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Elements of a Parallel Computer

m Hardware

Multiple Processors

Multiple Memories

Interconnection Network
m System Software

Parallel Operating System

Programming Constructs to Express/Orchestrate Concurrency
m Application Software

Parallel Algorithms

Goal:
Utilize the Hardware, System, & Application Software to either
Achieve Speedup: S = T4/Tp;
Solve problems requiring a large amount of memory.
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Parallel Computing Platform

m Logical Organization

The user’s view of the machine as it is being
presented via its system software

m Physical Organization
The actual hardware architecture

m Physical Architecture is to a large extent
independent of the Logical Architecture



Logical Organization

m Control Mechanism

SISD/SIMD/MIMD/MISD

= Single/Multiple Instruction Stream
& Single/Multiple Data Stream

SPMD:

Single Program Multiple Data

Elements

PE: Processing Element

Global
control

unit
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Figure 2.3 Atypical SIMD architecture (a) and a typical MIMD architecture (b).
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Figure 2.4 Executing a conditional statement on an SIMD computer with four processors: (a) the
conditional statement; (b) the execution of the statement in two steps.
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Logical Organization Elements

m Communication Model

Shared-Address Space Message-Passing
x UMA/NUMA/ccNUMA
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Figure 2.5 Typical shared-address-space architectures: (a) Uniform-memory-access shared-
address-space computer; (b) Uniform-memory-access shared-address-space computer with caches
and memories; (c) Non-uniform-memory-access shared-address-space computer with local memory
only.
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Physical Organization

m |[deal Parallel Computer Architecture
PRAM: Parallel Random Access Machine

m PRAM Models
EREW/ERCW/CREW/CRCW

m Exclusive/Concurrent Read and/or Write

Concurrent Writes are resolved via
s Common/Arbitrary/Priority/Sum



Physical Organization

m Interconnection Networks (ICNs)

Provide processor-to-processor and processor-to-memory
connections

Networks are classified as:

m Static L] Dynamic
Consist of a number of The network consists of
point-to-point links switching elements that the

various processors attach to
m indirect network
Historically used to link Historically used to link
processors-to-processors processors-to-memory
a distributed-memory m shared-memory systems

system

m direct network
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Static & Dynamic ICNs

Static network Indirect network

A
\
A
\
N\
N
N /
\\ /,
~ -
\\\‘ e

Network interface/switch

/ Switching element
Processing node

Figure 2.6 Classification of interconnection networks: (a) a static network; and (b) a dynamic
network.
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Evaluation Metrics for ICNs

m Diameter
The maximum distance between any two nodes
m  Smaller the better.
m  Connectivity

The minimum number of arcs that must be removed to break it into two
disconnected networks

m Larger the better
Measures the multiplicity of paths

m Bisection width

The minimum number of arcs that must be removed to partition the network into
two equal halves.

m Larger the better
m Bisection bandwidth

Applies to networks with weighted arcs—weights correspond to the link width
(how much data it can transfer)

The minimum volume of communication allowed between any two halves of a
network

m Larger the better
m Cost

The number of links in the network
m Smaller the better
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Metrics and Dynamic Networks

Figure 2.20 Bisection width of a dynamic network is computed by examining various equi-
partitions of the processing nodes and selecting the minimum number of edges crossing the par-
tition. In this case, each partition yields an edge cut of four. Therefore, the bisection width of this
graph is four.



Network Topologies

m Bus-Based
Networks

Shared medium

Information is being
broadcasted

Evaluation:
= Diameter: O(1)
» Connectivity: O(1)
» Bisection width: O(1)
m Cost: O(p)
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Network Topologies

m Crossbar Networks

Switch-based network e
Supports simultaneous DO e L A switching
connections SR N T .
Evaluation: =

m Diameter: O(1) ; ]

» Connectivity: O(1)? E B

m Bisection width: O(p)? £ .

= Cost: O(p?) T
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Network Topologies

m Multistage Interconnection Networks

Processors Multistage interconnection network Memory banks
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Figure 2.9 The schematic of a typical multistage interconnection network.



Multistage Switch Architecture
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A complete omega network connecting eight inputs and eight outputs.
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Connecting the Various Stages

000 O 0 000 = lett_rotate(000)
001 001 = left rotate(100)
010 010 = left rotate(001)
011 011 =left rotate(101)
100 100 = left rotate(010)
101 101 = left rotate(110)
110 110 = left rotate(011)
17 7 111 =left rotate(111)

Figure 2.10 A perfect shuffle interconnection for eight inputs and outputs.
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Blocking in a Multistage Switch

Routing is done by comparing the bit-level
representation of source and destination addresses.
-match goes via pass-through

-mismatch goes via cross-over

000 000
001 001
010 010
011 |\ B, N\ 011
100 h - ,//' \\\ ,,,,,,,,, ——————— 100
101 PIIREN N \ 101
1o~ N 110
111 R 111

Figure 2.13  An example of blocking in omega network: one of the messages (010 to 111 or 110
to 100) is blocked at link AB.
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Dragonfly networks

Take advantage of high-radix switches
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Figure 3. (a) Block diagram of a group (virtual router) and (b) high-level block diagram of a dragonfly topology composed of multiple
groups. gc; corresponds to global channels for inter-group connections and tc¢; corresponds to channels connected to the terminals (or
processors).



