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Networks are Aging

IPv4 is the current version of IP
addresses used to access the Internet.
However, with so many people and

devices, they’re all used up!

1Pv6 is a new version of IP addresses
~.while IPv4 has 4.3 billion IP addresses,
IPv6 has 34 x 10°.. virtually unlimited IP
addresses to be used!

Pv6 keeps the Internet
growing...

What is [Pv6?

Source: www.ipvbnow.hk
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https://www.ipv6now.hk/en/WhatisIPv6_Comic.php
https://xkcd.com/865/

Aging Networks Makes Network Programming a Mess

» Due to Internet technology advancing, network programming
has changed so there are MANY historical relics

» Network is a physical connection but many protocols for
communication exist over the same network to fulfill different
needs

» There are a LOT of network functions, some of them are
deprecated or obsolete: don't handle newest
protocols/electronics

» gethostbyname () simple, only works with |Pv4
» getaddrinfo() complex, works with IPv6



Goals

v

Give a few examples of the Unix interface to network
programming via sockets and ports to set up simple
server-client

v

Relate abstraction to previous 1/O experience

v

Touch on a few network-specific details, underlying details
Leave the full she-bang to CSCI 4211 (Intro Networking)

v



Immediate Limitations

» Most networked computing
resources use Firewalls to
block most communications

» Firewall prevents internal
programs from connecting
to outside programs through
unauthorized ports

» Makes programming
examples a little tough but
can do local examples using
address 127.0.0.1 which is
IPv4 for "home"

» Would need to run your own
machine to open up ports




Sockets

v

An abstraction like files, a number referring to OS internal
data structures

v

Allow for communication with the outside world

v

Sockets represent end-to-end connection: two parties involved
Sockets are two-way: can read or write from them (like files)

» Writes send data over the network to other party
» Reads block until data is received over network from other
party

v



Addresses

To communicate over the network, must use functions to translate
addresses from plain text like "google.com" to binary IP addresses.

char *hostname = "127.0.0.1"; // or "google.com"
struct addrinfo *servinfo;
int ret = getaddrinfo(hostname, PORT, NULL, &servinfo);
if (ret != 0){
printf ("getaddrinfo failed: %s\n",
gai_strerror(ret));
exit(1);
}

Note that the address 127.0.0.1 is IPv4 for "this computer" and
will be used a lot in examples



addrinfo struct

struct addrinfo {

int ai_flags;

int ai_family;
int ai_socktype;
int ai_protocol;
socklen_t ai_addrlen;
struct sockaddr *ai_addr;

char *ai_canonname;
struct addrinfo *ai_next;

+;

» Notice the last field - what kind of data structure is
addrinfo?

> getaddrinfo(hostname, PORT, NULL, &servinfo);
may return multiple addresses which can all be tried to get
the connection



Socket Creation / Connection

struct addrinfo *servinfo; // filled by getaddrinfo()

int sockfd = socket(servinfo->ai_family,
servinfo->ai_socktype,
servinfo->ai_protocol) ;

» Allocates OS internal data structures for 2-way
communication

» Does not connect socket for communication yet

int ret = connect(sockfd,
servinfo->ai_addr,
servinfo->ai_addrlen);

» Connects socket to given address so that

> Server on other side must be listening



If all goes well. . .

char buf [MAXDATASIZE];

int nbytes = read(sockfd, buf, MAXDATASIZE-1);
buf [nbytes] = ’\0’;

printf("client: received ’%s’\n",buf);

Wait, it's just read ()7
Alternatively:

int numbytes = recv(sockfd, buf, MAXDATASIZE-1, 0);

allows additional receiving options over the socket.
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Experiment with simple-client.c

» Requires simple-server.c to be running (discussed later)

» Client connects to server on local computer and receives a
hello world
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read() / recv() and write() / send()

> Socket file descriptors can be treated just as others so that
standard 1/O calls like
read() / write() / select() /poll() work for them

> Alternative can use recv() to get data from a socket fd
Allows options like

MSG_PEEK Peeks at an incoming message. The data
is treated as unread and the next recv()
or similar function shall still return
this data.

> Alternative use send () to put data into a socket fd
Sample options

MSG_DONTWAIT Enables nonblocking operation
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Exercise: Servers and Sockets

v

v

v

v

v

Have discussed the client side of sockets:

> get address

» make socket

» connect socket and address
» read() / write()

Server side has a few more tricks to it

Multiple clients must connect using the same address, e.g.
www.google.com PORT 80

What kind of problems might this present?

