
CSCI 4061: Making Processes

Chris Kauffman

Last Updated:
Thu Sep 21 15:47:32 CDT 2017

1

Logistics

Reading
I Robbins and Robbins, Ch 3
I OR Stevens and Rago, Ch 8

Goals
I Project 1
I Environment Variables
I Creating Child Processes
I Waiting for them
I Running other programs

Lab02: fork(), wait(), exec()

I All things you’ll need in first
project

I Feedback on content
I Feedback on grading policy

Project 1
I Spec will go up later today
I Due in about 2.5 weeks
I Groups of 1 or 2

2

Overview of Process Creation/Coordination

getpid() / getppid()

I Get process ID of the
currently running process

I Get parent process ID

fork()

I Create a child process
I Identical to parent EXCEPT

for return value of fork() call
I Determines child/parent

wait() / waitpid()

I Wait for any child to finish
(wait)

I Wait for a specific child to
finish (waitpid)

I Get return status of child

exec() family
I Replace currently running

process with a different
image

I Process becomes something
else losing previous code

I Focus on execvp()
3

Overview of Process Creation/Coordination

getpid()

pid_t my_pid = getpid();
printf("I’m proces %d\n",my_pid);

fork()

pid_t child_pid = fork();
if(child_pid == 0){

printf("Child!\n");
}
else{

printf("Parent!\n");
}

wait() / waitpid()

int status;
waitpid(child_pid, &status, 0);
printf("Child %d don, status %d\n",

child_pid, status);

exec() family

char *new_argv[] = {"ls","-l",NULL};
char *command = "ls";
printf("Goodbye old code, hello LS!\n");
execvp(command, new_argv);

4

Exercise: Standard Use: Get Child to Do Something

Child Labor
I Examine the file child-labor.c and discuss
I Makes use of getpid(), getppid(), fork(), execvp()

Child Waiting
I child-labor.c has com concurrency issues: parent/child

output mixed
I Modify with a call to wait() to ensure parent output comes

AFTER child output

5

Exercise: Child Exit Status

I A successful call to wait() sets a
status variable giving info about
child
int status;
wait(&status);

I Several macros are used to parse
out this variable
// determine if child actually exited
// other things like signals can cause
// wait to return
if(WIFEXITED(status)){

// get the return value of program
int retval = WEXITSTATUS(status);

}

I Modify child-labor.c so that
parent checks child exit status

I Convention: 0 normal, nonzero
error, print something if non-zero

EDIT FILE TO HAVE CHILD RUN ’complain’
> gcc child-labor.c
> a.out
I’m 2239, and I really don’t feel
like ’complain’ing
I have a solution

I’m 2240 My pa ’2239’ wants me to ’complain’.
This sucks.

COMPLAIN: God this sucks. On a scale of 0 to 10
I hate pa ...

Great, junior 2240 did that and told me ’10’
That little punk gave me a non-zero return.
I’m glad he’s dead
>

6

Return Value for wait() family

I Return value for wait() and waitpid() is the PID of the
child that finished

I Makes a lot of sense for wait() as multiple children can be
started and wait() reports which finished

I One wait() per child process is typical
I See faster-child.c

// parent waits for each child
for(int i=0; i<3; i++){

int status;
int child_pid = wait(&status);
if(WIFEXITED(status)){

int retval = WEXITSTATUS(status);
printf("PARENT: Finished child proc %d, retval: %d\n",

child_pid, retval);
}

}

7

Blocking vs. Nonblocking Activities
Blocking

I A call to wait() and waitpid() may cause calling process to
block (hang, stall, pause, suspend, so many names. . .)

I Blocking is associated with other activities as well
I I/O, obtain a lock, get a signal, etc.

