
CSCI 4061: Signals and Signal Handlers

Chris Kauffman

Last Updated:
Thu Oct 19 12:16:40 CDT 2017

1

Logistics

Reading
I Robbins and Robbins

Ch 8.1-8.7, 9.1-2
I OR Stevens/Rago

Ch 10

Goals
I Sending Signals in C
I Signal Handlers
I select(): Multiplexing I/O

Exam 1 Scores Posted
I Exams returned Monday
I Bulk stats on Piazza

Lab07: select(), signals
Covers select() system call and
signals for control flow

Project 2
I Under development
I Will discuss on Tue

2

Exercise: Lab06 kill

1. What is a signal?
2. What system call is used to send a process a signal? How is it

invoked?
3. What’s a simple way set up simple signal handling?
4. Which signals cannot be caught and handled?
5. What effects to these uncatchable signals have?

3

Answers: Lab06 kill

1. What is a signal?
I Notification from somewhere, limited information, special

effects
2. What system call is used to send a process a signal? How is it

invoked?
I kill(pid, SIGSOMTHING);

3. What’s a simple way set up simple signal handling?
I Use the signal() function as in

signal(SIGINT, handle_SIGINT);
where handle_SIGINT() is a function taking an int

4. Which signals cannot be caught and handled? What effects to
these uncatchable signals have?

I SIGKILL terminates a process
I SIGSTOP stops a process from running; it can be restarted with

a SIGCONT

4

Process Signal Disposition
Every process has a default signal disposition for each signal.
These can be adjusted with various system calls.

Signal dispositions
Each signal has a current disposition, which determines how the
process behaves when it is delivered the signal.

The entries in the "Action" column of the tables below specify the
default disposition for each signal, as follows:

Term Default action is to terminate the process.

Ign Default action is to ignore the signal.

Core Default action is to terminate the process and dump core (see
core(5)).

Stop Default action is to stop the process.

Cont Default action is to continue the process if it is currently
stopped.

5

Ignoring Signals, Restoring Defaults

I Setting the signal handler to SIG_IGN will cause signals to be
silently ignored.

I Setting the signal handler to SIG_DFL will restore default
disposition.

Demo no-interruptions-ignore.c

6

Historical Notes
I Signals were an early concept but were initially "unreliable":

might get lost and so were not as useful as their modern
incarnation

I Historically, required to reset signal handlers after they were
called. First line of handler was always
signal(this_signal, this_hanlder);
though this was still buggy.

I Historically, some system calls could be interrupted by signals.
Robbins & Robbins go on and on about this.

On FreeBSD 8.0, Linux 3.2.0, and Mac OS X
10.6.8, when signal handlers are installed with the
signal function, interrupted system calls will be
restarted. The default on Solaris 10, however, is to
return an error (EINTR) instead when system calls
are interrupted by signal handlers installed with the
signal function.
– Stevens and Rago, 10.5

7

Dangers in Signal Handlers

I General advice: do as little as possible in a signal handler
I Make use of only reentrant functions

. . . reentrant if it can be interrupted in the middle
of its execution, and then be safely called again
("re-entered") before its previous invocations
complete execution.
– Wikipedia: Reentrancy

I Notably not reentrant
printf() family, malloc(), free()

I Reentrant functions pertinent to thread-based programming
as well (later)

I Demo non-reentrant.c

8

https://en.wikipedia.org/wiki/Reentrancy_(computing)

Exercise: Non-Reentrant Function Example

I Program calls non-reentrant
function f() in main() and
handle_signal()

I With no interrupts, would
expect to see 7 printed, with
interrupts see 19,7 in either
order

I Show a control flow
involving signals that prints
19 twice

I Why is f() not reentrant?

1 int z;
2 int f(int x, int y){
3 int tmp = x + y;
4 z = tmp * 2 + 1;
5 return z;
6 }
7
8 void handle_signal(int sig){
9 int t = f(4,5);

10 printf("%d\n",t);
11 return;
12 }
13
14 int main(){
15 signal(SIGINT,handle_signal);
16 int v = f(1,2);
17 printf("%d\n",v);
18 }

9

Answer: Non-Reentrant Function Example
I Program below calls non-reentrant function f() in main()

and handle_signal()
I With no interrupts, would expect to see 7 printed, with

interrupts see 19 and 7
I Right hand shows one possible flow through the code which

produces 19 then 19 again
1 int z;
2 int f(int x, int y){
3 int tmp = x + y;
4 z = tmp * 2 + 1;
5 return z;
6 }
7
8 void handle_signal(int sig){
9 int t = f(4,5);

