CSCI 4061: Input/Output with Files, Pipes

Chris Kauffman

Last Updated:
Mon Oct 2 23:19:39 CDT 2017

Logistics

Reading
» Robbins and Robbins
Ch 4,5

» OR Stevens/Rago
Ch3,45,6

Goals
» Project 1 Questions
» Standard 10 library
» open()/close()
» read()/write()

Lab03: wait() and NOHANG

> All things you'll need in first
project
» How did it go?

Project 1
» Minor clarification posted in
CHANGELOG
» Tests later this afternoon

» Questions?

Exercise: C Standard 1/0O Functions

Recall basic /O functions from the C Standard Library header
stdio.h

>

>

>

>

>

>

>

Printing things to the screen?
Opening a file?

Closing a file?

Printing to a file?

Scanning from terminal or file?
Get whole lines of text?

Names for standard input, output, error

Give samples of function calls

Answer: C Standard 1/O Functions
Recall basic /0 functions from the C Standard Library header

stdio.h
printf("/d is a number",5); Printing things to the screen?
FILE *file = fopen("myfile.txt","r"); Opening a file?
fclose(file); Close a file?
fprintf(file,"%d is a number",5); Printing to a file?
fscanf (file2,"%d %f",&myint,&mydouble); Scanning from terminal or file?
result = fgets(charbuf, 1024, file); Get whole lines of text?
FILE *stdin, *stdout, *stderr; Names for standard input, etc

The standard 1/0 library was written by Dennis Ritchie around
1975. —Stevens and Rago

» Assuming you are familiar with these and could look up others like
fgetc() (single char) and fread() (read binary)

> Standard C: available wherever there is compiler

» On Unix systems, fscanf (), FILE*, the like are backed by underlying
system calls and concepts

File Descriptors

process table entry

ﬂgdgs poﬁ'}ﬁer

file table entry

file status flags

current file offset

1d O:
id 1: I
fd 2: i

v-node pointer ————

file table entry

file status flags

current file offset

v-node pointer ————

T

v_data
& i-node

v_data
& i-node

v-node table entry

v-node information

v-node table entry

v-node information

» OS maintains data on all processes in Process Table

» Data includes file descriptors, refer to other OS tables

» Program deals with int fd;

index into table

File Descriptors are Multi-Purpose

» Unix tries to provide most things via files/file descriptor

» Many interactions created via read () /write() from/to file
descriptors

> Get file descriptors from standard files like myfile.txt or
commando. ¢ to read/change them
» Also get file descriptors for many other things
» Pipes for interprocess communication
» Sockets for network communication
» Special files to manipulate terminal, audio, graphics, terminal
» Even processes themselves have special files in the file system:
ProcFS in /proc/PID#, provide info on running process

https://en.wikipedia.org/wiki/Procfs

Open and Close: File Descriptors for Files

#include <sys/stat.h>
#include <fcntl.h>

int fdl = open("firstfile", O_RDONLY); // read only
if (fd1 == -1){ // check for errors on open
perror("Failed to open ’firstfile’");

}

int fd2 = open("secndfile", O_WRONLY); // write only, better be present

int fd3 = open("thirdfile", O_WRONLY | O_CREAT); // write only, create if needed
int fd4 = open("forthfile", O_WRONLY | O_CREAT | O_APPEND); // append if existing

// 5 options for first arg: open for what ...
// Around 13 options for 2nd argument to open...

. // Do stuff with open files
int result = close(fdl); // close the file associated with fdi
if (result == -1){ // check for an error

perror("Couldn’t close ’firstfile’");

}

» Note use of vertical pipe (|) to bitwise-OR several options

» Common for system calls

read () from File Descriptors

#define SIZE 128
int in_fd = open(in_name, O_RDONLY);

char buffer[SIZE];
int bytes_read = read(in_fd, buffer, SIZE);

» Read up to SIZE from an open file descriptor

v

Bytes stored in buffer, overwrite it

v

Return value is number of bytes read, -1 for error

v

SIZE commonly defined but can be variable, constant, etc
» Examine read_some.c : explain what's happening
Warnings
» Bad things happen if buffer is actually smaller than SIZE
» NOT null terminated: must add a \O if this is desired

write() to File Descriptors

#define SIZE 128

int out_fd = open(out_name, O0_WRONLY);
char buffer[SIZE];
int bytes_written = write(out_fd, buffer, SIZE);

» Write up to SIZE bytes to open file descriptor
» Bytes taken from buffer, leave it intact
» Return value is number of bytes written, -1 for error

Questions

» Examine write_then_read.c for additional details

> Make sure existing.txt is present, empty
» Compile and run
> Use cat existing.txt: explain contents

read() /write() work with bytes

» In C, general correspondence between byte and the char type
Not so for other types: int is often 4 bytes

Requires care with non-char types

All calls read/write actual bytes

v vy

#define COUNT 16

int out_ints[COUNT]; // array of 16 integers
int bufsize = sizeof (int)*COUNT; // size in bytes of array
write(out_fd, out_ints, bufsize); // write whole buffer

int in_ints[COUNT];

read(in_fd, in_ints, bufsize); // read to capacity of in_ints

Questions

» Examine write_read_ints.c, compile/run
» Examine contents of integers.dat

» Explain what you see

10

Standard File Descriptors

» When a process is born, comes with 3 open file descriptors
> Related to FILE* streams in Standard C |/0O library

» Traditionally have FD values given but use the Symbolic name
to be safe

Symbol # FILEx FD for...

