
CHAPTER 2

Parallel Programming
Platforms

The traditional logical view of a sequential computer consists of a memory connected to
a processor via a datapath. All three components – processor, memory, and datapath –
present bottlenecks to the overall processing rate of a computer system. A number of
architectural innovations over the years have addressed these bottlenecks. One of the most
important innovations is multiplicity – in processing units, datapaths, and memory units.
This multiplicity is either entirely hidden from the programmer, as in the case of implicit
parallelism, or exposed to the programmer in different forms. In this chapter, we present
an overview of important architectural concepts as they relate to parallel processing. The
objective is to provide sufficient detail for programmers to be able to write efficient code
on a variety of platforms. We develop cost models and abstractions for quantifying the
performance of various parallel algorithms, and identify bottlenecks resulting from various
programming constructs.

We start our discussion of parallel platforms with an overview of serial and implicitly
parallel architectures. This is necessitated by the fact that it is often possible to re-engineer
codes to achieve significant speedups (2× to 5× unoptimized speed) using simple program
transformations. Parallelizing sub-optimal serial codes often has undesirable effects of un-
reliable speedups and misleading runtimes. For this reason, we advocate optimizing serial
performance of codes before attempting parallelization. As we shall demonstrate through
this chapter, the tasks of serial and parallel optimization often have very similar charac-
teristics. After discussing serial and implicitly parallel architectures, we devote the rest of
this chapter to organization of parallel platforms, underlying cost models for algorithms,
and platform abstractions for portable algorithm design. Readers wishing to delve directly
into parallel architectures may choose to skip Sections 2.1 and 2.2.
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2.1 Implicit Parallelism: Trends in Microprocessor
Architectures*

While microprocessor technology has delivered significant improvements in clock speeds
over the past decade, it has also exposed a variety of other performance bottlenecks. To al-
leviate these bottlenecks, microprocessor designers have explored alternate routes to cost-
effective performance gains. In this section, we will outline some of these trends with a
view to understanding their limitations and how they impact algorithm and code devel-
opment. The objective here is not to provide a comprehensive description of processor
architectures. There are several excellent texts referenced in the bibliography that address
this topic.

Clock speeds of microprocessors have posted impressive gains - two to three orders of
magnitude over the past 20 years. However, these increments in clock speed are severely
diluted by the limitations of memory technology. At the same time, higher levels of device
integration have also resulted in a very large transistor count, raising the obvious issue
of how best to utilize them. Consequently, techniques that enable execution of multiple
instructions in a single clock cycle have become popular. Indeed, this trend is evident in
the current generation of microprocessors such as the Itanium, Sparc Ultra, MIPS, and
Power4. In this section, we briefly explore mechanisms used by various processors for
supporting multiple instruction execution.

2.1.1 Pipelining and Superscalar Execution

Processors have long relied on pipelines for improving execution rates. By overlapping var-
ious stages in instruction execution (fetch, schedule, decode, operand fetch, execute, store,
among others), pipelining enables faster execution. The assembly-line analogy works well
for understanding pipelines. If the assembly of a car, taking 100 time units, can be bro-
ken into 10 pipelined stages of 10 units each, a single assembly line can produce a car
every 10 time units! This represents a 10-fold speedup over producing cars entirely se-
rially, one after the other. It is also evident from this example that to increase the speed
of a single pipeline, one would break down the tasks into smaller and smaller units, thus
lengthening the pipeline and increasing overlap in execution. In the context of processors,
this enables faster clock rates since the tasks are now smaller. For example, the Pentium
4, which operates at 2.0 GHz, has a 20 stage pipeline. Note that the speed of a single
pipeline is ultimately limited by the largest atomic task in the pipeline. Furthermore, in
typical instruction traces, every fifth to sixth instruction is a branch instruction. Long in-
struction pipelines therefore need effective techniques for predicting branch destinations so
that pipelines can be speculatively filled. The penalty of a misprediction increases as the
pipelines become deeper since a larger number of instructions need to be flushed. These
factors place limitations on the depth of a processor pipeline and the resulting performance
gains.

