
Software	Development	and	Refactoring	

CSCI3081W
Program	Design	and	Development

The	Parts	and	the	Process

• Specification (Requirements)	:	What	does	the	client	want?

• Design	(Architecture) :	The	foundation	to	which	all	code	must	
attach.

• Implementation.the fun	part.	Who	does	what?	Any	standards?

• Validate	(Testing).	Who?	When?	How?

• Evolution	(Maintenance).	Bugs	or	new features?	

– Releases.	 How	many	and	when

Terminology

Software	:	
ALL	components	 including	code,	design,	documentation,	and	user	manuals.

Software	Development	Process :	
Set	of	activities	 that	produce	software.

Process	Model	or	Paradigm	 :	
Simplified	description	 of	a	process	 (a	specific	approach	or	method	for	the	
software	development	 process).

Upstream	Activities	 (Prerequisites)	 :	
Planning	and	design	PRIOR	to	coding.

Software	Engineering	 :	
A	discipline	concerned	with	ALL	aspects	of	software	development.

What	would	Berry	say	...

The	Inevitable	Pain	of	Software	Development
by	Daniel	Berry

• “The	hardest	 single	part	of	building	 a	software	system	is	deciding	
precisely	what	to	build	”	(via	Fred	Brooks[13])

Berry	 (and	many	others)	 claim	that	
it	is	the	requirements	 that	are	the	most	difficult	aspect.	

Build	the	right	software.	 This	is	the	hard	part.
Build	the	software	 right. This	is	still	hard,	but	pales	in	comparison.

What	would	Berry	say	...

The	Inevitable	Pain	of	Software	Development
by	Daniel	Berry

• “The	hardest	 single	part	of	building	a	software	 system	is	deciding	precisely	
what	to	build”	 (via	Fred	Brooks[13])

• “But,	what	is		so	difficult	about	understanding	 requirements?”

“Michael	Jackson,	in	his	Keynote	address	 at	the	1994	International	
Conference	 on	Requirements	 Engineering	 [22]	said	that	two	things	are	

known	about	requirements:

They	will	change.
They	will	be	misunderstood.”

What	would	Berry	say	...

The	Inevitable	Pain	of	Software	Development
by	Daniel	Berry

• “The	hardest	 single	part	of	building	a	software	 system	is	deciding	precisely	
what	to	build”	 (via	Fred	Brooks[13])

• “But,	what	is	so	difficult	about	understanding	 requirements?”

• “Heretofore,	no	single	method	has	put	a	dent	into	this	essential	
problem,	 although	 all	the	discovered	methods	have	combined	 to	
improve	programming.”

1. What	does	 the	minimum	point	signify?

2. What	does	 the	downward	slope	signify?

3. What	does	 the	upward	slope	signify?

4. What	would	an	ideal	graph	look	like	(that	is	somewhat	realistic)?

Belady-Lehman	Graph

Belady-Lehman	Graph

“The	time	at	which	the	minimum	point	
comes	and	the	slopes	of	the	curves	before	
and	after	the	minimum	point	vary	from	
development	 to	development.	 The	more	
complex	the	CBS	is,	the	steeper	 the	curve	
tends	to	be.”

What	does	 this	have	to	do	with	software	development	methods	and	 tools?

Barry	 is	asking
“Why	is	there	no	silver	bullet,	and	why	can	there	not	be	a	silver	bullet?”

Process	Models
Requirements	� Design	� Implement	� Test	� Evolve

• Waterfall	Model	(ordered	by	activity,	predictive,	
heavyweight)

• Evolutionary	Development	(ordered	by	function,	adaptive,	
lightweight).

• Formal	Systems	Development	(mathematical	statements,	
automatic	code	generation)

• Reuse-Based	Development	(integration	of	existing	
components)

• Build-and-Fix	(the	no-formal-model	model)	

Waterfall	vs	Iterative

Waterfall	– 1	Year

• 2-month	analysis	phase,	
• 4-month	design	phase,	
• 3-month	coding	phase,	and	
• 3-month	testing	phase.

Release	is	at	the	end	of	the	
year.

Iterative	– 1	Year

• Each	iteration	is	3	months.

• Each	iteration	produces	a	
release	with	¼	of	the	total	
functionality.

• Each	iteration	has	analysis,	
design,	code,	and	test.

Activity	Based Functionality	 or	Feature	Based

The	Waterfall	Philosophy

The	Inevitable	Pain	of	Software	Development	by	Daniel	Berry

“The	hardest	single	part	of	building	a	software	system	is	deciding	precisely	what	to	
build”	(via	Fred	Brooks[13])

Berry	(and	many	others)	claim	that	
it	is	the	requirements	that	are	the	most	difficult	 aspect.	

