
CSCI 4061: Introduction

Chris Kauffman

Week 1

1

Logistics

Goals Today
I Motivation
I Unix Systems Programming
I C programs
I Course Mechanics

In and Out of Class
I Common Misconception:

Everything you need to
know happens in lecture

I Truth: Much of what you’ll
learn will be when you’re
reading and doing things on
your own

Reading
EITHER
Robbins and Robbins, Unix Systems
Programming Ch 1

I Official textbook
I A bit harder to read at times
I Will go somewhat in order of

chapters
OR
Stevens and Rago, Advanced
Programming in the UNIX
Environment Ch 1

I Optional textbook, similar
coverage

I Somewhat more readable
I Will go somewhat out of order

2

Plethora of Operating Systems
What is the job of the operating systems?
What do all these have in common?

3

Responsibilities of the OS?

Create a "virtual machine" on top of hardware
I OS creates an abstraction layer
I Similar programming interface regardless of underlying

hardware environment:
I Phones, Laptops, Cars, Planes, Nuclear Reactors
I all see Processes, Memory, Files, Network

Enforce Discipline / Referee

I Limit damage done by one party to another
I Processes communicate along fixed lines
I Multiple users must explicitly share info
I Shared resources are managed

4

Why Unix?
Which of theses is NOT Unix-like?

5

Unix is Popular

Just because it’s popular, doesn’t mean it’s good. However, Unix
is pretty great. 6

Unix is Old, Tested, and often Open

I Developed from the 70s, honed under pressure from academia
and industry for widely varying uses

I Among the first projects to benefit from shared source code
I Philosophy: Simple, Sharp tools that Combine Flexibly
I Keep the Kernel functionality small but useful
I Abstractions provided in Unix are well-studied, nearly universal

7

The Unix "Virtual" Machine
Unix Kernel provides basic facilities to manage its high level
abstractions of hardware, translate to actual hardware

I Link: Interactive Map of the Linux Kernel
I Examples Below

Processes: Executing Code
I Create new processes
I Status of other processes
I Pause until events occur
I Create/Manage threads

within process

Process Communication
I Messages between processes
I Share memory / resources
I Coordinate resource use

File System: Storage / Devices

I Create / Destroy Files
I read() / write()
I Special files for

communication, system
manipulation

Networking
I Open sockets which connect

to other machines
I send()/recv() data over

connections
8

http://www.makelinux.net/kernel_map/

The Outsides of the OS vs the Insides

I Operating Systems are
layered like everything else
in computer science

I 4061: outer layer
I 5103: inner layers
I EE Degree: bottom layer

CSCI 4061
I Systems Programming
I Use functionality provided

by kernel
I Gain some knowledge of

internals but focus on
external practicalities

CSCI 5103
I Creation of a kernel / OS

internals
I Theory and practice of

writing / improving
operating systems

I Implement system calls 9

System Calls : The OS’s Privilege
I User programs will never actually read data from a file
I Instead, will make a request to the OS to read data from a file
I Usually done with a C function like in

int nbytes_read = read(file_des, in_buf, max_bytes);
I After a little setup, OS takes over
I Elevates the CPU’s privilege level to allow access to resources

not normally accessible using assembly instructions
I Modern CPUs have security models with normal / super status
I Like sudo make me a sandwhich for hardware

I At completion of read() CPU drops back to normal level
I User program now has stuff in in_buf or an error to deal with
I Same for process creation, communication, I/O, memory

management, etc.

Question: Why do it this way?

10

https://xkcd.com/149/

Distinction of Application vs Systems Programming

The primary distinguishing characteristic of systems programming
when compared to application programming is that application
programming aims to produce software which provides services to
the user directly (e.g. word processor), whereas systems
programming aims to produce software and software platforms
which provide services to other software, are performance
constrained, or both.
System programming requires a great degree of hardware awareness.
Its goal is to achieve efficient use of available resources, either
because the software itself is performance critical (AAA video
games) or because even small efficiency improvements directly
transform into significant monetary savings for the service provider
(cloud based word processors).
– Wikipedia: Systems Programming

In short: systems programmers write the code between the OS and
everything else. But, systems vs application is more of a
continuum than a hard boundary.

