CSCI 4061: Files, Directories, Standard 1/0

Chris Kauffman

Last Updated:
Thu Oct 19 12:38:19 CDT 2017

Logistics

Reading
» Robbins and Robbins
Ch 4,5

» OR Stevens/Rago
Ch3,456

Goals

» Std 1/O vs Unix Syscall
» File / Directory Functions

> Filesystem

Lab04: Pipes
How did it go?

Project 1
Questions?

Exam 1: Next week

» Tue Review

» Thu Exam

Exercise: Quick Recap

1. What is a pipe? What system call is used to create it?
Example?
2. How does one put data into a pipe? Get data from a pipe?

3. How can one arrange for communication between a parent
and child process?

» Child to parent
» Parent to child

4. What syntax do standard shells use to redirect program
output to files?

5. What low-level system calls are used to a accomplish
redirection?

Answers: Quick Recap

1. What is a pipe? What system call is used to create it? Example?
» Internal OS communication buffer, created via
int pip;
int result = pipe(pip);
2. How does one put data into a pipe? Get data from a pipe?
» nbytes = write(pip[1], w_buff, BUFLEN);
nbytes read(pip[0], r_buff, BUFLEN);
3. How can one arrange for communication between a parent and child process?
» Child to parent: parent opens pipe, child writes, parent reads
» Parent to child: parent opens pipe, parent writes, child reads

4. What syntax do standard shells use to redirect program output to files? Read
input from files?
» $> my_program argl arg2 > output.txt
$> other_prog argl < input.txt
5. What low-level system calls are used to a accomplish redirection?
» dup2(fd_a, fd_b);
» writes to fd_b write to fd_a instead
» reads from fd_b read from fd_a instead

Permissions / Modes

» Unix enforces file security via modes:

write / execute each

file

> See permissions/modes with 1s -1

> Look for series of 9 permissions

> 1s -1

total 140K
-rwx--x--- 2 kauffman
-rw-r--r-- 1 kauffman
-rw-rw—---- 1 kauffman
-rwx--x--- 2 kauffman

—————————— 1 kauffman

-rw-rw-r-x 1 root
U G O 0
S R T W
E 0 H N
R U E E
P R R
PERMISSIONS

faculty 8.6K
devel 1.1K
faculty 1.5K
faculty 8.6K

kauffman 128
root 1.2K
G S

R I

0 Z

U E

P

permissions as to who can read /

Oct
Sep
Sep
Oct
Oct
Sep
MT
01
DM

28
26

26

17:39
13:52
10:58
17:39
17:39
12:21

a.out
files.txt
gettysburg.txt
my_exec
unreadable.txt
scripty.sh

N

A
M
E

> Every file has permissions set from somewhere on creation

Changing Permissions

Owner of file (and sometimes group member) can change
permissions via chmod

> 1ls -1 a.out
-rwx--x--- 2 kauffman faculty 8.6K Oct 2 17:39 a.out

> chmod u-w,g+r,o+x a.out

> 1s -1 a.out
-r-xr-x--x 2 kauffman faculty 8.6K Oct 2 17:39 a.out

» chmod also works via octal bits (suggest against this unless
you want to impress folks at parties)

» Programs specify permissions for files they create via C calls

» Curtailed by the umask shell or umask() C function: indicates
permissions that are not allowed

» Common program strategy: create files with very liberal
read /write/execute permissions, umask of user will limit this

C Standard 1/0

Write/Read data?

Open a file, create it if
needed?

Result of opening a file?
Close a file?

Set permissions on file
creation?

Exercise: Regular File Creation Basics

Unix System Calls

Write/Read data?

Open a file, create it if
needed?

Result of opening a file?
Close a file?

Set permissions on file
creation?

Answers: Regular File Creation Basics
Unix System Calls

C Standard 1/0

>

Write/Read data?

fscanf (), fprintf()
fread(), fuwrite()

» Open a file, create it if needed?

> Result of opening a file?

FILE *out =
fopen("myfile.txt","w");

Close a file?
fclose(out);

Set permissions on file creation?
Not possible. .. dictated by

umask

>

Write/Read data?

write(), read()

> Open a file, create it if needed?

> Result of opening a file?

int fd =
open("myfile.txt",
O_WRONLY | O_CREAT,
permissions) ;

Close a file?
close(£fd);
Set permissions on file creation?