An obvious way to improve instruction execution rate beyond this level is to use multiple
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pipelines. During each clock cycle, multiple instructions are piped into the processor in
parallel. These instructions are executed on multiple functional units. We illustrate this
process with the help of an example.

Example 2.1 Superscalar execution
Consider a processor with two pipelines and the ability to simultaneously issue two
instructions. These processors are sometimes also referred to as super-pipelined pro-
cessors. The ability of a processor to issue multiple instructions in the same cycle is
referred to as superscalar execution. Since the architecture illustrated in Figure 2.1
allows two issues per clock cycle, it is also referred to as two-way superscalar or dual
issue execution.

(i)

(a) Three different code fragments for adding a list of four numbers.

(iii)(ii)
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Figure 2.1 Example of a two-way superscalar execution of instructions.



14 Parallel Programming Platforms

Consider the execution of the first code fragment in Figure 2.1 for adding four
numbers. The first and second instructions are independent and therefore can be
issued concurrently. This is illustrated in the simultaneous issue of the instruc-
tions load R1, @1000 and load R2, @1008 at t = 0. The instructions
are fetched, decoded, and the operands are fetched. The next two instructions,
add R1, @1004 and add R2, @100C are also mutually independent, although
they must be executed after the first two instructions. Consequently, they can be is-
sued concurrently at t = 1 since the processors are pipelined. These instructions ter-
minate at t = 5. The next two instructions, add R1, R2 and store R1, @2000

cannot be executed concurrently since the result of the former (contents of register
R1) is used by the latter. Therefore, only the add instruction is issued at t = 2
and the store instruction at t = 3. Note that the instruction add R1, R2 can be
executed only after the previous two instructions have been executed. The instruc-
tion schedule is illustrated in Figure 2.1(b). The schedule assumes that each memory
access takes a single cycle. In reality, this may not be the case. The implications of
this assumption are discussed in Section 2.2 on memory system performance.

In principle, superscalar execution seems natural, even simple. However, a number of
issues need to be resolved. First, as illustrated in Example 2.1, instructions in a program
may be related to each other. The results of an instruction may be required for subsequent
instructions. This is referred to as true data dependency. For instance, consider the second
code fragment in Figure 2.1 for adding four numbers. There is a true data dependency
between load R1, @1000 and add R1, @1004, and similarly between subsequent
instructions. Dependencies of this type must be resolved before simultaneous issue of
instructions. This has two implications. First, since the resolution is done at runtime, it
must be supported in hardware. The complexity of this hardware can be high. Second, the
amount of instruction level parallelism in a program is often limited and is a function of
coding technique. In the second code fragment, there can be no simultaneous issue, leading
to poor resource utilization. The three code fragments in Figure 2.1(a) also illustrate that
in many cases it is possible to extract more parallelism by reordering the instructions and
by altering the code. Notice that in this example the code reorganization corresponds to
exposing parallelism in a form that can be used by the instruction issue mechanism.

Another source of dependency between instructions results from the finite resources
shared by various pipelines. As an example, consider the co-scheduling of two floating
point operations on a dual issue machine with a single floating point unit. Although there
might be no data dependencies between the instructions, they cannot be scheduled together
since both need the floating point unit. This form of dependency in which two instructions
compete for a single processor resource is referred to as resource dependency.

The flow of control through a program enforces a third form of dependency between
instructions. Consider the execution of a conditional branch instruction. Since the branch
destination is known only at the point of execution, scheduling instructions a priori across
branches may lead to errors. These dependencies are referred to as branch dependencies
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or procedural dependencies and are typically handled by speculatively scheduling across
branches and rolling back in case of errors. Studies of typical traces have shown that on
average, a branch instruction is encountered between every five to six instructions. There-
fore, just as in populating instruction pipelines, accurate branch prediction is critical for
efficient superscalar execution.