10 printf("%d\n",t);
11 return;
12 }
13
14 int main(){
15 signal(SIGINT,handle_signal);
16 int v = f(1,2);
17 printf("%d\n",v);
18 }

EXECUTION STARTS IN main()
15: signal(SIGINT,handle_signal);
16: int v = f(1,2); // main(), Expect: (1+2)*2+1 = 7
3: tmp = x + y; // f(1,2): tmp = 1+2 = 3
4: z = tmp*2 + 1; // z is 7

SIGINT delivered, run handler
9: int t = f(4,5); // handle_signal(2)
3: tmp = x + y; // f(4,5): tmp = 4+5 = 9
4: z = tmp*2 + 1; // z is now 19
5: return z; // back to handle_signal()
9: int t = f(4,5); // finished, t is 19

10: printf("%d\n",t); // puts 19 on screen
11: return; // back to normal control

5: return z; // back to main(), but z is 19
16: int v = f(1,2); // v is Actually 19
17: printf("%d\n",v); // 19 Actually printed

// 7 Expected

10

Portability Notes
I Portability of signal() to set up handlers is questionable:

PORTABILITY
The semantics when using signal() to establish a
signal handler vary across systems (and POSIX.1
explicitly permits this variation); do not use it for
this purpose.
– man 2 signal

Portable Signal Functions
I signal() is an old function with many different

implementation behaviors
I POSIX defined new functions which were designed to break

from its tradition and fix problems associated with it
I Requires introduction of signal sets, data type for a set of

signals along with associated functions
11

Signal Sets
I A set of signals, likely implemented as a bit vector
I Functions allow addition, removal, clearing of set and tests for

membership
#include <signal.h>

int sigemptyset(sigset_t *set);
// empty out the set

int sigfillset(sigset_t *set);
// fill the entire set with all signals

int sigaddset(sigset_t *set, int signo);
// add given signal to the set

int sigdelset(sigset_t *set, int signo);
// remove given signal to the set

// All of the above return 0 on succes, -1 on error

int sigismember(const sigset_t *set, int signo);
// return 1 if signal is a member of set, 0 if not

Examine sigsets-demo.c
12

Blocking (Disabling) Signals

I Processes can block signals, disable receiving them
I Signal is still there, just awaiting delivery
I Blocking is different from Ignoring a signal

I Ignored signals are received and discarded
I Blocked signals will be delivered after unblocking

I Can protect Critical Sections of code with by blocking if
signals would screw it up

Process Signal Mask
Example: block all signals that can be blocked

sigset_t block_all, defaults;
sigfillset(&block_all); // contains all
sigprocmask(SIG_SETMASK, &block_all, &defaults); // block all signals

// save defaults

Examine no-interruptions-block.c

13

Exercise: Protect Non-Reentrant Call

Examine the code for non-reeentrant.c and modify it to use
signal blocking to protect the critical region associated with calls
to getpwnam().

I Create a mask for all signals
I Block all signals prior to function call
I Unblock after returning
I Use code like below

sigset_t block_all, defaults;
sigfillset(&block_all); // contains all
sigprocmask(SIG_SETMASK, &block_all, &defaults); // block all signals

// save defaults

Note: Be very careful where you unblock signal handling in main()
to avoid errors: protect the Critical Section

14

Portable Signal Functions: sigaction()
I The sigaction() function is more portable than signal()

to register signal handlers.
I Makes use of struct sigaction which specifies properties

of signal handler registrations
|---------------+------------+---|
| Type | Field | Purpose |
|---------------+------------+---|
| void(*) (int) | sa_handler | Pointer to a signal-catching function |
| | | or one of the macros SIG_IGN or SIG_DFL. |
|---------------+------------+---|
| sigset_t | sa_mask | Additional set of signals to be blocked |
| | | during execution of signal-catching function. |
|---------------+------------+---|
| int | sa_flags | Special flags to affect behavior of signal. |
|---------------+------------+---|

int main(){ // SAMPLE HANDLER SETUP USING sigaction()
struct sigaction my_sa = {}; // portable signal handling setup with sigaction()
my_sa.sa_handler = handle_signals; // run function handle_signals
sigemptyset(&my_sa.sa_mask); // don’t block any other signals during handling
my_sa.sa_flags = SA_RESTART; // restart system calls on signals if possible
sigaction(SIGTERM, &my_sa, NULL); // register SIGTERM with given action
sigaction(SIGINT, &my_sa, NULL); // register SIGINT with given action
...;

}

15

