
CSCI 4061: Inter-Process Communication

Chris Kauffman

Last Updated:
Tue Nov 7 12:34:27 CST 2017

1

Logistics

Reading
I Stevens/Rago

Ch 15.6-12
I Robbins and Robbins

Ch 15.1-4

Goals
I Protocols for Cooperation
I Basics of IPC
I Semaphores, Message

Queues, Shared mem

Lab08: FIFO, protocol
How did it go?

Project 2
I Kauffman not happy with

delay
I You will be happier with

result

2

Exercise: Forms of IPC we’ve seen

I Identify as many forms of inter-process communication that
we have studied as you can

I For each, identify restrictions
I Must processes be related?
I What must processes know about each other to communicate?

I You should be able to name at least 3-4 such mechanisms

3

Answers: Forms of IPC we’ve seen

I Pipes
I FIFOs
I Signals
I Files

4

Inter-Process Communication Libraries (IPC)

I FIFOs allow info transfer between unrelated processes
I Common patterns exist in IPC, met with IPC libraries which

include
1. Semaphores: counters with locking and wait queues
2. Message queues: direct-ish communication between processes
3. Shared memory: array of bytes accessible to multiple processes

I Two flavors of these IPC
1. System V IPC: older, widely implemented, dated
2. POSIX IPC: newer, mostly implemented, improved

Additional differences on StackOverflow

5

http://stackoverflow.com/questions/4582968/system-v-ipc-vs-posix-ipc

Which Flavor of IPC?

System V IPC (XSI IPC)

I Most of systems have
System V IPC but it’s kind
of strange, has its own
namespace to identify
shared things

I Part of Unix standards,
referred to as XSI IPC and
may be listed as optional

I Most textbooks/online
sources discuss some System
V IPC. Example:

I Stevens/Rago 15.8
(semaphores)

I Robbins/Robbins 15.2
(semaphore sets)

I Beej’s Guide to IPC

POSIX IPC
I POSIX IPC little more

regular, uses filesystem to
identify IPC objects

I Originated as optional
POSIX/SUS extension, now
required for compliant Unix

I Covered in our textbooks
partially. Example:

I Stevens/Rago 15.10
POSIX Semaphores

I Robbins/Robbins 14.3-5
POSIX Semaphores

6

http://beej.us/guide/bgipc/output/html/singlepage/bgipc.html

Model Problem: Dining "Philosophers"
I Each Swansons will only eat with two forks
I JJ’s only has 5 forks, must share
I After acquiring 2 forks, a Swanson eats an egg, then puts

both forks back to consider how awesome he is
I Algorithms that don’t share forks will lead to injury

Source: Aditya Y. Bhargava,
Originally: Dustin D’Arnault

7

http://adit.io/posts/2013-05-11-The-Dining-Philosophers-Problem-With-Ron-Swanson.html
http://www.inprnt.com/gallery/djdarnault/ron-swanson/

Exercise: Protocol for Dining "Philosophers"
I Each Swansons will only eat with two

forks
I JJ’s only has 5 forks, must share
I Swanson’s pick up one fork at a time

from left or right
I After acquiring 2 forks, a Swanson

eats an egg
I After eating an egg a Swanson puts

both forks considers how awesome he
is, repeats

I After eating sufficient eggs, Swanson
leaves

I Is there any potential for deadlock?
How can this be avoided?

I Is there any chance for starvation?

8

Answer: Protocol for Dining "Philosophers"
All get Left Fork first: Deadlock

I Each Swanson can acquire 1 fork
I Waits forever for right fork

One goes Right first: Viable
I Breaks the cycle so deadlock is not

possible - A viable solution

Starvation?
I Give up both forks after eating an egg,

others can get them, everyone eats
eventually

I Some may wait until others completely
finished: bad. Improve by giving up
one fork if can’t get the other

Deadlock

Viable
9

Semaphore

Source: Wikipedia Railway Sempahore Signal

I A counter variable with
atomic operations

I Atomic operation: not
divisible, all or none, no
partial completion possible

I Used to coordinate access to
shared resources such as
shared memory, files,
connections

I Typically allocate an array of
semaphores

I IPC allows atomic operation
on multiple semaphores in
the array simultaneously:
useful for dining philosophers

10

https://en.wikipedia.org/wiki/Railway_semaphore_signal

Activity: Dining "Philosophers" with Semaphores
Examine the dining philosophers code here:
http://www.cs.umn.edu/~kauffman/4061/philosophers.c
Use the IPC guide here:
http://beej.us/guide/bgipc/output/html/singlepage/
bgipc.html
Find out how the following are done:
1. What does a C semaphore look like?
2. How does one create a semaphore?
3. How does semop() work, its arguments and behavior?
4. Are there any restrictions on values a semaphore can hold?
5. What happens when multiple processes modify the same

semaphore?
6. How are semaphores used to coordinate the start of the meal?
7. How can a semaphore be used to coordinate use of forks?

11

http://www.cs.umn.edu/~kauffman/4061/philosophers.c
http://beej.us/guide/bgipc/output/html/singlepage/bgipc.html
http://beej.us/guide/bgipc/output/html/singlepage/bgipc.html

Lessons Learned from philosophers.c

I int semid = semget(...); is used to obtain a semaphore
from the operating system which returns an integer id of a
semaphore. Options allow retrieval of an existing semaphore
or creation of a new one.