How might one solve this with a system design?

13



Answer: Servers and Sockets

» Servers use one socket to listen for connections

> All incoming clients initially establish a connection through
that socket with a known port #

» When a client connects, a second server socket is created
which is specific to the client

» Communication between server and client continues on the
second separate socket

» Sound like anything familiar?
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Server Setup

// INITIAL SETUP

// fd of socket on which the server will listen

int listen_fd = socket(serv_addr->ai_family,
serv_addr->ai_socktype,
serv_addr->ai_protocol);

// bind the socket to the server address given
// allows listening for connections later on
ret = bind(listen_fd,
serv_addr->ai_addr,
serv_addr->ai_addrlen);
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Server Main Loop

// MAIN LOOP
listen(listen_fd, BACKLOG);

while(1){
// block until a client tries to connect
// accept a connection from the open port from a
// client produces a new file descriptor for
// socket created to communicate with the client
// and fills in client address info
int client_fd = accept(listen_fd,
client_addr,
&client addr_size);

read(client_fd, ...);
write(client_fd, ...);
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Sockets On server Side

incoming connection
~

Client application

Socket I—

Client application

Socket I Socket I

Source: Learning Java, 4th Edition by Patrick Niemeyer, Daniel Leuck

> Each call to accept () creates another socket associated
specifically with a peer

» Typically done on by server in client/server architecture

» Single server Port stays open and accepts new connections

17


https://www.safaribooksonline.com/library/view/learning-java-4th/9781449372477/ch13s01.html

Socket Identification

Based on: SO: How does the socket API accept() function work?
Sockets are uniquely identified by a quartet of information:

| Peer Address : Port | Local Address : Port |

» Server at 192.168.1.1 Port 80
» Client 1 10.0.0.1
» Client 2 10.0.0.2

Client 1 at 10.0.0.1 opens a connection on local port 1234 and connects to the
server. Now the server has one socket identified as follows:

| Peer (Client) | Local (Server) |
| === Fommm oo |

| 10.0.0.1 : 1234 | 192.168.1.1 : 80 |

Now Client 2 at 10.0.0.2 opens a connection on local port 5678 and connects
to the server. Now the server has two sockets identified as follows :

| Peer (Client) | Local (Server) |
| === Fommm o |

0.0.0.1 : 1234 | 192.168.1.1 : 80 |
| 10.0.0.2 : 5678 | 192.168.1.1 : 80 |
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https://stackoverflow.com/questions/489036/how-does-the-socket-api-accept-function-work

Exercise: Pause Server

> Server listens for 4 client connections
» Does not respond to any client until 4 have connected

> When 4 connected, issues Server shutting down message
to all

» Closes connections and shuts down

Frame the server code for this using the system calls

| getaddrinfo() | look up address |
| socket() | create a socket |
| bind() | bind socket to address |
| listen() | listen for connections |
| accept() | accept connections

Include control and data structures required
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Answer: Pause Server

See pause-server.c

getaddrinfo(NULL, PORT, &hints, &serv_addr);
int listen_fd = socket(serv_addr->ai_family, serv_addr->ai_socktype,
serv_addr->ai_protocol);

bind(listen_fd, serv_addr->ai_addr, serv_addr->ai_addrlen);
listen(listen_fd, BACKLOG);

for(int i=0; i<MAX_CLIENTS; i++){
client_fds[i]l= accept(listen_fd, client_addr, &client_addr_size);

}

for(int i=0; i<MAX_CLIENTS; i++){
int client_fd = client_fds[i];
char *msg = "Server shutting down.";
write(client_fd, msg, strlen(msg));
close(client_fd);

}

close(listen_fd);



Unix Domain Sockets

Remember FIFOs? Remember how they can only send
data in one direction, just like a Pipes? Wouldn't it be
grand if you could send data in both directions like you
can with a socket?

> Beej, from Beej’s Guide to Unix IPC

» Can create a socket which is local to a Unix host

» Like FIFO has a location on the file system like
/tmp/blather/servl.sock

» Server establishes socket location, clients must know about it

> Allows 1isten() / accept() to spin up new sockets per
client

> Is bi-directional so only one socket is needed
> A good summary: https://troydhanson.github.io/

network/Unix_domain_sockets.html
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http://beej.us/guide/bgipc/output/html/multipage/unixsock.html
https://troydhanson.github.io/network/Unix_domain_sockets.html
https://troydhanson.github.io/network/Unix_domain_sockets.html

