Linear classification and coordinate descent

1 Introduction

Let \mathbf{X} be an $n \times m$, whose rows correspond to the records and the columns to the attributes. Let y be an $n \times 1$ vector of the known target values of the records in \mathbf{X}. For this assignment, we will consider binary classification. We will assign the label 1 to one class and -1 to the other. So the target values will either be 1 or -1 . The goal is to learn a linear model, that will predict the label of a record. More specifically, the following minimization problem must be solved:

$$
\operatorname{minimize}_{w}\left(\|\mathbf{X} w-y\|^{2}\right)
$$

where the squared norm is the loss that we try to minimize, and it is called the least squares problem.

2 Minimization

To minimize our loss, we can use coordinate descent. It starts with an initial random guess for w, and there is a set of k outer iterations. For the purpose of this project, we will initialize w as a vector of $0^{\prime} s$. In each outer iteration, it iterates m times in order to optimize the value of the objective function with respect to w_{i} variable only, while keeping all the rest fixed.

$$
w_{i}^{n e w}=\operatorname{argmin}_{w_{i}}\left(\|\mathbf{X} w-y\|^{2}\right), \text { for } \quad i=1,2, \ldots m
$$

This optimization is performed by taking the partial derivative of our loss function with respect to w_{i} and setting it to 0 . Then we solve that for w_{i} and that will become the updated value for w_{i}. More specifically, the updates are derived as follows:

$$
\begin{gathered}
\nabla_{w_{i}}\left(\|\mathbf{X} w-y\|^{2}\right)=2 \mathbf{X}_{i}^{T}(\mathbf{X} w-y)=0 \\
\Rightarrow \mathbf{X}_{i}^{T}\left(\mathbf{X}_{i} w_{i}+\mathbf{X}_{-i} w_{-i}-y\right)=0 \\
\quad \Rightarrow w_{i}=\frac{\mathbf{X}_{i}^{T}\left(y-\mathbf{X}_{-i} w_{-i}\right)}{\mathbf{X}_{i}^{T} \mathbf{X}_{i}}
\end{gathered}
$$

The \mathbf{X}_{i} is the i th column of \mathbf{X}, and w_{i} is the i th element of w. The subscript $-i$ indicates that the $n \times(m-1)$ matrix \mathbf{X}_{-i} is the matrix \mathbf{X} if we exclude column i, and correspondingly, the $(m-1) \times 1$ vector w_{-i} is the w without the i th element.

For the purpose of this assignment, we will run a fixed k number of outer iterations, which will be given as a command line argument. Your program should also output the model loss $\left(\|\mathbf{X} w-y\|^{2}\right)$ to the standard output after each outer iteration.

