
CSCI 4061: Files, Directories, Standard I/O

Chris Kauffman

Last Updated:
Thu Oct 19 12:38:19 CDT 2017

1

Logistics

Reading
I Robbins and Robbins

Ch 4, 5
I OR Stevens/Rago

Ch 3, 4, 5, 6

Goals
I Std I/O vs Unix Syscall
I File / Directory Functions
I Filesystem

Lab04: Pipes
How did it go?

Project 1
Questions?

Exam 1: Next week
I Tue Review
I Thu Exam

2

Exercise: Quick Recap

1. What is a pipe? What system call is used to create it?
Example?

2. How does one put data into a pipe? Get data from a pipe?
3. How can one arrange for communication between a parent

and child process?
I Child to parent
I Parent to child

4. What syntax do standard shells use to redirect program
output to files?

5. What low-level system calls are used to a accomplish
redirection?

3

Answers: Quick Recap
1. What is a pipe? What system call is used to create it? Example?

I Internal OS communication buffer, created via
int pip;
int result = pipe(pip);

2. How does one put data into a pipe? Get data from a pipe?
I nbytes = write(pip[1], w_buff, BUFLEN);

nbytes = read(pip[0], r_buff, BUFLEN);
3. How can one arrange for communication between a parent and child process?

I Child to parent: parent opens pipe, child writes, parent reads
I Parent to child: parent opens pipe, parent writes, child reads

4. What syntax do standard shells use to redirect program output to files? Read
input from files?

I $> my_program arg1 arg2 > output.txt
$> other_prog arg1 < input.txt

5. What low-level system calls are used to a accomplish redirection?
I dup2(fd_a, fd_b);
I writes to fd_b write to fd_a instead
I reads from fd_b read from fd_a instead

4

Permissions / Modes
I Unix enforces file security via modes: permissions as to who can read /

write / execute each file
I See permissions/modes with ls -l
I Look for series of 9 permissions

> ls -l
total 140K
-rwx--x--- 2 kauffman faculty 8.6K Oct 2 17:39 a.out
-rw-r--r-- 1 kauffman devel 1.1K Sep 28 13:52 files.txt
-rw-rw---- 1 kauffman faculty 1.5K Sep 26 10:58 gettysburg.txt
-rwx--x--- 2 kauffman faculty 8.6K Oct 2 17:39 my_exec
---------- 1 kauffman kauffman 128 Oct 2 17:39 unreadable.txt
-rw-rw-r-x 1 root root 1.2K Sep 26 12:21 scripty.sh
U G O O G S M T N
S R T W R I O I A
E O H N O Z D M M
R U E E U E E E

P R R P
^^^^^^^^^^
PERMISSIONS

I Every file has permissions set from somewhere on creation
5

Changing Permissions
Owner of file (and sometimes group member) can change
permissions via chmod

> ls -l a.out
-rwx--x--- 2 kauffman faculty 8.6K Oct 2 17:39 a.out

> chmod u-w,g+r,o+x a.out

> ls -l a.out
-r-xr-x--x 2 kauffman faculty 8.6K Oct 2 17:39 a.out

I chmod also works via octal bits (suggest against this unless
you want to impress folks at parties)

I Programs specify permissions for files they create via C calls
I Curtailed by the umask shell or umask() C function: indicates

permissions that are not allowed
I Common program strategy: create files with very liberal

read/write/execute permissions, umask of user will limit this

6

Exercise: Regular File Creation Basics

C Standard I/O

I Write/Read data?
I Open a file, create it if

needed?
I Result of opening a file?
I Close a file?
I Set permissions on file

creation?

Unix System Calls
I Write/Read data?
I Open a file, create it if

needed?
I Result of opening a file?
I Close a file?
I Set permissions on file

creation?

7

Answers: Regular File Creation Basics

C Standard I/O
I Write/Read data?

fscanf(), fprintf()
fread(), fwrite()

I Open a file, create it if needed?
I Result of opening a file?

