
CSCI 4061: Virtual Memory

Chris Kauffman

Last Updated:
Thu Dec 7 12:52:03 CST 2017

1

Logistics: End Game
Date Lecture Outside
Mon 12/04 Lab 13: Sockets
Tue 12/05 Sockets
Thu 12/07 Virtual Memory
Mon 12/11 Lab 14: Review
Tue 12/12 Review P5 Due
Wed 12/13 Classes End
Wed 12/20 10:30am-12:30pm Final Exam

Reading
I Stevens/Rago: Ch 16 Sockets
I Virtual Memory Reference:

Bryant/O’Hallaron, Computer
Systems. Ch 9 (CSCI 2021)

I mmap(): Linux System
Programming, 2nd Edition By:
Robert Love (library site link)

Goals: Finish Sockets

Lab13: Client Sockets
How did it go?

Project 2
Updates and Questions

2

Addresses are a Lie

I Operating system uses tables and
hardware to translate every
program address

I Processes know virtual addresses
which are translated via the
memory subsystem to physical
addresses in RAM and on disk

I Contiguous virtual addresses may
be spread all over physical memory

Source: WikiP Virtual Memory

3

https://en.wikipedia.org/wiki/Virtual_memory

Address Translation

I OS maintains tables
to translate virtual to
physical addresses

I This needs to be
FAST so usually
involves hardware:
Memory Manager
Unit (MMU) and
Translation Lookaside
Buffer (TLB)

I Address translation is
NOT CONSTANT
O(1), has an impact
on performance of
real algorithms*

Source: John T. Bell Operating Systems Course Notes

*See: On a Model of Virtual Address Translation (2015)
4

https://www2.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/9_VirtualMemory.html
https://dl.acm.org/citation.cfm?id=2656337

Pages and Mapping
I Memory is segmented into hunks called pages, 4Kb is

common (use page-size.c to see your system’s page size)
I OS maintains tables of which pages of memory exist in RAM,

which are on disk
I OS maintains tables per process that translate process virtual

addresses to physical pages
I Shared Memory can be arranged by mapping virtual addresses

for two processes to the same memory page

Proc VirtPage PhysPage
123 0 1046 Shared

1 900
2 2032

456 0 800
1 400
2 1046 Shared
3 3040

5

Exercise: Process Memory Image and Libraries

I How many
programs on
the system
need to use
malloc() and
printf()?

I Where is the
code for
malloc() or
printf() in
the process
memory? main.o

file.o

crt0.o (startup routine)

"...%d..."

global variables

Heap
(malloc arena)

System

argv
argc

auto variables for
main()

auto variables for
func()

func(72,73)

ST
A

C
K

SH
A

R
E

D

M
E

M
O

R
Y

D
A

T
A

T
E

X
T

co
m

pi
le

d
co

de
 (

a.
ou

t)

uninitialized data (bss)

initialized data

stack pointer

mfp − frame pointer (for main)

Low memory

High memory
func(72,73) called from main(),
assuming func defined by:
 func(int x, int y) {
 int a;

(grows downward if func()
 calls another function)

 int b[3];
 /* no other auto variables */

size 4 and assumes stack at high

ra
mfp
garbage
garbage
garbage
garbage

main()
auto
variables

Offset from current
frame pointer (for
func())

+12
 +8
 +4
 0
 −4
 −8
−12
−16

frame pointer
points here

stack pointer
(top of stack)
points here

y
x

a

b[1]

Contents

Stack illustrated after the call

library functions if
dynamically linked
(usual case)

brk point

ra (return address)

b[2]

b[0]

Expanded view of the stack

address and descending down.

All auto variables and parameters
are referenced via offsets from the
frame pointer.

The frame pointer and stack pointer
are in registers (for fast access).

When funct returns, the return value
is stored in a register. The stack pointer
is move to the y location, the code
is jumped to the return address (ra),
and the frame pointer is set to mfp
(the stored value of the caller’s frame
pointer). The caller moves the return
value to the right place.

