
CSCI 4061: Input/Output with Files, Pipes

Chris Kauffman

Last Updated:
Mon Oct 2 23:19:39 CDT 2017

1

Logistics

Reading
I Robbins and Robbins

Ch 4, 5
I OR Stevens/Rago

Ch 3, 4, 5, 6

Goals
I Project 1 Questions
I Standard IO library
I open()/close()
I read()/write()

Lab03: wait() and NOHANG

I All things you’ll need in first
project

I How did it go?

Project 1
I Minor clarification posted in

CHANGELOG
I Tests later this afternoon
I Questions?

2

Exercise: C Standard I/O Functions

Recall basic I/O functions from the C Standard Library header
stdio.h

I Printing things to the screen?
I Opening a file?
I Closing a file?
I Printing to a file?
I Scanning from terminal or file?
I Get whole lines of text?
I Names for standard input, output, error

Give samples of function calls

3

Answer: C Standard I/O Functions
Recall basic I/O functions from the C Standard Library header
stdio.h

printf("%d is a number",5); Printing things to the screen?
FILE *file = fopen("myfile.txt","r"); Opening a file?
fclose(file); Close a file?
fprintf(file,"%d is a number",5); Printing to a file?
fscanf(file2,"%d %f",&myint,&mydouble); Scanning from terminal or file?
result = fgets(charbuf, 1024, file); Get whole lines of text?
FILE *stdin, *stdout, *stderr; Names for standard input, etc

The standard I/O library was written by Dennis Ritchie around
1975. –Stevens and Rago

I Assuming you are familiar with these and could look up others like
fgetc() (single char) and fread() (read binary)

I Standard C: available wherever there is compiler
I On Unix systems, fscanf(), FILE*, the like are backed by underlying

system calls and concepts

4

File Descriptors

I OS maintains data on all processes in Process Table
I Data includes file descriptors, refer to other OS tables
I Program deals with int fd; : index into table

5

File Descriptors are Multi-Purpose

I Unix tries to provide most things via files/file descriptor
I Many interactions created via read()/write() from/to file

descriptors
I Get file descriptors from standard files like myfile.txt or

commando.c to read/change them
I Also get file descriptors for many other things

I Pipes for interprocess communication
I Sockets for network communication
I Special files to manipulate terminal, audio, graphics, terminal

I Even processes themselves have special files in the file system:
ProcFS in /proc/PID#, provide info on running process

6

https://en.wikipedia.org/wiki/Procfs

Open and Close: File Descriptors for Files
#include <sys/stat.h>
#include <fcntl.h>

int fd1 = open("firstfile", O_RDONLY); // read only
if(fd1 == -1){ // check for errors on open

perror("Failed to open ’firstfile’");
}

int fd2 = open("secndfile", O_WRONLY); // write only, better be present
int fd3 = open("thirdfile", O_WRONLY | O_CREAT); // write only, create if needed
int fd4 = open("forthfile", O_WRONLY | O_CREAT | O_APPEND); // append if existing

// 5 options for first arg: open for what ...
// Around 13 options for 2nd argument to open...

...; // Do stuff with open files

int result = close(fd1); // close the file associated with fd1
if(result == -1){ // check for an error

perror("Couldn’t close ’firstfile’");
}

I Note use of vertical pipe (|) to bitwise-OR several options
I Common for system calls

7

read() from File Descriptors

#define SIZE 128

int in_fd = open(in_name, O_RDONLY);
char buffer[SIZE];
int bytes_read = read(in_fd, buffer, SIZE);

I Read up to SIZE from an open file descriptor
I Bytes stored in buffer, overwrite it
I Return value is number of bytes read, -1 for error
I SIZE commonly defined but can be variable, constant, etc
I Examine read_some.c : explain what’s happening

Warnings
I Bad things happen if buffer is actually smaller than SIZE
I NOT null terminated: must add a \0 if this is desired

8

write() to File Descriptors
#define SIZE 128

int out_fd = open(out_name, O_WRONLY);
char buffer[SIZE];
int bytes_written = write(out_fd, buffer, SIZE);

I Write up to SIZE bytes to open file descriptor
I Bytes taken from buffer, leave it intact
I Return value is number of bytes written, -1 for error

Questions
I Examine write_then_read.c for additional details
I Make sure existing.txt is present, empty
I Compile and run
I Use cat existing.txt: explain contents

9

read()/write() work with bytes
I In C, general correspondence between byte and the char type
I Not so for other types: int is often 4 bytes
I Requires care with non-char types
I All calls read/write actual bytes