FILE *out =
fopen("myfile.txt","w");

I Close a file?

fclose(out);

I Set permissions on file creation?
Not possible. . . dictated by
umask

Unix System Calls
I Write/Read data?

write(), read()

I Open a file, create it if needed?
I Result of opening a file?

int fd =
open("myfile.txt",

O_WRONLY | O_CREAT,
permissions);

I Close a file?

close(fd);

I Set permissions on file creation?
I Additional options to

open(), which brings us
to. . .

8

Permissions / Modes in C Calls

I Default open(name,opts) has NO
PERMISSIONS

I When opening with O_CREAT, specify
permissions for new file

I int fd = open(name, opts, mode);

Symbol Entity Sets
S_IRUSR User Read
S_IWUSR User Write
S_IXUSR User Execute
S_IRGRP Group Read
S_IWGRP Group Write
S_IXGRP Group Execute
S_IROTH Others Read
S_IWOTH Others Write
S_IXOTH Others Execute

Compare: write_readable.c VERSUS write_unreadable.c

char *outfile = "newfile.txt"; // doesn’t exist yet
int flags = O_WRONLY | O_CREAT; // write/create
mode_t perms = S_IRUSR | S_IWUSR; // variable for permissions
int out_fd = open(outfile, flags, perms);

^^^^^

9

C Standard I/O Implementation

Typical Unix implementation of standard I/O library FILE is
I A file descriptor
I Some buffers with positions
I Some options controlling buffering

From /usr/lib/libio.h

struct _IO_FILE {
int _flags; // options
char* _IO_read_ptr; // positions and
char* _IO_read_end; // buffers for
char* _IO_read_base; // read and write
char* _IO_write_base;
...;
int _fileno; // file descriptor
...;
_IO_lock_t *_lock; // locking

};

10

Exercise: Subtleties of Mixing Standard and Low-Level I/O

I Predict output of program
given input file

I Use knowledge that
buffering occurs internally
for standard I/O library

I Note: Similar subtleties exist
if FILE* are not properly
closed

I FILE buffers may contain
unflushed data: not written
at close

I See fail-to-write.c
I File descriptors always get

flushed out by OS

3K.txt:
1 2 3 4 5 6 7 8 9 10 11 12 13 14...

37 38 39 40 41 42 43 44 45 46 47 ...
70 71 72 73 74 75 76 77 78 79 80 ...
102 103 104 105 106 107 108 109 1...
...

mixed-std-low.c:

1 int main(int argc, char *argv[]){
2
3 FILE *input = fopen("3K.txt","r");
4 int first;
5 fscanf(input, "%d", &first);
6 printf("FIRST: %d\n",first);
7
8 int fd = fileno(input);
9 char *buf[64];

10 read(fd, buf, 63);
11 buf[127] = ’\0’;
12 printf("NEXT: %s\n",buf);
13
14 return 0;
15 }

11

Controlling FILE Buffering

#include <stdio.h>
void setbuf(FILE *stream, char *buf);
void setbuffer(FILE *stream, char *buf, size_t size);
void setlinebuf(FILE *stream);
int setvbuf(FILE *stream, char *buf, int mode, size_t size);

Series of functions which control buffering. Example:

// Turn off buffering of stdout
setvbuf(stdout, NULL, _IONBF, 0);

Why should this line be familiar to ALL of you?

12

Filesystems, inodes, links
I Unix filesystems implement physical layout of files/directories

on a storage media (disks, CDs, etc.)
I Many filesystems exist but all Unix-centric filesystems share

some common features

inode
I Data structure which describes a single file
I Stores some meta data: inode#, size, timestamps, owner
I A table of contents: which disk blocks contain file data
I Does not store filename, does store a link count

Directories
I List names and associated inode
I Each entry constitutes a hard link to an inode or a symbolic

link to another file
I Files with 0 hard links are deleted

13

Rough Filesystem in Pictures

Figure 4.13 Disk drive, partitions, and a file system (Stevens/Rago)

Figure 4.14 Cylinder group’s i-nodes and data blocks in more detail (Stevens/Rago) 14

http://proquestcombo.safaribooksonline.com.ezp3.lib.umn.edu/book/programming/unix/9780321638014/4dot-files-and-directories/ch04lev1sec14_html
http://proquestcombo.safaribooksonline.com.ezp3.lib.umn.edu/book/programming/unix/9780321638014/4dot-files-and-directories/ch04lev1sec14_html