Build	the	right	software.	 This	is	the	hard	part.
Build	the	software	right. This	 is	still	hard,	but	pales	 in	comparison.

Waterfall	Model
(with	feedback)

Software	Engineering.	6th Edition.	Ian	Sommerville.	Fig.	3.1	p.45

You	spend	time	talking	to	the	
client,	thinking	hard	about	the	
problem,	and	getting	 the	
requirements	 right	(and	
documenting,	 documenting,	
documenting).

Emphasis	 Here!

Prerequisites	:	Requirements

specification	� requirements	engineering	� functional	specs	� spec	� analysis

What	exactly	do	you	want	the	software	to	do	?

For	whom	are	the	requirements	written?

How	are	they	communicated?

does	your	client

You have to understand them to
construct the code!

Waterfall
vs

Agile

• Use	Cases	 :	how	people	will	interact	with	the	system.		
(Use	domain	knowledge.)

• Class	Diagram	:	Conceptual	 Perspective.	

Prerequisites	:	Requirements

You	have	to	know	
something	about	the	
business	– behavioral	
science,	 restaurants,	

clothing	design,	robots,	
coffee	pots,	...

UML	might	help	to	
Visualize,	Share,	Clarify,	and/or	Document	

Requirements.

The	Fowler	Perspective
(UML	– Unified	Modeling	Language)

“Requirements	 analysis	 involves	figuring	out	what	the	users	and	customers	of	a	
software	effort	want	the	system	to	do.”

“The	most	 important	thing	 is	communication	with	your	users	and	customers.”

Adapt	to	Change

Evolutionary	/	Agile	/	Iterative	Development

• Embrace	change	– plan	for	it.
• Reevaluate	requirements	constantly.
• Break	process	down	by	functionality	(not	activity).

• Refactoring
Refactoring	 is	a	disciplined	 technique	 for	
restructuring	an	existing	 body	of	code,	altering	
its	 internal	structure	without	changing	its	
external	behavior.	 (Fowler.	
www.refactoring.com)

• Unit	/	Automated	Regression	 Testing

• Continuous	 Integration

Code	Complete	– Refactoring	Advice

REFACTORING	DOES	NOT	CHANGE	CODE	BEHAVIOR

• SAVE	THE	CODE	you	start	with
• Small	changes,	one	at	a	time
• Make	a	list
• Frequent	checkpoints
• Use	your	compiler	warnings	J
• Add	tests
• Retest

Warning	Signs	– Need	to	Refactor

• Code	is	duplicated
• Routine	is	too	long
• Loops	too	deeply	nested
• Abstraction	not	consistent	(weak	cohesion)
• Parallel	class	modifications	needed
• Related	data	not	managed	together
• Class	data	too	intermixed	(strong	coupling)
• Bad	names

What did	Berry say	...

The	Waterfall	model	would	work	if	the	programmers	could	understand	a	stage	
thoroughly	and	document	 it	fully	before	going	on	[29].

The	Pain	:
• Understanding	 is	difficult	and	elusive,	 and	in	particular,	 documentation	 is	a	pain.	
• It	is	a	pain	to	some	because	 it	obstructs	programmers	from	coding	 in	favor	of	

seemingly	 endless,	 useless	 documentation.	
• It	becomes	a	pain	when	full	requirements	 are	learned	only	after	significant	

implementation	 (The	Wicked	Problem).
• It	becomes	a	pain	when	new	requirements	 are	continually	 discovered.

“Michael	Jackson	said	that	two	things	are	known	about	requirements[22]:

They	will	change.
They	will	be	misunderstood.”

What	did	Berry	say	...

The	PAIN	of	Agile

• Refactoring,	itself,	is	painful	[18].	You	may	have	to	throw	out	
perfectly	good	code.

• Test	cases	have	to	be	written	PRIOR	to	writing	code.

• Client	has	to	be	present	or	available	at	all	times.

How	do	you	reconcile	these	ideas?

The	philosophy	behind	
Waterfall	is	to	first	fully	
understand	the	software	
requirements,	then	plan	

completely	and	accordingly.

“Requirements	will	change.
Requirements	will	be	
misunderstood.”

Evolutionary	Methods	
embrace	change.	“Design	is	
part	of	the	programming	

process	and	as	the	program	
evolves	the	design	changes.”

Changes	to	software	incur	
costs	and	complications.	The	
further	along	in	 process,	

the	more	difficult	and	
expensive	it	gets.	

To	maximize	the	usefulness	 of	any	method/tool,	 you	must	be	disciplined.

