { fiy() \\ o C,a

e W Y
/ TR T x \Oc\\a\J\o
Sf-&' " \\\\{ og

Client T - : e 28 ko
FlyBehavior flyBehavior FlyWithWings FlyNoWay \ . \-B{\“‘S'
QuackBehavior quackBehavior fly() { O { d ?)

Il implements duck flying

}

hina - 1
swim() / do nothing - can't fly

display()
performQuack()

performFly()

setFlyBehavior()
setQuackBehavior()
Il OTHER duck-like methods

Encapsulated quack behavior
4 <<interface>>
QuackBehavior L

quack()

./‘

MallardDuck RedheadDuck RubberDuck 'Dwecd'yDuck

l Quack Squeak

quack) {

MuteQuack
quack() {

display() {
I/ looks like a redhead }

| quack() {
/I rubber duckie squeak

}

fooka ke o mallard)

Ilooks like a rubberduck }

|
{
|
e |
E
{
|

Il'ooks like a decoy duck } I/ implements duck quacking

Il do nothing - can't quack!

|
L,

}
isplay() { i display() {
|
|
{
|
!

Design Principle \>{(}cm

Identify aspects of your application that vary

Design Principle «oP¢
and separate them from what stays the same.

Favor composition over inheritance. -mkﬂ»‘"b

Duck Behaviors

 Add NoFly
* Add Rocket flying

* Review theoutput.
* Whatiswrong??

Look at Code duckStrategy.cpp
1) Where is code reused.

2) Whereiis it duplicated?

3) Closed to Change?

Mary does this ...

I am a Mallard.

Generic Flying at 5 mph.
Generic Quack at 10 decibels

Ralph does this ...

I am a Rubber Duck.

Generic Flying at 5 mph.
Generic Quack at 10 decibels

Polymorphism

Polymorphism: generally defined as “the ability to create a variable, a
function, or an object that has more than one form.” The result is that
you get different behavior (i.e. different pieces of code are executed)
depending on the type of object or objects that are being acted upon.

 Operator Overloading: One operator can be applied to different types.

* Method Overriding (Ad-hoc polymorphism): Derived class redefining
base class method.

« Method Overloading (Ad-hoc polymorphism): Multiple function
definitions with different parameter lists.

 Subtype Polymorphism: Upcasting — derived class object can be used in
place of base class object.

Parametric Polymorphism: Templates —one function with same behavior
across multiple types. (Stack of ints, strings, ClassA, ...)

cite: Wikipedia and http://www.catonmat.net/blog/cpp-polymorphism/

Achieving Polymorphism

// This is to demonstrate what function is being called
vold play(hote) {

'

cout << "Instrument::play" << endl;

}; :
virtual
Wind : ! Instrument {
// This is to demonstrate what function is being called
vold play(rote {
cout << "Wind::play" << endl;
}
};
void tune(:r»:-tr'w,."‘.»:rtzt)/{_\ & (or *)
i.play(middleC);

}

int main() {4f”” (Or * With new)

”n

// What do you expect to be the output of this call?
tune(flute);
}

Early Binding: a call to a class
method is bound at compile-
time.

R{b
o . &y
Late Binding (or dynamic): a
call to a class method is
bound at runtime.

Polymorphic Ducks

lass FlyBehavior {
double 1 esPe -
Behavior() : milesPerHo
U void fly() { cout
};
F L ‘_v"v'd;._ hWw ;[-H_:. S =
doub le s Pe :

| FlyWithWings() : milesPerH
id fly() { cout <<

vO

};

"Fly

Donald does this .
I am a duck.

Mary does this ...
I am a Mallard.

1ss Mallard :

clas publa 4
pr ivate:
FlyBehavic JBehay ;
QuackBehay xBehay

“‘Héilard();

Mallard::Mallar
flyBehavior
quackBehavio

1thW
uack;

I
A
’

}

Ralph does this ..

Generic Flying at 5 mph.
Generic Quack at 10 decibels

Fly at speed of 5 mph.
Quack at 10 decibels

I am a Rubber Duck.

oes this ...

Mallard.

¢ Flying at 5 mph.

