CSCI 4061: Inter-Process Communication

Chris Kauffman

Last Updated:
Tue Nov 7 12:34:27 CST 2017

Logistics

Reading

» Stevens/Rago
Ch 15.6-12

» Robbins and Robbins
Ch 15.1-4

Goals
» Protocols for Cooperation
» Basics of IPC

» Semaphores, Message
Queues, Shared mem

Lab08: FIFO, protocol
How did it go?

Project 2

» Kauffman not happy with
delay

> You will be happier with
result

Exercise: Forms of IPC we've seen

» ldentify as many forms of inter-process communication that
we have studied as you can
» For each, identify restrictions

» Must processes be related?
» What must processes know about each other to communicate?

» You should be able to name at least 3-4 such mechanisms

Answers: Forms of IPC we've seen

> Pipes
FIFOs
Signals

Files

v

v

v

Inter-Process Communication Libraries (IPC)

» FIFOs allow info transfer between unrelated processes
» Common patterns exist in IPC, met with IPC libraries which
include
1. Semaphores: counters with locking and wait queues
2. Message queues: direct-ish communication between processes
3. Shared memory: array of bytes accessible to multiple processes
» Two flavors of these IPC

1. System V IPC: older, widely implemented, dated
2. POSIX IPC: newer, mostly implemented, improved

Additional differences on StackOverflow

http://stackoverflow.com/questions/4582968/system-v-ipc-vs-posix-ipc

Which Flavor of IPC?

System V IPC (XSI IPC)

> Most of systems have

System V IPC but it's kind
of strange, has its own
namespace to identify
shared things

Part of Unix standards,
referred to as XSI IPC and
may be listed as optional
Most textbooks/online
sources discuss some System
V IPC. Example:
» Stevens/Rago 15.8
(semaphores)
> Robbins/Robbins 15.2
(semaphore sets)
> Beej's Guide to IPC

POSIX IPC

» POSIX IPC little more
regular, uses filesystem to
identify IPC objects

» Originated as optional
POSIX/SUS extension, now
required for compliant Unix

» Covered in our textbooks
partially. Example:

» Stevens/Rago 15.10
POSIX Semaphores

» Robbins/Robbins 14.3-5
POSIX Semaphores

http://beej.us/guide/bgipc/output/html/singlepage/bgipc.html

Model Problem: Dining "Philosophers"

Each Swansons will only eat with two forks

JJ's only has 5 forks, must share

After acquiring 2 forks, a Swanson eats an egg, then puts
both forks back to consider how awesome he is
Algorithms that don't share forks will lead to injury

v vy

v

v
* = *
= -~
‘/ga *

Source: Aditya Y. Bhargava,

http://adit.io/posts/2013-05-11-The-Dining-Philosophers-Problem-With-Ron-Swanson.html
http://www.inprnt.com/gallery/djdarnault/ron-swanson/

Exercise: Protocol for Dining "Philosophers"

» Each Swansons will only eat with two
forks

» JJ's only has 5 forks, must share

» Swanson's pick up one fork at a time
from left or right

» After acquiring 2 forks, a Swanson
eats an egg

> After eating an egg a Swanson puts
both forks considers how awesome he
is, repeats

» After eating sufficient eggs, Swanson
leaves

> Is there any potential for deadlock?
How can this be avoided?

> Is there any chance for starvation?

Answer: Protocol for Dining "Philosophers”

All get Left Fork first: Deadlock Deadlock
» Each Swanson can acquire 1 fork \ @*
» Wiaits forever for right fork @\ /
A Y

One goes Right first: Viable

» Breaks the cycle so deadlock is not
possible - A viable solution

Starvation? \ = /
» Give up both forks after eating an egg, N
others can get them, everyone eats
eventually

» Some may wait until others completely
finished: bad. Improve by giving up
one fork if can't get the other V'able

Semaphore

Source: Wikipedia Railway Sempahore Signal

v

A counter variable with
atomic operations

Atomic operation: not
divisible, all or none, no
partial completion possible

Used to coordinate access to
shared resources such as
shared memory, files,
connections

Typically allocate an array of
semaphores

IPC allows atomic operation
on multiple semaphores in
the array simultaneously:
useful for dining philosophers

10

https://en.wikipedia.org/wiki/Railway_semaphore_signal

Activity: Dining "Philosophers" with Semaphores

Examine the dining philosophers code here:
http://www.cs.umn.edu/~kauffman/4061/philosophers.c
Use the IPC guide here:
http://beej.us/guide/bgipc/output/html/singlepage/
bgipc.html

Find out how the following are done:

1.

AR A

©

What does a C semaphore look like?

How does one create a semaphore?

How does semop () work, its arguments and behavior?

Are there any restrictions on values a semaphore can hold?

What happens when multiple processes modify the same
semaphore?

How are semaphores used to coordinate the start of the meal?

7. How can a semaphore be used to coordinate use of forks?

11

http://www.cs.umn.edu/~kauffman/4061/philosophers.c
http://beej.us/guide/bgipc/output/html/singlepage/bgipc.html
http://beej.us/guide/bgipc/output/html/singlepage/bgipc.html

Lessons Learned from philosophers.c

>

int semid = semget(...); is used to obtain a semaphore
from the operating system which returns an integer id of a
semaphore. Options allow retrieval of an existing semaphore
or creation of a new one.

