CSCl 4061: Sockets and Network Programming

Chris Kauffman

Last Updated:
Tue Dec 5 13:30:56 CST 2017

Networks are Aging

IPv4 is the current version of IP
addresses used to access the Internet.
However, with so many people and

devices, they’re all used up!

1Pv6 is a new version of IP addresses
~.while IPv4 has 4.3 billion IP addresses,
IPv6 has 34 x 10°.. virtually unlimited IP
addresses to be used!

Pv6 keeps the Internet
growing...

What is [Pv6?

Source: www.ipvbnow.hk

el s (e e Al | THEY DEVOURED HO% OF THE ITS A MYSTERY, . UNLESS...
EARTH, AND THEN JUST...uT! WHATS THE VOLUME OF | [
ERTAVNCo M | YR JUST STING THERE! £ncd Navozor? | R
THEYVE ST0R%D! LLOOK, WE SHOXDVE
A FEW QI HMIGRATED A FroM
mﬁ%- IPV6 AGE AGO...
‘:_.J -
% T THNKTHE
YEAR 1998
ST BouGHT _
USSOME TIME.

Source: XKCD #4865

https://www.ipv6now.hk/en/WhatisIPv6_Comic.php
https://xkcd.com/865/

Aging Networks Makes Network Programming a Mess

» Due to Internet technology advancing, network programming
has changed so there are MANY historical relics

» Network is a physical connection but many protocols for
communication exist over the same network to fulfill different
needs

» There are a LOT of network functions, some of them are
deprecated or obsolete: don't handle newest
protocols/electronics

» gethostbyname () simple, only works with |Pv4
» getaddrinfo() complex, works with IPv6

Goals

v

Give a few examples of the Unix interface to network
programming via sockets and ports to set up simple
server-client

v

Relate abstraction to previous 1/O experience

v

Touch on a few network-specific details, underlying details
Leave the full she-bang to CSCI 4211 (Intro Networking)

v

Immediate Limitations

» Most networked computing
resources use Firewalls to
block most communications

» Firewall prevents internal
programs from connecting
to outside programs through
unauthorized ports

» Makes programming
examples a little tough but
can do local examples using
address 127.0.0.1 which is
IPv4 for "home"

» Would need to run your own
machine to open up ports

Sockets

v

An abstraction like files, a number referring to OS internal
data structures

v

Allow for communication with the outside world

v

Sockets represent end-to-end connection: two parties involved
Sockets are two-way: can read or write from them (like files)

» Writes send data over the network to other party
» Reads block until data is received over network from other
party

v

Addresses

To communicate over the network, must use functions to translate
addresses from plain text like "google.com" to binary IP addresses.

char *hostname = "127.0.0.1"; // or "google.com"
struct addrinfo *servinfo;
int ret = getaddrinfo(hostname, PORT, NULL, &servinfo);
if (ret != 0){
printf ("getaddrinfo failed: %s\n",
gai_strerror(ret));
exit(1);
}

Note that the address 127.0.0.1 is IPv4 for "this computer" and
will be used a lot in examples

addrinfo struct

struct addrinfo {

int ai_flags;

int ai_family;
int ai_socktype;
int ai_protocol;
socklen_t ai_addrlen;
struct sockaddr *ai_addr;

char *ai_canonname;
struct addrinfo *ai_next;

+;

» Notice the last field - what kind of data structure is
addrinfo?

> getaddrinfo(hostname, PORT, NULL, &servinfo);
may return multiple addresses which can all be tried to get
the connection

Socket Creation / Connection

struct addrinfo *servinfo; // filled by getaddrinfo()

int sockfd = socket(servinfo->ai_family,
servinfo->ai_socktype,
servinfo->ai_protocol) ;

» Allocates OS internal data structures for 2-way
communication

» Does not connect socket for communication yet

int ret = connect(sockfd,
servinfo->ai_addr,
servinfo->ai_addrlen);

» Connects socket to given address so that

> Server on other side must be listening

If all goes well. . .

char buf [MAXDATASIZE];

int nbytes = read(sockfd, buf, MAXDATASIZE-1);
buf [nbytes] = ’\0’;

printf("client: received ’%s’\n",buf);

Wait, it's just read ()7
Alternatively:

int numbytes = recv(sockfd, buf, MAXDATASIZE-1, 0);

allows additional receiving options over the socket.

10

Experiment with simple-client.c

» Requires simple-server.c to be running (discussed later)

» Client connects to server on local computer and receives a
hello world

11

read() / recv() and write() / send()

> Socket file descriptors can be treated just as others so that
standard 1/O calls like
read() / write() / select() /poll() work for them

> Alternative can use recv() to get data from a socket fd
Allows options like

MSG_PEEK Peeks at an incoming message. The data
is treated as unread and the next recv()
or similar function shall still return
this data.