STDIN_FILENO 0 stdin standard input (keyboard)
1
2

STDOUT_FILENO stdout standard output (screen)
STDERR_FILENO stderr standard error (screen)

// Low level printing to the screen

char message[] = "Wubba lubba dub dub!\n";
int length = strlen(message);

write (STDOUT_FILENO, message, length);

See low_level_interactions.c to gain an appreciation for what
printf () and its kin can do for you.

11

File Descriptors refer to Kernel Structures

USER SPACE

Process Memory #1234

KERNEL SPACE

STDIN_FILENO T 0
STDOUT_FILENO T 1
STDERR_FILENO T 2

my_fdl | 3
my_fd2 T 4
[| s
] 6
my_fdl = open("file.txt",0_RDONLY);
USER SPACE KERNEL SPACE

Process Memory #1234

STDIN_FILENO
STDOUT_FILENO
STDERR_FILENO

my_fdl

my_fd2

0

File Table for #1234

Keyboard

File Table for #1234

File: file.txt

12

Shell 1/O Redirection

» Shells can direct input / output for programs using < and >
» Most common conventions are as follows

$> some_program > output.txt
output redirection to output.txt

$> interactive_prog < input.txt
read from input.txt rather than typing

$> some_program >& everthing.txt
both stdout and stderr to file

$> some_program 2> /dev/null
stderr silenced, stdout normal

» Long output can be saved easily
» Can save typing input over and over

> Gets even better with pipes (soon)

13

Processes Inherit Open FDs

process descriptor

» Shells start child processes
— with fork()

fd table
-]

pid
Process
P1
(Parent) 1
2
3

» Child processes share all
open file descriptors with
parents

open file structure

* position in file

process descriptor * reference count

pid » Child prints to screen by
Process | 1y e default, reads from keyboard
(]
{Child) . . .
p > Redirection requires
3 . . .
manipulation prior to
Source: Eddie Kohler Lecture Notes fork()

14

http://www.read.cs.ucla.edu/111/2006spring/notes/lec4

Processes Inherit Open FDs:

BEFORE: pid = fork();

USER SPACE KERNEL SPACE
File Table
Process Memory #1234 for #1234

STDIN_FILENO n 0 .
. Keyboard
Screen
. =N

my_fdl

Typical sequence:

Diagram

AFTER: pid = fork();

USER SPACE

Process Memory #1234

STDIN_FILENO | O

STDOUT FILENO| 1
STDERR_FILENO | 2
my_fdl 3

pid 345

Process Memory #345
stom_piLeno [o |
STDOUT_FILENO| 1
STDERR _FILENO | 2
my_fdl 3

pid 0

> Parent creates an output_fd and/or input_£fd

Call fork()

>
» Child changes standard output to output_fd and/or input_fd
» Changing means calls to dup2()

KERNEL SPACE

File Table
for #1234

File Table

fo

r #345

Keyboard

File: file.txt

15

Redirecting Output with dup() / dup2()

» System calls dup () and dup2() allow for manipulation of the
file descriptor table.

> int backup_fd = dup(fd); creates a copy of the file
descriptor

» dup2(from_fd, to_fd); causes to_fd to refer to the same
spot as from_fd

Diagrams
» fork-dup.pdf diagram to shows how to redirect standard
out to a file like a shell 1s -1 > output.txt

> pipe-dup.pdf diagram to shows how to redirect standard
output to a pipe so printf () would go into the pipe for later
reading

16

http://www-users.cs.umn.edu/~kauffman/4061/fork-dup.pdf
http://www-users.cs.umn.edu/~kauffman/4061/pipe-dup.pdf

Pipes

v

v

v

v

v

A vehicle for one process to communicate with another
Uses internal OS memory rather than temporary files

A great Unix innovation which allows small programs to be
strung together to produce big functionality

Leads to smaller programs that cooperate

Preceding OS's lacked communication between programs
meaning programs grew to unmanageable size

17

Pipes on the Command Line

Super slick for those that know what they are doing: string

programs with |

> 1s | grep pdf
00-course-mechanics.pdf
Ol-introduction.pdf
02-unix-basics.pdf
03-process-basics.pdf
04-making-processes.pdf
05-io-files-pipes.pdf
99-pl-commando.pdf
header.pdf

> 1s | grep pdf | sed ’s/pdf/PDF/’
00-course-mechanics.PDF
Ol-introduction.PDF
02-unix-basics.PDF
03-process-basics.PDF
04-making-processes.PDF
05-io-files-pipes.PDF
99-pl-commando.PDF
header.PDF

cat file.txt |

tr -sc ’A-Za-z’ ’\n’ |
tr ’A-Z’ ’a-z’ |

sort |

uniq -c |

sort -rn |

head -n 10

L O T

Feed input \

Translate non-alpha to newline \
Upper to lower case \

Duh \

Merge repeated, add counts \

Sort in reverse numerical order \
Print only top 10 lines

18

Pipe C function Calls

v

Use the pipe () system call

v

Argument is an array of 2 integers

v

Filled by OS with file descriptors of opened pipe

v

Oth entry is for reading

v

1th entry is for writing

int my_pipel[2]; // array of 2 file descriptors
int result = pipe(my_pipe); // now filled with 2 fds by system

char msg[128] = "hello world";
int nwritten = write(my_pipel[1], msg, strlen(msg)+1);

char buffer[128];
int nread = read(my_pipe[0], buffer, 128);

close(my_pipel[0]);
close(my_pipe[1]);

19

