
CSCI 4061: Sockets and Network Programming

Chris Kauffman

Last Updated:
Tue Dec 5 13:30:56 CST 2017

1

Networks are Aging

Source: www.ipv6now.hk

Source: XKCD #865
2

https://www.ipv6now.hk/en/WhatisIPv6_Comic.php
https://xkcd.com/865/

Aging Networks Makes Network Programming a Mess

I Due to Internet technology advancing, network programming
has changed so there are MANY historical relics

I Network is a physical connection but many protocols for
communication exist over the same network to fulfill different
needs

I There are a LOT of network functions, some of them are
deprecated or obsolete: don’t handle newest
protocols/electronics

I gethostbyname() simple, only works with IPv4
I getaddrinfo() complex, works with IPv6

3

Goals

I Give a few examples of the Unix interface to network
programming via sockets and ports to set up simple
server-client

I Relate abstraction to previous I/O experience
I Touch on a few network-specific details, underlying details
I Leave the full she-bang to CSCI 4211 (Intro Networking)

4

Immediate Limitations

I Most networked computing
resources use Firewalls to
block most communications

I Firewall prevents internal
programs from connecting
to outside programs through
unauthorized ports

I Makes programming
examples a little tough but
can do local examples using
address 127.0.0.1 which is
IPv4 for "home"

I Would need to run your own
machine to open up ports

5

Sockets

I An abstraction like files, a number referring to OS internal
data structures

I Allow for communication with the outside world
I Sockets represent end-to-end connection: two parties involved
I Sockets are two-way: can read or write from them (like files)

I Writes send data over the network to other party
I Reads block until data is received over network from other

party

6

Addresses

To communicate over the network, must use functions to translate
addresses from plain text like "google.com" to binary IP addresses.

char *hostname = "127.0.0.1"; // or "google.com"
struct addrinfo *servinfo;
int ret = getaddrinfo(hostname, PORT, NULL, &servinfo);
if(ret != 0){

printf("getaddrinfo failed: %s\n",
gai_strerror(ret));

exit(1);
}

Note that the address 127.0.0.1 is IPv4 for "this computer" and
will be used a lot in examples

7

addrinfo struct

struct addrinfo {
int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
socklen_t ai_addrlen;
struct sockaddr *ai_addr;
char *ai_canonname;
struct addrinfo *ai_next;

};

I Notice the last field - what kind of data structure is
addrinfo?

I getaddrinfo(hostname, PORT, NULL, &servinfo);
may return multiple addresses which can all be tried to get
the connection

8

Socket Creation / Connection

struct addrinfo *servinfo; // filled by getaddrinfo()
int sockfd = socket(servinfo->ai_family,

servinfo->ai_socktype,
servinfo->ai_protocol);

I Allocates OS internal data structures for 2-way
communication

I Does not connect socket for communication yet

int ret = connect(sockfd,
servinfo->ai_addr,
servinfo->ai_addrlen);

I Connects socket to given address so that
I Server on other side must be listening

9

If all goes well. . .

char buf[MAXDATASIZE];
int nbytes = read(sockfd, buf, MAXDATASIZE-1);
buf[nbytes] = ’\0’;
printf("client: received ’%s’\n",buf);

Wait, it’s just read()?
Alternatively:

int numbytes = recv(sockfd, buf, MAXDATASIZE-1, 0);

allows additional receiving options over the socket.

10

Experiment with simple-client.c

I Requires simple-server.c to be running (discussed later)
I Client connects to server on local computer and receives a

hello world

11

read() / recv() and write() / send()

I Socket file descriptors can be treated just as others so that
standard I/O calls like
read() / write() / select() /poll() work for them

I Alternative can use recv() to get data from a socket fd
Allows options like
MSG_PEEK Peeks at an incoming message. The data

is treated as unread and the next recv()
or similar function shall still return
this data.

I Alternative use send() to put data into a socket fd
Sample options
MSG_DONTWAIT Enables nonblocking operation

12

Exercise: Servers and Sockets

I Have discussed the client side of sockets:
I get address
I make socket
I connect socket and address
I read() / write()

I Server side has a few more tricks to it
I Multiple clients must connect using the same address, e.g.

www.google.com PORT 80
I What kind of problems might this present?
I How might one solve this with a system design?