11

https://en.wikipedia.org/wiki/System_programming

General Topics Associated with Systems Programming
Concurrency Multiple things can happen, order is unpredictable
Asynchrony An event can happen at any point
Coordination Multiple parties must avoid deadlock / starvation
Communication Between close entities (threads/processes) or

distant entities (network connection)
Security Access to info is restricted

File Storage Layout of data on permanent devices, algorithms for
efficient read/write, buffering

Memory Maintain illusion of a massive hunk of RAM for each
process (pages, virtual memory)

Robustness Handle unexpected events gracefully
Efficiency Use CPU, Memory, Disk to their fullest potential as

other programs are built from here

In our projects, we’ll hit on most of these.
12

Assumption: You know some C

I CSCI 2021 is a prereq, covers basic C programming
I Assume that you know syntax, basic semantics

Why C vs other languages?

Computers are well-represented in C

You just have to know C.
Why? Because for all
practical purposes, every
computer in the world you’ll
ever use is a von Neumann
machine, and C is a
lightweight, expressive
syntax for the von Neumann
machine’s capabilities.
–Steve Yegge, Tour de
Babel

C and Unix Go Way Back

Aside from the modular
design, Unix also
distinguishes itself from its
predecessors as the first
portable operating system:
almost the entire operating
system is written in the C
programming language that
allowed Unix to reach
numerous platforms.
– Wikipedia: Unix

13

https://sites.google.com/site/steveyegge2/tour-de-babel
https://sites.google.com/site/steveyegge2/tour-de-babel
https://en.wikipedia.org/wiki/Unix

Exercise: Recall these C things

I Two different syntaxes to
loop

I Stack arrays
I The meaning of void
I struct: aggregate,

heterogeneous data
I malloc() and free()
I Pointers to and Address of

variables
I Dynamically allocated arrays

and structs

I #define : Pound define
constants

I Local scope, global scope
I Pass by value, pass by

reference
I printf() / fprintf()

and format strings
I scanf() / fscanf() and

format strings
I Commands to compile, link,

execute

14

Exercise: Actual C Code
#include <stdio.h>
#include <stdlib.h>
int main(){

long n = 1;
void *mem = NULL;
while((mem = malloc(n)) != NULL){

printf("%12ld bytes: Success\n",n);
free(mem);
n *= 2;

}
printf("%12ld bytes: Fail\n",n);
n /= 2;

long kb = n / 1024;
long mb = kb / 1024;
long gb = mb / 1024;

printf("\n");
printf("%12ld b limit\n",n);
printf("%12ld KB limit\n",kb);
printf("%12ld MB limit\n",mb);
printf("%12ld GB limit\n",gb);
return 0;

}

I Describe at a high level
what this C program does

I Explain the line
while((mem = malloc(n)) != NULL){

in some detail
I What kind of output would

you expect on your own
computer?

15

Exercise: C Program with Input
typedef struct int_node_struct {

int data;
struct int_node_struct *next;

} int_node;
int_node* head = NULL;

int main(int argc, char **argv){
int x;
FILE *input = fopen(argv[1], "r");
while(fscanf(input,"%d",&x) != EOF){

int_node *new = malloc(sizeof(int_node));
new->data = x;
new->next = head;
head = new;

}
int_node *ptr = head;
int i=0;
printf("\nEntire list\n");
while(ptr != NULL){

printf("list(%d) = %d\n",i,ptr->data);
ptr = ptr->next;
i++;

}
fclose(input);
return 0;

}

I What data structure
is being used?

I Are there any global
variables?

I What’s going on here:
new->data = x;
new->next = head;

I Where do input
numbers come from?

I In what order will
input numbers be
printed back?

I Does the program
have a memory leak?
(What is a memory
leak?) 16

Answers: On the Course Site

I Canvas has links to course materials
I Lecture slides will be available either before lecture or soon

after
I Code we use in class will also be available
I Take your own notes but know that resources are available

17

Course Mechanics

See separate slides for specific course mechanics

18

