
CSCI 4061: Pipes and FIFOs

Chris Kauffman

Last Updated:
Thu Oct 26 12:44:54 CDT 2017

1

Logistics

Reading
I Robbins and Robbins

Ch 6.1-6.5
I OR Stevens/Rago

Ch 15.1-5

Goals
I Sending Signals in C
I Signal Handlers
I select(): Multiplexing I/O

Lab07: select(), signals
How did it go?

Project 2
I Kauffman not happy with

delay
I You will be happier with

result

2

Exercise: Warm-up
Lab07 select()

I What is select() used for? Identify some "real world"
situations in which you might need to use it in code.

I Describe some macros/data types that are associated with
using select()

I What kinds of arguments does select() take?
I First peculiar argument
I Middle 3 arguments
I Final argument

Recall: Pipes
I What’s a pipe?
I How does one set up a pipe in C?
I How does one set up a pipe on the command line shell?

3

Pipes and Pipelines
I Have discussed pipes considerably
I Unix pipelines allow simple programs to combine to solve new

problems

Count the files in a directory
I Solution 1: write a C

program which makes use of
readdir() in a loop

I Solution 2: ls and then
count by hand

I Solution 3: ls > tmp.txt,
count lines with text editor
or wc (word count)

I Pipe Solution: ls | wc or
ls | wc -l

I wc counts words in file or
stdin, with -l gives only
lines

History
McIlroy noticed that much of the time
command shells passed the output file
from one program as input to another.
His ideas were implemented in 1973
when ("in one feverish night", wrote
McIlroy) Ken Thompson added the
pipe() system call and pipes to the shell
and several utilities in Version 3 Unix.
"The next day", McIlroy continued,
"saw an unforgettable orgy of one-liners
as everybody joined in the excitement
of plumbing."
– Wikipedia: Unix Pipes

I Pipe solutions alleviate need for
temporary files

4

https://en.wikipedia.org/wiki/Pipeline_(Unix)

A historical note
"Programming Pearls" by Jon Bentley, CACM 1986 with special
guests

I Donald Knuth, godfather of CS
I Doug McIlroy, inventor of Unix pipes

Problem statement: Top-K words
Given a text file and an integer K, print the K most common words
in the file (and the number of their occurrences) in decreasing
frequency.

Knuth’s Solution:
I ~8 pages of text and pseudo-code / Pascal
I Demonstration of "literate programming" so may be a bit

more verbose than needed

McIlroy’s Solution?

5

http://www.cs.tufts.edu/~nr/cs257/archive/don-knuth/pearls-2.pdf

Pipeline for Top-K Words
McIlroy’s Solution (Roughly)

#!/bin/bash
#
usage: topk.sh <K> <file>
K=$1
file=$2

cat $file | # Feed input \
tr -sc ’A-Za-z’ ’\n’ | # Translate non-alpha to newline \
tr ’A-Z’ ’a-z’ | # Upper to lower case \
sort | # Duh \
uniq -c | # Merge repeated, add counts \
sort -rn | # Sort in reverse numerical order \
head -n $K # Print only top 10 lines

I 6-7 lines of piped Unix commands
I Original was not a script so

6

Exercise: Tool Familiarity

I It is not possible to write complex pipelines unless you are
somewhat familiar with each component

I Getting basic familiarity with available Unix tools can save you
TONs of work

Diff between DirA and DirB
I Have two directories DirA and

DirB with about 250 of mostly
the same files

I A few new files in one or the other
I Some same files edited between

them
I Want the difference between the

directories

Find Phone Numbers
We have 50,000 HTML files in a Unix
directory tree, under a directory called
"/website". We have 2 days to get a
list of file paths to the editorial staff.
You need to give me a list of the .html
files in this directory tree that appear
to contain phone numbers in the
following two formats: (xxx) xxx-xxxx
and xxx-xxx-xxxx.
From: The Five Essential Phone-Screen
Questions, by Steve Yegge

7

https://sites.google.com/site/steveyegge2/five-essential-phone-screen-questions
https://sites.google.com/site/steveyegge2/five-essential-phone-screen-questions

Answers: Tool Familiarity
Diff between DirA and DirB

> find lectures/ | wc -l # 247 files in lectures/
247 247 9149

> find lectures-copy/ | wc -l # 246 files in lectures-copy
246 246 15001

> diff -rq lectures/ ~/tmp/lectures-copy
Files lectures/09-pipes-fifos.org and lectures-copy/09-pipes-fifos.org differ
Files lectures/09-pipes-fifos.pdf and lectures-copy/09-pipes-fifos.pdf differ
Files lectures/09-pipes-fifos.tex and lectures-copy/09-pipes-fifos.tex differ
Only in lectures/: new-file.txt

Find Phone Numbers
Here’s one of many possible solutions to the problem:

grep -l -R \
--perl-regexp "\b(\(\d{3}\)\s*|\d{3}-)\d{3}-\d{4}\b" * \
> output.txt

But I don’t even expect candidates to get that far, really. If they
say, after hearing the question, "Um. . . grep?" then they’re
probably OK.