I General creates synchronous situations: waiting for something
to finish means the next action always happens.. next

// BLOCKING VERSION
int pid = waitpid(child_pid, &status, 0);

Non-blocking
I Contrast with non-blocking (asynchronous) activities: calling

process goes ahead even if something isn’t finished yet
I wait() is always blocking
I waitpid() can be blocking or non-blocking 8

Non-Blocking waitpid()

I Use the WNOHANG option
I Returns immediately regardless of the child’s status

int child_pid = fork();
int status;

// NON-BLOCKING
int pid = waitpid(child_pid, &status, WNOHANG);

^^^^^^

Returned pid is

Returned Means
child_pid status of child has changed (exit)
0 there is no status change for child
-1 an error

Examine impatient-parent.c

9

Exercise: Helicopter Parent

I Modify impatient-parent.c to
helicopter-parent.c

I Checks continuously on child
process

I Will need a loop for this. . .

> gcc helicopter-parent.c
> a.out
PARENT: Junior is about to ’complain’, I’ll keep an eye on him
Oh, junior’s taking so long. Is he among the 50% of people that are below average?
Oh, junior’s taking so long. Is he among the 50% of people that are below average?
...
Oh, junior’s taking so long. Is he among the 50% of people that are below average?
Oh, junior’s taking so long. Is he among the 50% of people that are below average?
CHILD: I’m 21789 and I’m about to ’complain’
Oh, junior’s taking so long. Is he among the 50% of people that are below average?
...
Oh, junior’s taking so long. Is he among the 50% of people that are below average?
Oh, junior’s taking so long. Is he among the 50% of people that are below average?
COMPLAIN: God this sucks. On a scale of 0 to 10 I hate pa ...
Oh, junior’s taking so long. Is he among the 50% of people that are below average?
Oh, junior’s taking so long. Is he among the 50% of people that are below average?
...
PARENT: Good job junior. I only checked on you 226 times.

10

Polling vs Interrupts

I helicopter-parent.c is an example of polling: checking on
something repeatedly until it achieves a ready state

I Easy to program, generally inefficient
I Alternative: interrupt style is closer to wait() and

waitpid() without WNOHANG: rest until notified of a change
I Usually requires cooperation with OS/hardware which must

wake up process when stuff is ready
I Both polling-style and interrupt-style programming have uses

11

Zombies. . .

Didn’t see that coming next, did you?

I Parent starts a child
I Child finishes
I Child becomes a zombie (!!!)
I Parent waits for child
I Child goes away

zombie: process that has
finished, but not been waited for
by its parent yet

Demonstrate
Requires a careful top execution but can see this happen using
spawn-undead.c

12

Tree of Processes
> pstree
systemd-+-NetworkManager---2*[{NetworkManager}]

|-accounts-daemon---2*[{accounts-daemon}]
|-colord---2*[{colord}]
|-csd-printer---2*[{csd-printer}]
|-cupsd
|-dbus-daemon
|-drjava---java-+-java---27*[{java}]
| ‘-37*[{java}]
|-dropbox---106*[{dropbox}]
|-emacs-+-aspell
| |-bash---pstree
| |-evince---4*[{evince}]
| |-idn
| ‘-3*[{emacs}]
|-gdm-+-gdm-session-wor-+-gdm-wayland-ses-+-gnome-session-b-+-gnome-shell-+-Xwayland---14*[{Xwayland}]
... ...
| |-gnome-terminal--+-bash-+-chromium-+-chrome-sandbox---chromium---chromium-+-8*[chromium---12*[{chromium}]]
| | | | | |-chromium---11*[{chromium}]
| | | | | |-chromium---14*[{chromium}]
| | | | | |-chromium---15*[{chromium}]
| | | | | ‘-chromium---18*[{chromium}]
| | | | |-chromium---9*[{chromium}]
| | | | ‘-42*[{chromium}]
| | | ‘-cinnamon---21*[{cinnamon}]
| | |-bash---ssh
| | ‘-3*[{gnome-terminal-}]

I Processes exist in a tree: see with shell command pstree
I Children can be orphaned by parents: parent exits without

wait()’ing for child
I Orphans are adopted by the root process

I init traditionally
I systemd in many modern systems

I Root process occasionally waits to clean up zombies
13