> Alternative use send () to put data into a socket fd
Sample options

MSG_DONTWAIT Enables nonblocking operation

12

Exercise: Servers and Sockets

v

v

v

v

v

Have discussed the client side of sockets:

> get address

» make socket

» connect socket and address
» read() / write()

Server side has a few more tricks to it

Multiple clients must connect using the same address, e.g.
www.google.com PORT 80

What kind of problems might this present?

How might one solve this with a system design?

13

Answer: Servers and Sockets

» Servers use one socket to listen for connections

> All incoming clients initially establish a connection through
that socket with a known port #

» When a client connects, a second server socket is created
which is specific to the client

» Communication between server and client continues on the
second separate socket

» Sound like anything familiar?

14

Server Setup

// INITIAL SETUP

// fd of socket on which the server will listen

int listen_fd = socket(serv_addr->ai_family,
serv_addr->ai_socktype,
serv_addr->ai_protocol);

// bind the socket to the server address given
// allows listening for connections later on
ret = bind(listen_fd,
serv_addr->ai_addr,
serv_addr->ai_addrlen);

15

Server Main Loop

// MAIN LOOP
listen(listen_fd, BACKLOG);

while(1){
// block until a client tries to connect
// accept a connection from the open port from a
// client produces a new file descriptor for
// socket created to communicate with the client
// and fills in client address info
int client_fd = accept(listen_fd,
client_addr,
&client addr_size);

read(client_fd, ...);
write(client_fd, ...);

16

Sockets On server Side

incoming connection
~

Client application

Socket I—

Client application

Socket I Socket I

Source: Learning Java, 4th Edition by Patrick Niemeyer, Daniel Leuck

> Each call to accept () creates another socket associated
specifically with a peer

» Typically done on by server in client/server architecture

» Single server Port stays open and accepts new connections

17

https://www.safaribooksonline.com/library/view/learning-java-4th/9781449372477/ch13s01.html

Socket Identification

Based on: SO: How does the socket API accept() function work?
Sockets are uniquely identified by a quartet of information:

| Peer Address : Port | Local Address : Port |

» Server at 192.168.1.1 Port 80
» Client 1 10.0.0.1
» Client 2 10.0.0.2

Client 1 at 10.0.0.1 opens a connection on local port 1234 and connects to the
server. Now the server has one socket identified as follows:

| Peer (Client) | Local (Server) |
| === Fommm oo |

| 10.0.0.1 : 1234 | 192.168.1.1 : 80 |

Now Client 2 at 10.0.0.2 opens a connection on local port 5678 and connects
to the server. Now the server has two sockets identified as follows :

| Peer (Client) | Local (Server) |
| === Fommm o |

0.0.0.1 : 1234 | 192.168.1.1 : 80 |
| 10.0.0.2 : 5678 | 192.168.1.1 : 80 |

18

https://stackoverflow.com/questions/489036/how-does-the-socket-api-accept-function-work

Exercise: Pause Server

> Server listens for 4 client connections
» Does not respond to any client until 4 have connected

> When 4 connected, issues Server shutting down message
to all

» Closes connections and shuts down

Frame the server code for this using the system calls

getaddrinfo()	look up address
socket()	create a socket
bind()	bind socket to address
listen()	listen for connections
accept()	accept connections

Include control and data structures required

19

Answer: Pause Server

See pause-server.c

getaddrinfo(NULL, PORT, &hints, &serv_addr);
int listen_fd = socket(serv_addr->ai_family, serv_addr->ai_socktype,
serv_addr->ai_protocol);

bind(listen_fd, serv_addr->ai_addr, serv_addr->ai_addrlen);
listen(listen_fd, BACKLOG);

for(int i=0; i<MAX_CLIENTS; i++){
client_fds[i]l= accept(listen_fd, client_addr, &client_addr_size);

}

for(int i=0; i<MAX_CLIENTS; i++){
int client_fd = client_fds[i];
char *msg = "Server shutting down.";
write(client_fd, msg, strlen(msg));
close(client_fd);

}

close(listen_fd);

Unix Domain Sockets

Remember FIFOs? Remember how they can only send
data in one direction, just like a Pipes? Wouldn't it be
grand if you could send data in both directions like you
can with a socket?

> Beej, from Beej’s Guide to Unix IPC

» Can create a socket which is local to a Unix host

» Like FIFO has a location on the file system like
/tmp/blather/servl.sock

» Server establishes socket location, clients must know about it

> Allows 1isten() / accept() to spin up new sockets per
client

> Is bi-directional so only one socket is needed
> A good summary: https://troydhanson.github.io/

network/Unix_domain_sockets.html

21

http://beej.us/guide/bgipc/output/html/multipage/unixsock.html
https://troydhanson.github.io/network/Unix_domain_sockets.html
https://troydhanson.github.io/network/Unix_domain_sockets.html