Shell Demo of Hard and Symbolic Links

> rm *
> touch fileX # create empty fileX
> touch fileY # create empty fileY
> ln fileX fileZ # hard link to fileX called fileZ
> ln -s fileX fileW # symbolic link to fileX called fileW
> ls -li # -i for inode numbers
total 12K
6685588 -rw-rw---- 2 kauffman kauffman 0 Oct 2 21:24 fileX
6685589 -rw-rw---- 1 kauffman kauffman 0 Oct 2 21:24 fileY
6685588 -rw-rw---- 2 kauffman kauffman 0 Oct 2 21:24 fileZ
6685591 lrwxrwxrwx 1 kauffman kauffman 5 Oct 2 21:29 fileB -> fileA
6685590 lrwxrwxrwx 1 kauffman kauffman 5 Oct 2 21:25 fileW -> fileX
↑↑↑↑↑↑↑ ↑ ↑ ↑↑↑↑↑↑↑↑
inode# regular hard link count symlink target

or symlink

> file fileW # file type of fileW
fileW: symbolic link to fileX
> file fileB # file type of fileB
fileB: broken symbolic link to fileA

15

Linking Commands and Functions

Shell Command C Function Effect
ln fileX fileY link("fileX", "fileY"); Create a hard link
rm fileX remove("fileX"); Unlink (remove) hard link

unlink("fileX"); Identical to remove()
ln -s fileX fileY symlink("fileX", "fileY"); Create a Symbolic link

I Creating hard links preserves inodes
I Hard links not allowed for directories unless you are root

> ln /home/kauffman to-home
ln: /home/kauffman: hard link not allowed for directory

Can create directory cycles if this was allowed
I Symlinks easily identified so utilities can skip them

16

FYI: inodes are a complex beast themselves

Source: File System Design by Justin Morgan

17

http://web.cs.ucla.edu/classes/spring13/cs111/scribe/11d/

sync() and Internal OS Buffers

I Operating system maintains internal data associated with
open files

I Writing to a file doesn’t go immediately to a disk
I May live in an internal buffer for a while before being sync’ed

to physical medium (OS buffer cache)

Shell Command C function Effect
sync sync(); Synchronize cached writes to persistent storage

syncfs(fd); Synchronize cached writes for filesystem of given open fd

I Sync called so that one can "Safely remove drive"
I Sync happens automatically at regular intervals (ex: 15s)

18

Basic File Statistics via stat

Command C function Effect
stat file int ret = stat(file,&statbuf); Get statistics on file

int fd = open(file,...); Same as above but with
int ret = fstat(fd,&statbuf); an open file descriptor

Shell command stat provides basic file info such as shown below
> stat a.out

File: a.out
Size: 12944 Blocks: 40 IO Block: 4096 regular file

Device: 804h/2052d Inode: 6685354 Links: 1
Access: (0770/-rwxrwx---) Uid: (1000/kauffman) Gid: (1000/kauffman)
Access: 2017-10-02 23:03:21.192775090 -0500
Modify: 2017-10-02 23:03:21.182775091 -0500
Change: 2017-10-02 23:03:21.186108423 -0500
Birth: -

> stat /
File: /
Size: 4096 Blocks: 8 IO Block: 4096 directory

Device: 803h/2051d Inode: 2 Links: 17
Access: (0755/drwxr-xr-x) Uid: (0/ root) Gid: (0/ root)
Access: 2017-10-02 00:56:47.036241675 -0500
Modify: 2017-05-07 11:34:37.765751551 -0500
Change: 2017-05-07 11:34:37.765751551 -0500
Birth: -

See stat-demo.c for info on C calls to obtain this info
19

Directory Access

I Directories are fundamental to Unix (and most file systems)
I Unix file system rooted at / (root directory)
I Subdirectores like bin, ~/home, and /home/kauffman
I Useful shell commands and C function calls pertaining to

directories are as follows

Shell Command C function Effect
mkdir name int ret = mkdir(path,perms); Create a directory
rmdir name int ret = rmdir(path); Remove empty directory
cd path int ret = chdir(path); Change working directory
pwd char *path = getcwd(buf,SIZE); Current directory
ls List directory contents