Stack

caller’s frame pointer

Assumes int = long = char * of

env

library functions if
statically linked
(not usual case)

malloc.o (lib*.so)

malloc.o (lib*.a)

printf.o (lib*.a)

printf.o (lib*.so)

available for
heap growth

available for
stack growth

Memory Layout (Virtual address space of a C process)

return address

73
72

Source: Wolf Holzman

6

http://www.cs.uleth.ca/~holzmann/

Shared Libraries: *.so Files

I Code for
libraries can be
shared

I libc.so:
shared library
with
malloc(),
printf() etc
in it

I OS puts into
one page,
maps all linked
procs to it

Source: John T. Bell Operating Systems Course Notes

7

https://www2.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/9_VirtualMemory.html

Exercise: Recall fork()

I What does fork() do?
I What does the result of a fork() look like?
I What seems to need to happen for this to work

8

Fork and Shared Pages
I fork()’ing a process creates a nearly identical copy of a

process
I Might need to copy all memory form parent to child pages
I Can save a lot of time if memory pages of child process are

shared with parent - no copying needed (initially)
I What’s the major danger here?

Source: John T. Bell Operating Systems Course Notes

9

https://www2.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/9_VirtualMemory.html

Fork, Shared Pages, Copy on Write (COW Pages)
I If neither process writes to the page, sharing doesn’t matter
I If either process writes, OS will make a copy and remap

addresses to copy so it is exclusive
I Fast if hardware Memory Management Unit and OS know

what they are doing (Linux + Parallel Python/R + Big Data)

Source: John T. Bell Operating Systems Course Notes

10

https://www2.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/9_VirtualMemory.html

Shared Memory
Most Unix Systems provide System V and POSIX means for a
program to explicitly create shared memory.
// SYSTEM V SHARED MEMORY
int shmget(key_t key, size_t size, int shmflg);
// create/acquire a segment of shared memory assocaited with given key
// and size, returns id assocaited with segment

void *shmat(int shmid, const void *shmaddr, int shmflg);
// attach to shared memory with given id, return address of shared
// memory, may specify preferred address or NULL

// POSIX SHARED MEMORY
int shm_open(const char *name, int oflag, mode_t mode);
// get an id (file descriptor) for segment of shared memory, similar
// to open() system call but memory only

void *mmap(void *addr, size_t len, int prot, int flags,
int fd, off_t off);

// map given file descriptor to a memory address. Reads/writes
// associated with address are reflected into the contents of the file
// descriptor potentially resulting in reads/writes to backing files.

11

mmap(): Mapping Addresses is Ammazing

I ptr = mmap(NULL, size,...,fd,0) arranges backing
entity of fd to be mapped to be mapped to ptr

I fd might be shared memory created with shm_open()
I fd might be a file opened with open(). . .

I Wait, what?

int fd = open("gettysburg.txt", O_RDONLY);
// open file to get file descriptor

char *file_chars = mmap(NULL, size, PROT_READ, MAP_SHARED,
fd, 0);

// pointer to file contents call mmap with given size and file
// descriptor read only, potentially share, offset 0

printf("%c",file_chars[0]); // print 0th char
printf("%c",file_chars[5]); // print 5th char

12

Exercise: Examine mmap-demo.c

I Determine what it does
I Are there any limits to the information that is produced by

the program
I How might one modify the program to accommodate

arbitrarily sized files?
I Answer in mmap-print-file.c

13

mmap() allows file reads/writes without read()/write()

I Memory mapped files are not just for reading
I With appropriate options, writing is also possible

char *file_chars =
mmap(NULL, size, PROT_READ | PROT_WRITE,

MAP_SHARED, fd, 0);
I Amazing stuff: assign to memory, OS reflects change into the

file
I Example: mmap-tr.c to transform one character to another

14

mmap() Flexibility is complete

I mmap() just gives a pointer: can assert that it points to
binary data like structs as well

I See example: mmap-specific-stock.c for an example of
this

I Multiple processes can map files to shared memory to
communicate, read/write same files, cooperate

I IPC control mechanisms such as semaphores, message queues,
mutexes should be used to control shared files to prevent
read/write conflicts

15

mmap() Comparisons

Benefits
I Avoid read() into memory, change, write() cycle
I Saves memory and time
I Many Linux mechanisms backed by mmap() like shared

memory

Drawbacks
I Always maps pages of memory ~ 4096b (4K)
I For small maps, lots of wasted space
I No bounds checking, just like everything else in C

16