#define COUNT 16
int out_ints[COUNT]; // array of 16 integers
int bufsize = sizeof(int)*COUNT; // size in bytes of array
...;
write(out_fd, out_ints, bufsize); // write whole buffer

int in_ints[COUNT];
...;
read(in_fd, in_ints, bufsize); // read to capacity of in_ints

Questions
I Examine write_read_ints.c, compile/run
I Examine contents of integers.dat
I Explain what you see

10

Standard File Descriptors
I When a process is born, comes with 3 open file descriptors
I Related to FILE* streams in Standard C I/O library
I Traditionally have FD values given but use the Symbolic name

to be safe

Symbol # FILE* FD for. . .
STDIN_FILENO 0 stdin standard input (keyboard)
STDOUT_FILENO 1 stdout standard output (screen)
STDERR_FILENO 2 stderr standard error (screen)

// Low level printing to the screen
char message[] = "Wubba lubba dub dub!\n";
int length = strlen(message);
write(STDOUT_FILENO, message, length);

See low_level_interactions.c to gain an appreciation for what
printf() and its kin can do for you.

11

File Descriptors refer to Kernel Structures

12

Shell I/O Redirection

I Shells can direct input / output for programs using < and >
I Most common conventions are as follows

$> some_program > output.txt
output redirection to output.txt

$> interactive_prog < input.txt
read from input.txt rather than typing

$> some_program >& everthing.txt
both stdout and stderr to file

$> some_program 2> /dev/null
stderr silenced, stdout normal

I Long output can be saved easily
I Can save typing input over and over
I Gets even better with pipes (soon)

13

Processes Inherit Open FDs

Source: Eddie Kohler Lecture Notes

I Shells start child processes
with fork()

I Child processes share all
open file descriptors with
parents

I Child prints to screen by
default, reads from keyboard

I Redirection requires
manipulation prior to
fork()

14

http://www.read.cs.ucla.edu/111/2006spring/notes/lec4

Processes Inherit Open FDs: Diagram

Typical sequence:
I Parent creates an output_fd and/or input_fd
I Call fork()
I Child changes standard output to output_fd and/or input_fd
I Changing means calls to dup2()

15

Redirecting Output with dup() / dup2()

I System calls dup() and dup2() allow for manipulation of the
file descriptor table.

I int backup_fd = dup(fd); creates a copy of the file
descriptor

I dup2(from_fd, to_fd); causes to_fd to refer to the same
spot as from_fd

Diagrams
I fork-dup.pdf diagram to shows how to redirect standard

out to a file like a shell ls -l > output.txt
I pipe-dup.pdf diagram to shows how to redirect standard

output to a pipe so printf() would go into the pipe for later
reading

16

http://www-users.cs.umn.edu/~kauffman/4061/fork-dup.pdf
http://www-users.cs.umn.edu/~kauffman/4061/pipe-dup.pdf

Pipes

I A vehicle for one process to communicate with another
I Uses internal OS memory rather than temporary files
I A great Unix innovation which allows small programs to be

strung together to produce big functionality
I Leads to smaller programs that cooperate
I Preceding OS’s lacked communication between programs

meaning programs grew to unmanageable size

17

Pipes on the Command Line

Super slick for those that know what they are doing: string
programs with |

> ls | grep pdf
00-course-mechanics.pdf
01-introduction.pdf
02-unix-basics.pdf
03-process-basics.pdf
04-making-processes.pdf
05-io-files-pipes.pdf
99-p1-commando.pdf
header.pdf
> ls | grep pdf | sed ’s/pdf/PDF/’
00-course-mechanics.PDF
01-introduction.PDF
02-unix-basics.PDF
03-process-basics.PDF
04-making-processes.PDF
05-io-files-pipes.PDF
99-p1-commando.PDF
header.PDF

cat file.txt | # Feed input \
tr -sc ’A-Za-z’ ’\n’ | # Translate non-alpha to newline \
tr ’A-Z’ ’a-z’ | # Upper to lower case \
sort | # Duh \
uniq -c | # Merge repeated, add counts \
sort -rn | # Sort in reverse numerical order \
head -n 10 # Print only top 10 lines

18

Pipe C function Calls

I Use the pipe() system call
I Argument is an array of 2 integers
I Filled by OS with file descriptors of opened pipe
I 0th entry is for reading
I 1th entry is for writing

int my_pipe[2]; // array of 2 file descriptors
int result = pipe(my_pipe); // now filled with 2 fds by system

char msg[128] = "hello world";
int nwritten = write(my_pipe[1], msg, strlen(msg)+1);

char buffer[128];
int nread = read(my_pipe[0], buffer, 128);

close(my_pipe[0]);
close(my_pipe[1]);

19