» Additional options to
open(), which brings us
to...

Permissions / Modes in C Calls

> Default open(name,opts) has NO

Symbol Entity Sets

S_IRUSR User Read
S_IWUSR User Write
S_IXUSR User Execute

PERMISSIONS
) . . S_IRGRP Group Read
» When opening with 0_CREAT, specify S_TWGRP Group Write
permissions for new file S_IXGRP Group Execute
» int fd = open(name, opts, mode); S_IROTH Others Read

S_IWOTH Others Write
S_IXOTH Others Execute

Compare: write_readable.c VERSUS write_unreadable.c

char *outfile
int flags
mode_t perms
int out_fd

"newfile.txt"; // doesn’t exist yet
0_WRONLY | O_CREAT; // write/create

= S_IRUSR | S_IWUSR; // variable for permissions

open(outfile, flags, perms);

C Standard /O Implementation

Typical Unix implementation of standard /O library FILE is

> A file descriptor

» Some buffers with positions

» Some options controlling buffering

From /usr/lib/libio.h

struct _IO_FILE {
int _flags; //
char* _I0_read_ptr; //
char* _I0_read_end; //
char* _IO_read_base; //
char* _I0_write_base;

int _fileno; //

_I0_lock_t *_lock; //
};

options
positions and
buffers for
read and write

file descriptor

locking

10

Predict output of program
given input file
Use knowledge that

buffering occurs internally
for standard 1/0 library

Note: Similar subtleties exist
if FILE* are not properly
closed

FILE buffers may contain
unflushed data: not written
at close

See fail-to-write.c

File descriptors always get
flushed out by OS

Exercise: Subtleties of Mixing Standard and Low-Level 1/0O

3K.txt:

12345678910 11 12 13 14...
37 38 39 40 41 42 43 44 45 46 47 ...
70 71 72 73 74 75 76 77 78 79 80 ...
102 103 104 105 106 107 108 109 1...

mixed-std-low.c:
int main(int argc, char *argv[]){

1

2

3 FILE xinput = fopen("3K.txt","r");
4 int first;

5 fscanf (input, "%d", &first);

6 printf("FIRST: %d\n",first);

7

8

int fd = fileno(input);
9 char *buf [64];
10 read(fd, buf, 63);
11 buf [127] = ’\0’;
12 printf("NEXT: %s\n",buf);

14 return 0;

11

Controlling FILE Buffering

#include <stdio.h>

void setbuf (FILE *stream, char *buf);

void setbuffer(FILE *stream, char *buf, size t size);

void setlinebuf (FILE *stream);

int setvbuf (FILE *stream, char *buf, int mode, size_ t size.

Series of functions which control buffering. Example:

// Turn off buffering of stdout
setvbuf (stdout, NULL, _IONBF, 0);

Why should this line be familiar to ALL of you?

12

Filesystems, inodes, links

» Unix filesystems implement physical layout of files/directories
on a storage media (disks, CDs, etc.)

> Many filesystems exist but all Unix-centric filesystems share
some common features

inode
» Data structure which describes a single file
» Stores some meta data: inode#, size, timestamps, owner
> A table of contents: which disk blocks contain file data

» Does not store filename, does store a link count

Directories

» List names and associated inode

» Each entry constitutes a hard link to an inode or a symbolic
link to another file

» Files with 0 hard links are deleted

13

Rough Filesystem in Pictures

disk drive partition ‘ partition ‘ partition ‘
file system ‘ ‘ cylinder group 0 cylinder group 1
1]
boot block(s) =— -7 .
super block e _
per -
block | (8 | Fnode | block | 00 data blocks
copy. P P
i-node | i-node .. i-node

Figure 4.13 Disk drive, partitions, and a file system (Stevens/Rago)

‘ i-node array .

data
block

data
block

irectory|
block

lirectory| data
block black
A .
’

Figure 4.14 Cylinder group's i-nodes and data blocks in more detail (Stevens/Rago)

directory blocks and data blocks —————m

14

http://proquestcombo.safaribooksonline.com.ezp3.lib.umn.edu/book/programming/unix/9780321638014/4dot-files-and-directories/ch04lev1sec14_html
http://proquestcombo.safaribooksonline.com.ezp3.lib.umn.edu/book/programming/unix/9780321638014/4dot-files-and-directories/ch04lev1sec14_html