System V semaphores are arrays of counters and operations
must specify which element in the array is operated upon
On creation, the values in the semaphore are undefined and
must be specified.

semctl () is used to get and set values from the semaphore

which is done atomically but cannot be used to
increment/decrement values

semop () is used to atomically increment/decrement values in
the semaphore and requires use of a struct sembuf

Processes can attempting to decrement a semaphore below 0
will block and wait until its value returns becomes positive.

The Nature of a Semaphore

SO: cucufrog on Condition Variables vs Semaphores

A condition variable is essentially a wait-queue, that supports
blocking-wait and wakeup operations, i.e. you can put a [process
or] thread into the wait-queue and set its state to BLOCK, and get
a thread out from it and set its state to READY.

» Requires use of a mutex/lock in conjuction
A Semaphore is essentially a counter + a mutex + a wait queue.
> It can be used as it is without external dependencies.

» You can use it either as a mutex or as a conditional variable.

13

http://stackoverflow.com/questions/3513045/conditional-variable-vs-semaphore

System V IPC Shared Memory Segments

» The ultimate in flexibility is to get a segment of raw bytes
that can be shared between processes

» Examine shmdemo.c to see how this works

> Importantly, this program creates shared memory that outlives
the program: must clean it up at some point

stack stack
i i
heap heap
data data
shared memory shared memory shared memory

(mapped) o (mapped)

text text
Process P1 Process P2

Shared Memory
Source: SoftPrayog System V IPC
14

https://www.softprayog.in/programming/interprocess-communication-using-system-v-shared-memory-in-linux

Viewing Shared System V IPC Resources

Shared memory resources can outlast the program which created
them. The following unix commands are useful for manipulating
them from the command line.

ipcs (1) - show information on IPC facilities
ipcrm (1) - remove certain IPC resources
ipcmk (1) - make various IPC resources

Mostly ipcs to list, ipcrm to clean up when something has gone
wrong.

15

Exercise: Email lookup with Shared Memory

>

In lab, worked on a simple
email lookup "server" or
database

Clients connected to server,
server gave back emails
based on name

Shared memory makes
server/client less relevant

Propose how to use shared
memory for email lookups
AND alterations

How might multiple
processes coordinate use of
shared memory?

// structure to store a lookup_t of
// name-to-email association
typedef struct {

char name [STRSIZE];

char email [STRSIZE];
} lookup_t;

lookup_t original_data[NRECS] = {
{"Chris Kauffman" ,"kauffmanQumn.edu"},
{"Christopher Jonathan" ,"jonat003Qumn.edu"},
{"Amy Larson" ,"larson@cs.umn.edu"},
{"Chris Dovolis" ,"dovolis@cs.umn.edu"},
{"Dan Knights" ,"knights@cs.umn.edu"},
{"George Karypis" ,"karypis@cs.umn.edu"},

Sample of potential use

> email_db lookup ’Chris Kauffman’
Looking up Chris Kauffman

Found: kauffman@umn.edu

> email_db lookup ’Rick Sanchez’
Looking up Rick Sanchez

Not found

> email_db change ’Chris Kauffman’ ’kman@kauffmoney.co

Changing Chris Kauffman to kman@kauffmoney.com
Alteration complete

> email_db lookup ’Chris Kauffman’

Looking up Chris Kauffman

Found: kman@kauffmoney.com

16

Answer: Email lookup with Shared Memory

» Store entire array of name/email in a piece of shared memory
with a know key

» Processes needing it attach to shared memory, scan through
looking

» Updates can be done by altering the shared memory
» Danger multiple processes writing may corrupt the data

» Use semaphores to control access for reading/writing, would
need to establish a protocol for this

17

Message Queues

v

Implements basic send/receive functionality through shared
memory

v

Similar to MPI: one process sends, another receives

v

Atomic access/removal taken care of for you

v

Allow message filtering to take place based on a tag

18

Kirk and Spock: Talking Across Interprocess Space

» Demo the following pair of
simple communication codes
which use System V IPC
Message Queues.

» Examine source code to
figure out how they work.

10-ipc-code/kirk.c
10-ipc-code/spock.c

19

Unique ldentifiers in IPC: ftok (char*,char)

>

System V IPC uses the notion of keys and IPC ids so

unrelated processes can find shared resources

Both kirk.c and spock.c use the same arguments to find
the right message queue

key_t key = ftok("kirk.c", ’B’);

int msqid = msgget(key, 0644 | IPC_CREAT);

Key is tied to a specific known file which participating
processes all know about

Involves using new symbols like IPC_CREAT etc.

These IPC features were later added to System V.
They are often criticized for inventing their own
namespace instead of using the file system.

— Stevens/Rago 15.6 XSI IPC

POSIX IPC create/open interface is closer to standard Unix
I/O open/close operations

int flags = O_RDWR | O_CREAT;

int perms = S_IRUSR | S_IWUSR;

mgd_t msg_queue = mg_open("kirk.c", flags, perms);

20

Email Lookup with Message Queues

» Email lookup server from lab used FIFOs for server and clients
to talk

» Would not be too hard to rewrite this with message queues

» Message queues allow filtering of messages, easy to direct at a
specific process

» Get automatic blocking and resuming when receiving
messages so don't need explicit signals

» Will be the subject of next Lab

21

More Resources on IPC

» http://beej.us/guide/bgipc/
> http://www.tldp.org/LDP/tlk/ipc/ipc.html

22

http://beej.us/guide/bgipc/
http://www.tldp.org/LDP/tlk/ipc/ipc.html