¢ Quack at 10 decibels

does this ...
Rubber Duck.

Strive for This.
What needs to change?

es this " << endl;
Cannot fly at any speed.
Squeak at 10 decibels.
"I—am @ macttaro. << el
or->quack(); } cout << endl << "Mary does this ... " << endl;
fly(); } mary.display();
mary.fly();
mary.quack();
ings; cout << endl << "Ralph does this " << endl;
ralph.display();
ralph.fly();
ralph.quack();

Ducks, All in a Row

Strive for This.

Duck [3];

ducks [@] = Duck();
ducks[1] = Mallard(); I am a cuck.
ducks[2] = RubberDuck(); Generic Fly]_ng at § mph.
(int i =0; i < 3; i++) { Generic Quack at 10 decibels
cout << endl << "Duck[" << 1 << "]" << endl;
ducks[i].display();
ucks[1].display() N Duck[1]

ducks[1i].fly();
ducks[1].quack(); ///

I am a Mallard.
Fly at speed of 5 mph.

/

Duck[@] ¢

I am a duck.

Generic Flying at 5 mph.
Generic Quack at 10 decibels

Duck([1]

I am a duck.

Generic Flying at 5 mph.
Generic Quack at 10 decibels

Duck([2]

I am a duck.

Generic Flying at 5 mph.
Generic Quack at 10 decibels

Quack at 10 decibels

Duck([2]
I am a Rubber Duck.

Squeak at 10 decibels.

Duck[0] What needs to change?

Cannot fly at any speed.

Dynamic Behavior!!

// I smashed into a window and broke my wing!

FlyBehaviors = new NoFly;
ducks[@]->setFly(fb);
cout << "Broken wing means ";

ducks [B]->fly();

Broken wing means Cannot fly at any speed.

Design Principles and Polymorphism

// to an implementation Design Principle

Dog d = new Dog(); Program to an interface, not an implementation.
d.bark();

Design Principle

// to an interface Identify aspects of your application that vary
Animal animal = new Dog; and separate them from what stays the same.
animal.speak();

Design Principle
Favor composition over inheritance.

// New rocket jetpack for ducks'!

e e o e e Design Principle

cout << "No rocket, "; Code should be closed to change,
guineaPig- >fly() .
guineaPig- >setF1y(fb2) No rocket, Fly at speed of 5 mph. yet open to extension.

cout << "With <et, ": |With rocket, Fly at speed of 500 mph.

guineaPig- >fly()

El1uMi+hRacrkatd o EluRaehauvisnr
LYW1TNhHKOCKeT . i Lyoenavliol {
.

double :
FlyWithRocket() : milesPerHour(MPH_DEFAULT*100) {}
void fly() { cout << "Fly at speed of " << milesPerHour << " mph." << endl; }

};

Visitor Pattern

SITUATIONS:

- Need class member data, but only if of a certain subtype.

- Need to access or modify class member data, but application is different if
subtype is different.

If subtypes are treated like parent class objects, type information is lost.

ObjectThatNeedsData
for (int 1; i<count,; 1i++) {
localData = SubtypeObject[i].getRelevantData ()
Do something with data

Subtypel::getRelevantData () { return -1; }
SubtypeZ::getRelevantData () { return relevantData; }

To accept a visitor, means that you will
pass yourself to the visitor. The visitor

has a separate visit() for each subtype,
therefore the compiler will match
subtype to specific action.

PARENTCLASS /

void accept(Visitor v) { vvisit(this); }

SUBCLASS1 SUBCLASS2

void accept(Visitor v) void accept(Visitor v)

//Putting It All Together
NeedsStuffl nsi;

// define array of objects of various subtypes
PARENTCLASS objects]] ...

for (i=0;i<objCount;i++) {
objectsli].accept(nsl);

}

VISITOR CLASS

void visit(SUBCLASS1)
void visit(SUBCLASS2)

NeedsStuffl

NeedsStuff2

void visit(SUBCLASS1) { // do nothing } void visit(SUBCLASS1) { // get stuff}
void visit(SUBCLASS2 { //get stuff } void visit(SUBCLASS2 { // do nothing }