The ability of a processor to detect and schedule concurrent instructions is critical to
superscalar performance. For instance, consider the third code fragment in Figure 2.1
which also computes the sum of four numbers. The reader will note that this is merely
a semantically equivalent reordering of the first code fragment. However, in this case,
there is a data dependency between the first two instructions – load R1, @1000 and
add R1, @1004. Therefore, these instructions cannot be issued simultaneously. How-
ever, if the processor had the ability to look ahead, it would realize that it is possible to
schedule the third instruction – load R2, @1008 – with the first instruction. In the
next issue cycle, instructions two and four can be scheduled, and so on. In this way, the
same execution schedule can be derived for the first and third code fragments. However,
the processor needs the ability to issue instructions out-of-order to accomplish desired re-
ordering. The parallelism available in in-order issue of instructions can be highly limited
as illustrated by this example. Most current microprocessors are capable of out-of-order
issue and completion. This model, also referred to as dynamic instruction issue, exploits
maximum instruction level parallelism. The processor uses a window of instructions from
which it selects instructions for simultaneous issue. This window corresponds to the look-
ahead of the scheduler.

The performance of superscalar architectures is limited by the available instruction level
parallelism. Consider the example in Figure 2.1. For simplicity of discussion, let us ignore
the pipelining aspects of the example and focus on the execution aspects of the program.
Assuming two execution units (multiply-add units), the figure illustrates that there are sev-
eral zero-issue cycles (cycles in which the floating point unit is idle). These are essentially
wasted cycles from the point of view of the execution unit. If, during a particular cycle, no
instructions are issued on the execution units, it is referred to as vertical waste; if only part
of the execution units are used during a cycle, it is termed horizontal waste. In the exam-
ple, we have two cycles of vertical waste and one cycle with horizontal waste. In all, only
three of the eight available cycles are used for computation. This implies that the code frag-
ment will yield no more than three-eighths of the peak rated FLOP count of the processor.
Often, due to limited parallelism, resource dependencies, or the inability of a processor
to extract parallelism, the resources of superscalar processors are heavily under-utilized.
Current microprocessors typically support up to four-issue superscalar execution.

2.1.2 Very Long Instruction Word Processors

The parallelism extracted by superscalar processors is often limited by the instruction look-
ahead. The hardware logic for dynamic dependency analysis is typically in the range of
5-10% of the total logic on conventional microprocessors (about 5% on the four-way super-
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scalar Sun UltraSPARC). This complexity grows roughly quadratically with the number of
issues and can become a bottleneck. An alternate concept for exploiting instruction-level
parallelism used in very long instruction word (VLIW) processors relies on the compiler
to resolve dependencies and resource availability at compile time. Instructions that can be
executed concurrently are packed into groups and parceled off to the processor as a single
long instruction word (thus the name) to be executed on multiple functional units at the
same time.

The VLIW concept, first used in Multiflow Trace (circa 1984) and subsequently as a
variant in the Intel IA64 architecture, has both advantages and disadvantages compared to
superscalar processors. Since scheduling is done in software, the decoding and instruc-
tion issue mechanisms are simpler in VLIW processors. The compiler has a larger context
from which to select instructions and can use a variety of transformations to optimize
parallelism when compared to a hardware issue unit. Additional parallel instructions are
typically made available to the compiler to control parallel execution. However, compilers
do not have the dynamic program state (e.g., the branch history buffer) available to make
scheduling decisions. This reduces the accuracy of branch and memory prediction, but al-
lows the use of more sophisticated static prediction schemes. Other runtime situations such
as stalls on data fetch because of cache misses are extremely difficult to predict accurately.
This limits the scope and performance of static compiler-based scheduling.

Finally, the performance of VLIW processors is very sensitive to the compilers’ abil-
ity to detect data and resource dependencies and read and write hazards, and to schedule
instructions for maximum parallelism. Loop unrolling, branch prediction and speculative
execution all play important roles in the performance of VLIW processors. While super-
scalar and VLIW processors have been successful in exploiting implicit parallelism, they
are generally limited to smaller scales of concurrency in the range of four- to eight-way
parallelism.