I System V semaphores are arrays of counters and operations
must specify which element in the array is operated upon

I On creation, the values in the semaphore are undefined and
must be specified.

I semctl() is used to get and set values from the semaphore
which is done atomically but cannot be used to
increment/decrement values

I semop() is used to atomically increment/decrement values in
the semaphore and requires use of a struct sembuf

I Processes can attempting to decrement a semaphore below 0
will block and wait until its value returns becomes positive.

12

The Nature of a Semaphore

SO: cucufrog on Condition Variables vs Semaphores
A condition variable is essentially a wait-queue, that supports
blocking-wait and wakeup operations, i.e. you can put a [process
or] thread into the wait-queue and set its state to BLOCK, and get
a thread out from it and set its state to READY.

I Requires use of a mutex/lock in conjuction
A Semaphore is essentially a counter + a mutex + a wait queue.

I It can be used as it is without external dependencies.
I You can use it either as a mutex or as a conditional variable.

13

http://stackoverflow.com/questions/3513045/conditional-variable-vs-semaphore

System V IPC Shared Memory Segments
I The ultimate in flexibility is to get a segment of raw bytes

that can be shared between processes
I Examine shmdemo.c to see how this works
I Importantly, this program creates shared memory that outlives

the program: must clean it up at some point

Source: SoftPrayog System V IPC
14

https://www.softprayog.in/programming/interprocess-communication-using-system-v-shared-memory-in-linux

Viewing Shared System V IPC Resources

Shared memory resources can outlast the program which created
them. The following unix commands are useful for manipulating
them from the command line.

ipcs (1) - show information on IPC facilities
ipcrm (1) - remove certain IPC resources
ipcmk (1) - make various IPC resources

Mostly ipcs to list, ipcrm to clean up when something has gone
wrong.

15

Exercise: Email lookup with Shared Memory

I In lab, worked on a simple
email lookup "server" or
database

I Clients connected to server,
server gave back emails
based on name

I Shared memory makes
server/client less relevant

I Propose how to use shared
memory for email lookups
AND alterations

I How might multiple
processes coordinate use of
shared memory?

// structure to store a lookup_t of
// name-to-email association
typedef struct {

char name [STRSIZE];
char email[STRSIZE];

} lookup_t;

lookup_t original_data[NRECS] = {
{"Chris Kauffman" ,"kauffman@umn.edu"},
{"Christopher Jonathan" ,"jonat003@umn.edu"},
{"Amy Larson" ,"larson@cs.umn.edu"},
{"Chris Dovolis" ,"dovolis@cs.umn.edu"},
{"Dan Knights" ,"knights@cs.umn.edu"},
{"George Karypis" ,"karypis@cs.umn.edu"},
...

Sample of potential use
> email_db lookup ’Chris Kauffman’
Looking up Chris Kauffman
Found: kauffman@umn.edu
> email_db lookup ’Rick Sanchez’
Looking up Rick Sanchez
Not found
> email_db change ’Chris Kauffman’ ’kman@kauffmoney.com’
Changing Chris Kauffman to kman@kauffmoney.com
Alteration complete
> email_db lookup ’Chris Kauffman’
Looking up Chris Kauffman
Found: kman@kauffmoney.com

16

Answer: Email lookup with Shared Memory

I Store entire array of name/email in a piece of shared memory
with a know key

I Processes needing it attach to shared memory, scan through
looking

I Updates can be done by altering the shared memory
I Danger multiple processes writing may corrupt the data
I Use semaphores to control access for reading/writing, would

need to establish a protocol for this

17

Message Queues

I Implements basic send/receive functionality through shared
memory

I Similar to MPI: one process sends, another receives
I Atomic access/removal taken care of for you
I Allow message filtering to take place based on a tag

18

Kirk and Spock: Talking Across Interprocess Space

I Demo the following pair of
simple communication codes
which use System V IPC
Message Queues.

I Examine source code to
figure out how they work.

10-ipc-code/kirk.c
10-ipc-code/spock.c

19

Unique Identifiers in IPC: ftok(char*,char)
I System V IPC uses the notion of keys and IPC ids so

unrelated processes can find shared resources
I Both kirk.c and spock.c use the same arguments to find

the right message queue
key_t key = ftok("kirk.c", ’B’);
int msqid = msgget(key, 0644 | IPC_CREAT);

I Key is tied to a specific known file which participating
processes all know about

I Involves using new symbols like IPC_CREAT etc.
These IPC features were later added to System V.
They are often criticized for inventing their own
namespace instead of using the file system.
– Stevens/Rago 15.6 XSI IPC

I POSIX IPC create/open interface is closer to standard Unix
I/O open/close operations
int flags = O_RDWR | O_CREAT;
int perms = S_IRUSR | S_IWUSR;
mqd_t msg_queue = mq_open("kirk.c", flags, perms);

20

Email Lookup with Message Queues

I Email lookup server from lab used FIFOs for server and clients
to talk

I Would not be too hard to rewrite this with message queues
I Message queues allow filtering of messages, easy to direct at a

specific process
I Get automatic blocking and resuming when receiving

messages so don’t need explicit signals
I Will be the subject of next Lab

21

More Resources on IPC

I http://beej.us/guide/bgipc/
I http://www.tldp.org/LDP/tlk/ipc/ipc.html

22

http://beej.us/guide/bgipc/
http://www.tldp.org/LDP/tlk/ipc/ipc.html