Shell Demo of Hard and Symbolic Links

rm *

touch
touch
1n fil

V V.V V VvV

> 1s -1i
total 12
6685588
6685589
6685588
6685591

6685590
Tttt
inode#

> file f

fileX
fileY
eX fileZ

1n -s fileX fileW

K
“rW-rw--—--
“IrW-rw-—-—-
“rW-rw--—--
1rwXrwxrwx
lrwxrwxrwx
+

regular

or symlink

ileW

H H H R

2 kauffman kauf
1 kauffman kauf
2 kauffman kauf
1 kauffman kauf
1 kauffman kauf
N

hard link count

#

fileW: symbolic link to fileX

> file £

ileB

#

create empty fileX

create empty fileY

hard link to fileX called fileZ
symbolic link to fileX called fileW
-i for inode numbers

fman O Oct 21:24 fileX
fman O Oct 21:24 fileY
fman O Oct 21:24 fileZ

21:29 fileB -> fileA
21:25 fileW -> fileX
Tt

symlink target

fman 5 Oct
fman 5 Oct

NN NNDN

file type of fileW

file type of fileB

fileB: broken symbolic link to fileA

15

Linking Commands and Functions

Shell Command C Function Effect

1n fileX fileY link("fileX", "fileY"); Create a hard link

rm fileX remove ("fileX"); Unlink (remove) hard link
unlink("fileX"); Identical to remove ()

In -s fileX fileY symlink("fileX", "fileY"); Create a Symbolic link

» Creating hard links preserves inodes
» Hard links not allowed for directories unless you are root

> 1n /home/kauffman to-home
1n: /home/kauffman: hard link not allowed for director;

Can create directory cycles if this was allowed

» Symlinks easily identified so utilities can skip them

16

FYI: inodes are a complex beast themselves

10 direct pointers

inode

file size

indirect block

device id

block index 10

group id

block index 11

indirect block

block index 12

block index 2058

user id

block index 2059

file mode

block index 2060

timestamp

link count

block index 2057

block index 0

block index 1

double indirect block

block index 4105

block index 2

block index 3

block index 4

indirect block

block index 3

[\

block index 4106

block index 6

block index 7

block index 4107

block index 4108

block index 8

block index 9

32 bits

block index 6153

Source: File System Design by Justin Morgan

17

http://web.cs.ucla.edu/classes/spring13/cs111/scribe/11d/

sync () and Internal OS Buffers

» Operating system maintains internal data associated with
open files
» Writing to a file doesn't go immediately to a disk

» May live in an internal buffer for a while before being sync’ed
to physical medium (OS buffer cache)

Shell Command C function Effect
sync sync() ; Synchronize cached writes to persistent storage
syncfs(fd) ; Synchronize cached writes for filesystem of given open fd

» Sync called so that one can "Safely remove drive"

» Sync happens automatically at regular intervals (ex: 15s)

18

Basic File Statistics via stat

Command C function

Effect

stat file int ret = stat(file,&statbuf);

Get statistics on file

int fd = open(file,...);
int ret = fstat(fd,&statbuf);

Same as above but with
an open file descriptor

Shell command stat provides basic file info such as shown below

> stat a.out
File: a.out

Size: 12944 Blocks: 40 I0 Block: 4096 regular file

Device: 804h/2052d Inode: 6685354 Links: 1

Access: (0770/-ruxrwx---) Uid: (1000/kauffman) Gid: (1000/kauffman)

Access: 2017-10-02 23:03:21.192775090 -0500
Modify: 2017-10-02 23:03:21.182775091 -0500
Change: 2017-10-02 23:03:21.186108423 -0500

Birth: -
> stat /

File: /

Size: 4096 Blocks: 8 I0 Block: 4096 directory
Device: 803h/2051d Inode: 2 Links: 17

Access: (0755/drwxr-xr-x) Uid: (0/ root) Gid: (0/
Access: 2017-10-02 00:56:47.036241675 -0500

Modify: 2017-05-07 11:34:37.765751551 -0500

Change: 2017-05-07 11:34:37.7657515651 -0500

Birth: -

root)

See stat-demo.c for info on C calls to obtain this info

19

Directory Access

v

v

v

v

directories are as follows

Directories are fundamental to Unix (and most file systems)
Unix file system rooted at / (root directory)
Subdirectores like bin, ~/home, and /home/kauffman