2.2 Limitations of Memory System Performance*

The effective performance of a program on a computer relies not just on the speed of the
processor but also on the ability of the memory system to feed data to the processor. At the
logical level, a memory system, possibly consisting of multiple levels of caches, takes in a
request for a memory word and returns a block of data of size b containing the requested
word after l nanoseconds. Here, l is referred to as the latency of the memory. The rate at
which data can be pumped from the memory to the processor determines the bandwidth of
the memory system.

It is very important to understand the difference between latency and bandwidth since
different, often competing, techniques are required for addressing these. As an analogy,
if water comes out of the end of a fire hose 2 seconds after a hydrant is turned on, then
the latency of the system is 2 seconds. Once the flow starts, if the hose pumps water at
1 gallon/second then the ‘bandwidth’ of the hose is 1 gallon/second. If we need to put
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out a fire immediately, we might desire a lower latency. This would typically require
higher water pressure from the hydrant. On the other hand, if we wish to fight bigger fires,
we might desire a higher flow rate, necessitating a wider hose and hydrant. As we shall
see here, this analogy works well for memory systems as well. Latency and bandwidth
both play critical roles in determining memory system performance. We examine these
separately in greater detail using a few examples.

To study the effect of memory system latency, we assume in the following examples
that a memory block consists of one word. We later relax this assumption while examining
the role of memory bandwidth. Since we are primarily interested in maximum achievable
performance, we also assume the best case cache-replacement policy. We refer the reader
to the bibliography for a detailed discussion of memory system design.

Example 2.2 Effect of memory latency on performance
Consider a processor operating at 1 GHz (1 ns clock) connected to a DRAM with a
latency of 100 ns (no caches). Assume that the processor has two multiply-add units
and is capable of executing four instructions in each cycle of 1 ns. The peak processor
rating is therefore 4 GFLOPS. Since the memory latency is equal to 100 cycles and
block size is one word, every time a memory request is made, the processor must wait
100 cycles before it can process the data. Consider the problem of computing the dot-
product of two vectors on such a platform. A dot-product computation performs one
multiply-add on a single pair of vector elements, i.e., each floating point operation
requires one data fetch. It is easy to see that the peak speed of this computation is
limited to one floating point operation every 100 ns, or a speed of 10 MFLOPS, a
very small fraction of the peak processor rating. This example highlights the need
for effective memory system performance in achieving high computation rates.

2.2.1 Improving Effective Memory Latency Using Caches

Handling the mismatch in processor and DRAM speeds has motivated a number of archi-
tectural innovations in memory system design. One such innovation addresses the speed
mismatch by placing a smaller and faster memory between the processor and the DRAM.
This memory, referred to as the cache, acts as a low-latency high-bandwidth storage. The
data needed by the processor is first fetched into the cache. All subsequent accesses to
data items residing in the cache are serviced by the cache. Thus, in principle, if a piece of
data is repeatedly used, the effective latency of this memory system can be reduced by the
cache. The fraction of data references satisfied by the cache is called the cache hit ratio
of the computation on the system. The effective computation rate of many applications
is bounded not by the processing rate of the CPU, but by the rate at which data can be
pumped into the CPU. Such computations are referred to as being memory bound. The
performance of memory bound programs is critically impacted by the cache hit ratio.
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Example 2.3 Impact of caches on memory system performance
As in the previous example, consider a 1 GHz processor with a 100 ns latency
DRAM. In this case, we introduce a cache of size 32 KB with a latency of 1 ns
or one cycle (typically on the processor itself). We use this setup to multiply two
matrices A and B of dimensions 32 × 32. We have carefully chosen these numbers
so that the cache is large enough to store matrices A and B, as well as the result
matrix C . Once again, we assume an ideal cache placement strategy in which none
of the data items are overwritten by others. Fetching the two matrices into the cache
corresponds to fetching 2K words, which takes approximately 200 µs. We know
from elementary algorithmics that multiplying two n × n matrices takes 2n3 opera-
tions. For our problem, this corresponds to 64K operations, which can be performed
in 16K cycles (or 16 µs) at four instructions per cycle. The total time for the com-
putation is therefore approximately the sum of time for load/store operations and the
time for the computation itself, i.e., 200+16 µs. This corresponds to a peak compu-
tation rate of 64K/216 or 303 MFLOPS. Note that this is a thirty-fold improvement
over the previous example, although it is still less than 10% of the peak processor
performance. We see in this example that by placing a small cache memory, we are
able to improve processor utilization considerably.