13

Answer: Servers and Sockets

I Servers use one socket to listen for connections
I All incoming clients initially establish a connection through

that socket with a known port #
I When a client connects, a second server socket is created

which is specific to the client
I Communication between server and client continues on the

second separate socket
I Sound like anything familiar?

14

Server Setup

// INITIAL SETUP

// fd of socket on which the server will listen
int listen_fd = socket(serv_addr->ai_family,

serv_addr->ai_socktype,
serv_addr->ai_protocol);

// bind the socket to the server address given
// allows listening for connections later on
ret = bind(listen_fd,

serv_addr->ai_addr,
serv_addr->ai_addrlen);

15

Server Main Loop

// MAIN LOOP
listen(listen_fd, BACKLOG);

while(1){
// block until a client tries to connect
// accept a connection from the open port from a
// client produces a new file descriptor for
// socket created to communicate with the client
// and fills in client address info
int client_fd = accept(listen_fd,

client_addr,
&client_addr_size);

read(client_fd, ...);
write(client_fd, ...);

}

16

Sockets On server Side

Source: Learning Java, 4th Edition by Patrick Niemeyer, Daniel Leuck

I Each call to accept() creates another socket associated
specifically with a peer

I Typically done on by server in client/server architecture
I Single server Port stays open and accepts new connections

17

https://www.safaribooksonline.com/library/view/learning-java-4th/9781449372477/ch13s01.html

Socket Identification
Based on: SO: How does the socket API accept() function work?
Sockets are uniquely identified by a quartet of information:

| Peer Address : Port | Local Address : Port |

I Server at 192.168.1.1 Port 80
I Client 1 10.0.0.1
I Client 2 10.0.0.2

Client 1 at 10.0.0.1 opens a connection on local port 1234 and connects to the
server. Now the server has one socket identified as follows:

| Peer (Client) | Local (Server) |
|-----------------+------------------|
| 10.0.0.1 : 1234 | 192.168.1.1 : 80 |

Now Client 2 at 10.0.0.2 opens a connection on local port 5678 and connects
to the server. Now the server has two sockets identified as follows :

| Peer (Client) | Local (Server) |
|-----------------+------------------|
| 10.0.0.1 : 1234 | 192.168.1.1 : 80 |
| 10.0.0.2 : 5678 | 192.168.1.1 : 80 |

18

https://stackoverflow.com/questions/489036/how-does-the-socket-api-accept-function-work

Exercise: Pause Server

I Server listens for 4 client connections
I Does not respond to any client until 4 have connected
I When 4 connected, issues Server shutting down message

to all
I Closes connections and shuts down

Frame the server code for this using the system calls

getaddrinfo()	look up address
socket()	create a socket
bind()	bind socket to address
listen()	listen for connections
accept()	accept connections

Include control and data structures required

19

Answer: Pause Server
See pause-server.c

getaddrinfo(NULL, PORT, &hints, &serv_addr);
int listen_fd = socket(serv_addr->ai_family, serv_addr->ai_socktype,

serv_addr->ai_protocol);

bind(listen_fd, serv_addr->ai_addr, serv_addr->ai_addrlen);

listen(listen_fd, BACKLOG);

for(int i=0; i<MAX_CLIENTS; i++){
client_fds[i]= accept(listen_fd, client_addr, &client_addr_size);

}

for(int i=0; i<MAX_CLIENTS; i++){
int client_fd = client_fds[i];
char *msg = "Server shutting down.";
write(client_fd, msg, strlen(msg));
close(client_fd);

}
close(listen_fd);

20

Unix Domain Sockets
Remember FIFOs? Remember how they can only send
data in one direction, just like a Pipes? Wouldn’t it be
grand if you could send data in both directions like you
can with a socket?

I Beej, from Beej’s Guide to Unix IPC

I Can create a socket which is local to a Unix host
I Like FIFO has a location on the file system like

/tmp/blather/serv1.sock
I Server establishes socket location, clients must know about it
I Allows listen() / accept() to spin up new sockets per

client
I Is bi-directional so only one socket is needed
I A good summary: https://troydhanson.github.io/

network/Unix_domain_sockets.html

21

http://beej.us/guide/bgipc/output/html/multipage/unixsock.html
https://troydhanson.github.io/network/Unix_domain_sockets.html
https://troydhanson.github.io/network/Unix_domain_sockets.html