" J
Dragonfly networks

Take advantage of high-radix switches

— global link
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Figure 4. Scalability of the dragonfly topology as the router radix
(k) is increased.
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Network Topologies

m Complete and star-connected networks.
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Figure 2.14 (a) A completely-connected network of eight nodes; (b) a Star connected network of
nine nodes.
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Network Topologies

m Cartesian Topologies
O—O—0—0— O—0—0—0On
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Figure 2.15 Linear arrays: (a) with no wraparound links; (b) with wraparound link.
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Figure 2.16 Two and three dimensional meshes: (a) 2-D mesh with no wraparound; (b) 2-D mesh
with wraparound link (2-D torus); and (c) a 3-D mesh with no wraparound.
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Network Topologies

m Hypercubes
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Figure 2.17  Construction of hypercubes from hypercubes of lower dimension.



" J
Network Topologies

m [rees
O Processing nodes
/Q\ D Switching nodes
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Summary of Performance Metrics

Table 2.1 A summary of the characteristics of various static network topologies connecting p

nodes.
Bisection  Arc Cost

Network Diameter Width Connectivity  (No. of links)
Completely-connected 1 p? /4 p—1 p(p—1)/2
Star 2 1 1 p—1
Complete binary tree 2log((p+1)/2) 1 1 p—1
Linear array p—1 1 1 p—1
2-D mesh, no wraparound  2(,/p — 1) N/ 2 2(p —J/P)
2-D wraparound mesh 21/p/2] 2./p 4 2p
Hypercube log p p/2 log p (plogp)/2
Wraparound k-ary d-cube  d|k/2] 2k4-1 2d dp

Table 2.2 A summary of the characteristics of various dynamic network topologies connecting p
processing nodes.

Bisection  Arc Cost
Network Diameter Width Connectivity  (No. of links)
Crossbar 1 )% 1 2

p
Omega Network  log p p/2 2 PR < 14 log(p)
Dynamic Tree 2logp 1 2 p—1
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Topology Embeddings

m Mapping between networks

Useful in the early days of parallel computing
when topology specific algorithms were being
developed.

m Embedding quality metrics

dilation
= maximum number of lines an edge is mapped to

congestion

= maximum number of edges mapped on a single
link
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Mapping a Cartesian Topology
onto a Hypercube

1-bit Gray code 2-bit Gray code  3-bit Gray code 3-D hypercube  8—processor ring
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Figure 2.30 (a) A three-bit reflected Gray code ring; and (b) its embedding into a three-dimensional
hypercube.
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Mapping a Cartesian Topology
onto a Hypercube
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Figure 2.31 (a) A 4 x 4 mesh illustrating the mapping of mesh nodes to the nodes in a four-
dimensional hypercube; and (b) a 2 x 4 mesh embedded into a three-dimensional hypercube.
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Routing Mechanisms

m Routing:
The algorithm used to determine the path that
a message will take to go from the source to
destination

m Can be classified along different

dimensions

minimal vs non-minimal
deterministic vs adaptive
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Dimension Ordered Routing

m There is a predefined ordering of the dimensions
m Messages are routed along the dimensions in that order
until they cannot move any further
X-Y routing for meshes
E-cube routine for hypercubes

Step 1 {010—=116y Step 2 (HO—=—H1H-
010 —» 011 011 - 111

Figure 2.28 Routing a message from node P (010) to node P; (111) in a three-dimensional
hypercube using E-cube routing.
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Physical Organization

m Cache Coherence in Shared Memory
Systems
A certain level of consistency must be

maintained for multiple copies of the same
data

Required to ensure proper semantics and
correct program execution

m serializability

Two general protocols for dealing with it
= invalidate & update



Invalidate/Update Protocols

PO Pl PO Pl
load x load x write #3, x
‘- )
Invalidate
Memory Memory
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load x load x write #3, x
X =1 x =1 X =3 X =3
x =1 X =3
Update
Memory Memory
(b)
Figure 2.21 Cache coherence in multiprocessor systems: (a) Invalidate protocol; (b) Update pro-

tocol for shared variables.
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Invalidate/Update Protocols

m The preferred scheme depends on the
characteristics of the underlying application

frequency of reads/writes to shared variables

m Classical trade-off between communication
overhead (updates) and idling (stalling in
invalidates)

m Additional problems with false sharing

m Existing schemes are based on the invalidate
protocol

A number of approaches have been developed for
maintaining the state/ownership of the shared data
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Communication Costs in Parallel
Systems

m Message-Passing Systems

The communication cost of a data-transfer
operation depends on:
n start-up time: £,

add headers/trailer, error-correction, execute the routing

algorithm, establish the connection between source &
destination

m per-hop time: ¢,
time to travel between two directly connected nodes.
= node latency

m per-word transfer time: t,,
1/channel-width



Store-and-Forward & Cut-Through

Routing
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(a) A single message sent over a
store-and-forward network

(b) The same message broken into two parts

and sent over the network.

(¢) The same message broken into four parts

and sent over the network.

teomm = ts + (mty, + ty)l.

teomm = ls + mlty,.

teomm = ts + Ity + tym.
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Communication Model Used for
this Class

m \We will assume that the cost of sending a
message of size m is:

lcomm = Is + lLym

m [n general, true because t, is much larger
than ¢, and for most of the algorithms that
we will study mt, is much larger than /t,