The improvement in performance resulting from the presence of the cache is based
on the assumption that there is repeated reference to the same data item. This notion of
repeated reference to a data item in a small time window is called temporal locality of
reference. In our example, we had O(n2) data accesses and O(n3) computation. (See
the Appendix for an explanation of the O notation.) Data reuse is critical for cache per-
formance because if each data item is used only once, it would still have to be fetched
once per use from the DRAM, and therefore the DRAM latency would be paid for each
operation.

2.2.2 Impact of Memory Bandwidth

Memory bandwidth refers to the rate at which data can be moved between the processor
and memory. It is determined by the bandwidth of the memory bus as well as the memory
units. One commonly used technique to improve memory bandwidth is to increase the size
of the memory blocks. For an illustration, let us relax our simplifying restriction on the
size of the memory block and assume that a single memory request returns a contiguous
block of four words. The single unit of four words in this case is also referred to as a cache
line. Conventional computers typically fetch two to eight words together into the cache.
We will see how this helps the performance of applications for which data reuse is limited.

Example 2.4 Effect of block size: dot-product of two vectors
Consider again a memory system with a single cycle cache and 100 cycle latency
DRAM with the processor operating at 1 GHz. If the block size is one word, the pro-
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cessor takes 100 cycles to fetch each word. For each pair of words, the dot-product
performs one multiply-add, i.e., two FLOPs. Therefore, the algorithm performs one
FLOP every 100 cycles for a peak speed of 10 MFLOPS as illustrated in Exam-
ple 2.2.

Now let us consider what happens if the block size is increased to four words,
i.e., the processor can fetch a four-word cache line every 100 cycles. Assuming that
the vectors are laid out linearly in memory, eight FLOPs (four multiply-adds) can
be performed in 200 cycles. This is because a single memory access fetches four
consecutive words in the vector. Therefore, two accesses can fetch four elements of
each of the vectors. This corresponds to a FLOP every 25 ns, for a peak speed of 40
MFLOPS. Note that increasing the block size from one to four words did not change
the latency of the memory system. However, it increased the bandwidth four-fold.
In this case, the increased bandwidth of the memory system enabled us to accelerate
the dot-product algorithm which has no data reuse at all.

Another way of quickly estimating performance bounds is to estimate the
cache hit ratio, using it to compute mean access time per word, and relating this
to the FLOP rate via the underlying algorithm. For example, in this example, there
are two DRAM accesses (cache misses) for every eight data accesses required by the
algorithm. This corresponds to a cache hit ratio of 75%. Assuming that the dominant
overhead is posed by the cache misses, the average memory access time contributed
by the misses is 25% at 100 ns (or 25 ns/word). Since the dot-product has one op-
eration/word, this corresponds to a computation rate of 40 MFLOPS as before. A
more accurate estimate of this rate would compute the average memory access time
as 0.75 × 1 + 0.25 × 100 or 25.75 ns/word. The corresponding computation rate is
38.8 MFLOPS.