DIR *dir = opendir(path); Start reading filenames from dir
struct dirent *file = readdir(dir); Call in a loop, NULL when done
int ret = closedir(dir); After readdir() returns NULL

See dir-demo.c for demonstrations

20

Movement within Files

I Can move OS internal position in a file around with lseek()
I Note that size is arbitrary: can seek to any positive position
I File automatically expands if position is larger than current

size - fills holes with 0s (null chars)
I Examine file-hole.c and file-hole2.c

C function Effect
int res = lseek(fd, offset, option); Move position in file
lseek(fd, 20, SEEK_CUR); Move 20 bytes forward
lseek(fd, 50, SEEK_SET); Move to position 50
lseek(fd, -10, SEEK_END); Move 10 bytes from end
lseek(fd, +15, SEEK_END); Move 15 bytes beyond end

See also C standard I/O fseek(FILE *) / rewind(FILE *)
functions

21

fnctl(): Jack of all trades
I fcntl() does a bunch of stuff
I Some previous calls implemented with fcntl()

I int fd2 = dup(fd1); OR
I int fd2 = fcntl(fd1,F_DUPFD);

#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

int fcntl(int fd, int cmd, /* arg */ ...);

Command Effect
F_DUPFD duplicate a file descriptor
F_GETFD get file descriptor flags
F_SETFD set file descriptor flags
F_GETFL get file status flags and access modes
F_SETFL set file status flags and access modes
F_GETOWN get proc ID currently receiving SIGIO and SIGURG signals for fd
F_SETOWN set proc ID that will receive SIGIO and SIGURG signals for fd

Locking
F_GETLK get first lock that blocks description specified by arg
F_SETLK set or clear segment lock specified by arg
F_SETLKW same as FSETLK except it blocks until request satisfied
. . .

22

select() and poll(): Non-busy waiting
I Recall polling is a busy wait on something: constantly check

until ready
I Alternative is interrupt-driven wait: ask for notification when

something is ready, go to sleep, get woken up
I Waiting is often associated with input from other processes

through pipes or sockets
I Both select() and poll() allow for waiting on input from

multiple file descriptors
I Confusingly, both select() and poll() are interrupt-driven: will

put process to sleep until something changes in one or more
files

I poll() doesn’t do polling (busy wait) - it does interrupt
driven I/O (!!)

I Example application: database system is waiting for any of 10
users to enter a query, don’t know which one will type first

23

File Descriptor Sets

I select() uses file descriptor sets
I fd_set tracks descriptors of interest, operated on with macros

fd_set my_set;
void FD_ZERO(fd_set *set); // clear entire set
void FD_SET(int fd, fd_set *set); // fd now in set
void FD_CLR(int fd, fd_set *set); // fd now not in set
int FD_ISSET(int fd, fd_set *set); // test if fd in set

I Example: setup set of potential read sources
int pipeA[2], pipeB[2], rd_fd; // set up several read sources
pipe(pipeA);
pipe(pipeB);
rd_fd = open("myfile.txt",RD_ONLY);

fd_set read_set; // set of file descriptors for select()
FD_ZERO(&read_set); // init the set

FD_SET(pipeA[PREAD], &read_set); // include read ends of pipes in set
FD_SET(pipeB[PREAD], &read_set);
FD_SET(rd_fd, &read_set); // include read file in the set

24

Multiplexing: Efficient input from multiple sources
I select() block a process until at least one of member of the

fd_set is "ready"
I Most common use: waiting for input from multiple sources
I Example: Multiple child processes writing to pipes at different

rates
#include <sys/select.h>
fd_set read_set, write_set, // sets of fds to wake up for

except_set;

struct timeval timeout; // allows timeout: wake up if nothing happens

int nfds = // returns nfds changed
select(maxfd+1, // must pass max fd+1

&read_set, // any of set may be NULL to ignore
&write_set,
&except_set,
&timeout); // NULL time waits indefinitely

I Lab07 covers select() with two children
I See select-pipes.c shows multiple children with different

communication rates
25