8

Exercise: Pipes have a limited size

In Linux, the size of the buffer is 65536 bytes (64KB).
– Wikipedia: Unix Pipes

I Examine the program fill_pipe.c
I Observe the behavior of programs as pipes fill up
I Relate this to a major flaw in Project 1 commando

Hint: when did cmd_fetch_output() get called. . .

9

https://en.wikipedia.org/wiki/Pipeline_(Unix)

Answer: Pipes have a limited size

I commando set up child processes to write into pipes for their
standard output

I commando used calls to waitpid() to wait until a child was
finished, THEN read all child output from the pipe

I If the pipe filled up, the child would block
I commando would be waiting on blocked child but never empty

the pipe to allow it to proceed
I End result: child never finishes

10

Convenience Functions for Pipes
C standard library gives some convenience functions for use with
FILE* for pipes. Demoed in pager_demo.c
#include <stdio.h>

FILE *popen(const char *cmdstring, const char *type);
// Does a fork and exec to execute the cmdstring and returns a
// standard I/O file pointer.
// If type is "r", the file pointer is connected to the standard
// output of cmdstring.
// If type is "w", the file pointer is connected to the standard input
// of cmdstring.
// Returns: file pointer if OK, NULL on error

int pclose(FILE *fp);
// The pclose function closes the standard I/O stream, waits for the
// command to terminate, and returns the termination status of the
// shell.

11

FIFO: Named Pipe

I Major limitation of pipes is that they must be created by a
parent and shared with a child

I No way for two unrelated processes to share a pipe, or is there

First In First Out
I A Unix FIFO or named pipe is a pipe which has a place in the

file system
I Can be created with either a shell command or via C calls

| Command/Call | Effect |
|--------------------------------------+------------------------------------|
| mkfifo filename | Create a FIFO on the command shell |
| int mkfifo(char *path, mode_t perms) | System call to create a FIFO |

12

Working with Fifos
A FIFO looks like a normal file but it is not

> mkfifo my.fifo # Create a FIFO
> ls -l my.fifo

prw-rw---- 1 kauffman kauffman 0 Oct 24 12:05 my.fifo
^ it’s a ’p’ fo pipe
> echo ’Hello there!’ > my.fifo # write to pipe
hung

C-c
> echo ’Hello there!’ > my.fifo & # write to pipe, don’t wait
[1] 1797
> cat my.fifo # read from pipe
Hello there! # got what was written in
[1]+ Done echo ’Hello there!’ > my.fifo # writer finished
> cat my.fifo # read from pipe (nothing there)
hung

C-c
> cat my.fifo & # read from pipe, don’t wait
[1] 1933
> echo ’Hello there!’ > my.fifo # write to pipe
Hello there!
>
[1]+ Done cat my.fifo # reader finished

13

Exercise Differences Between Pipes/FIFOs and Files

I FIFOs position is managed by the OS
I Files and file descriptors are a bit different consider the

following 4 scenarios implemented in multiple_writes.c

Scenarios: Predict what happens

1. Process opens normal file, forks, Parent / Child write.
> multiple_writes prefork file tmp.txt 20

2. Process forks, opens file, Parent / Child write.
> multiple_writes postfork file tmp.txt 20

3. Process opens a FIFO, forks, Parent / Child write.
> multiple_writes prefork fifo tmp.fifo 20

4. Proccess forks, opens FIFO, Parent / Child write.
> multiple_writes postfork fifo tmp.fifo 20

14

Answers: Differences Between Pipes/FIFOs and Files
Scenarios
1. Process opens normal file, forks, Parent / Child write. File

position in file is shared.
> multiple_writes prefork file tmp.txt 20

2. Process forks, opens file, Parent / Child write. File position is
NOT shared so will overwrite each other in file.
> multiple_writes postfork file tmp.txt 20

3. Process opens a FIFO, forks, Parent / Child write. Both hang
until something reads the pipe but all data is present.
> multiple_writes prefork fifo tmp.fifo 20

4. Proccess forks, opens FIFO, Parent / Child write. Both hang
until something reads the pipe but all data is present.
> multiple_writes postfork fifo tmp.fifo 20

Draw some pictures of the internal FD table, Open file table, and
INodes to support these.

15

16

17

Lessons on OS Treatment of Files/Pipes

File Descriptor Table
I One per process but stored

in kernel space
I Each numbered entry refers

to system wide File Table

INodes
Contains actual file and contents,
corresponds to physical storage

Buffers for Pipes / Fifos
Internal kernel storage,
Read/Write positions managed
by kernel

System File Table
I Shared by entire system,

managed by the OS
I Each entry corresponds to

open "thing" in use by a
proc

I May have multiple file table
entries per "real" file

I Each File Table Entry has its
own Read/Write positions

I Connects File Descriptor
Table to INodes, Buffers

18

What can you do with FIFOs?

Lab08: Simple Server Client
I Create simple

communication protocols
I Server which has

names/email addresses
I Clients which have names,

want email addresses
I Server running always
I Client uses FIFOs to make

requests to server and
coordinate

I Basics of message passing
between processes

Source: Stevens and Rago Ch 15.5

19

http://proquestcombo.safaribooksonline.com/book/programming/unix/9780321638014/15dot-interprocess-communication/ch15lev1sec5_html