Useful shell commands and C function calls pertaining to

Shell Command

C function

Effect

mkdir name
rmdir name
cd path
pwd

1s

int ret = mkdir(path,perms);
int ret = rmdir(path);

int ret = chdir(path);

char *path = getcwd(buf,SIZE);

DIR *dir = opendir(path);
struct dirent *file = readdir(dir);
int ret = closedir(dir);

Create a directory

Remove empty directory
Change working directory
Current directory

List directory contents

Start reading filenames from dir
Call in a loop, NULL when done
After readdir () returns NULL

See dir-demo.c for demonstrations

20

Movement within Files

» Can move OS internal position in a file around with 1seek ()
» Note that size is arbitrary: can seek to any positive position
» File automatically expands if position is larger than current
size - fills holes with Os (null chars)
> Examine file-hole.c and file-hole2.c
C function Effect
int res = lseek(fd, offset, option); Move position in file
1seek(fd, 20, SEEK_CUR); Move 20 bytes forward
1seek(fd, 50, SEEK_SET); Move to position 50
1seek(fd, -10, SEEK_END); Move 10 bytes from end
1lseek(fd, +15, SEEK_END); Move 15 bytes beyond end

See also C standard |/O fseek(FILE *) / rewind(FILE *)
functions

21

fnctl(): Jack of all trades

» fcntl() does a bunch of stuff

» Some previous calls implemented with fcntl ()
» int £d2 = dup(fd1); OR
» int fd2 = fcntl(fd1,F_DUPFD);

#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

int fentl(int fd, int cmd, /* arg */ ...);

Command Effect

F_DUPFD duplicate a file descriptor

F_GETFD get file descriptor flags

F_SETFD set file descriptor flags

F_GETFL get file status flags and access modes

F_SETFL set file status flags and access modes

F_GETOWN get proc ID currently receiving SIGIO and SIGURG signals for fd

F_SETOWN set proc ID that will receive SIGIO and SIGURG signals for fd
Locking

F_GETLK get first lock that blocks description specified by arg

F_SETLK set or clear segment lock specified by arg

F_SETLKW same as FSETLK except it blocks until request satisfied

22

select() and poll(): Non-busy waiting

>

Recall polling is a busy wait on something: constantly check
until ready

Alternative is interrupt-driven wait: ask for notification when
something is ready, go to sleep, get woken up

Waiting is often associated with input from other processes
through pipes or sockets

Both select() and poll() allow for waiting on input from
multiple file descriptors

Confusingly, both select() and poll() are interrupt-driven: will
put process to sleep until something changes in one or more
files

poll() doesn't do polling (busy wait) - it does interrupt
driven 1/0 (!1)

Example application: database system is waiting for any of 10
users to enter a query, don't know which one will type first

23

File Descriptor Sets

» select () uses file descriptor sets

» fd_set tracks descriptors of interest, operated on with macros

fd_set my_set;

void FD_ZERO(fd_set *set); // clear entire set
void FD_SET(int fd, fd_set *set); // fd now in set
void FD_CLR(int fd, fd_set *set); // fd now not in set
int FD_ISSET(int fd, fd_set *set); // test if fd in set

» Example: setup set of potential read sources
int pipeA[2], pipeB[2], rd_fd; // set up several read sources

pipe(piped);

pipe(pipeB) ;

rd_fd = open("myfile.txt",RD_ONLY);

fd_set read_set; // set of file descriptors for select()
FD_ZERO(&read_set); // init the set

FD_SET(pipeA[PREAD], &read_set); // include read ends of pipes in set
FD_SET (pipeB[PREAD], &read_set);
FD_SET(rd_fd, &read_set); // include read file in the set

24

Multiplexing: Efficient input from multiple sources

» select () block a process until at least one of member of the
fd_set is "ready"

» Most common use: waiting for input from multiple sources

» Example: Multiple child processes writing to pipes at different
rates

#include <sys/select.h>
fd_set read_set, write_set, // sets of fds to wake up for
except_set;

struct timeval timeout; // allows timeout: wake up if nothing happens
int nfds = // returns nfds changed
select (maxfd+1, // must pass max fd+1
&read_set, // any of set may be NULL to ignore

&write_set,
&except_set,
&timeout) ; // NULL time waits indefinitely

» Lab07 covers select () with two children
> See select-pipes.c shows multiple children with different
communication rates

25