Physically, the scenario illustrated in Example 2.4 corresponds to a wide data bus (4
words or 128 bits) connected to multiple memory banks. In practice, such wide buses
are expensive to construct. In a more practical system, consecutive words are sent on the
memory bus on subsequent bus cycles after the first word is retrieved. For example, with
a 32 bit data bus, the first word is put on the bus after 100 ns (the associated latency) and
one word is put on each subsequent bus cycle. This changes our calculations above slightly
since the entire cache line becomes available only after 100 + 3 × (memory bus cycle) ns.
Assuming a data bus operating at 200 MHz, this adds 15 ns to the cache line access time.
This does not change our bound on the execution rate significantly.

The above examples clearly illustrate how increased bandwidth results in higher peak
computation rates. They also make certain assumptions that have significance for the pro-
grammer. The data layouts were assumed to be such that consecutive data words in mem-
ory were used by successive instructions. In other words, if we take a computation-centric
view, there is a spatial locality of memory access. If we take a data-layout centric point
of view, the computation is ordered so that successive computations require contiguous
data. If the computation (or access pattern) does not have spatial locality, then effective
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bandwidth can be much smaller than the peak bandwidth.
An example of such an access pattern is in reading a dense matrix column-wise when the

matrix has been stored in a row-major fashion in memory. Compilers can often be relied
on to do a good job of restructuring computation to take advantage of spatial locality.

Example 2.5 Impact of strided access
Consider the following code fragment:

1 for (i = 0; i < 1000; i++)
2 column_sum[i] = 0.0;
3 for (j = 0; j < 1000; j++)
4 column_sum[i] += b[j][i];

The code fragment sums columns of the matrix b into a vector column_sum. There
are two observations that can be made: (i) the vector column_sum is small and
easily fits into the cache; and (ii) the matrix b is accessed in a column order as
illustrated in Figure 2.2(a). For a matrix of size 1000 × 1000, stored in a row-major
order, this corresponds to accessing every 1000th entry. Therefore, it is likely that
only one word in each cache line fetched from memory will be used. Consequently,
the code fragment as written above is likely to yield poor performance.

(a) Column major data access

A b A

=

b A b A b

+ + +

(b) Row major data access.

A b A b A b A b

= = = =

Figure 2.2 Multiplying a matrix with a vector: (a) multiplying column-by-column, keeping a running
sum; (b) computing each element of the result as a dot product of a row of the matrix with the vector.

The above example illustrates problems with strided access (with strides greater than
one). The lack of spatial locality in computation causes poor memory system performance.
Often it is possible to restructure the computation to remove strided access. In the case of
our example, a simple rewrite of the loops is possible as follows:
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Example 2.6 Eliminating strided access
Consider the following restructuring of the column-sum fragment:

1 for (i = 0; i < 1000; i++)
2 column_sum[i] = 0.0;
3 for (j = 0; j < 1000; j++)
4 for (i = 0; i < 1000; i++)
5 column_sum[i] += b[j][i];

In this case, the matrix is traversed in a row-order as illustrated in Figure 2.2(b).
However, the reader will note that this code fragment relies on the fact that the vec-
tor column_sum can be retained in the cache through the loops. Indeed, for this
particular example, our assumption is reasonable. If the vector is larger, we would
have to break the iteration space into blocks and compute the product one block at a
time. This concept is also called tiling an iteration space. The improved performance
of this loop is left as an exercise for the reader.

So the next question is whether we have effectively solved the problems posed by mem-
ory latency and bandwidth. While peak processor rates have grown significantly over the
past decades, memory latency and bandwidth have not kept pace with this increase. Con-
sequently, for typical computers, the ratio of peak FLOPS rate to peak memory bandwidth
is anywhere between 1 MFLOPS/MBs (the ratio signifies FLOPS per megabyte/second
of bandwidth) to 100 MFLOPS/MBs. The lower figure typically corresponds to large
scale vector supercomputers and the higher figure to fast microprocessor based computers.
This figure is very revealing in that it tells us that on average, a word must be reused 100
times after being fetched into the full bandwidth storage (typically L1 cache) to be able
to achieve full processor utilization. Here, we define full-bandwidth as the rate of data
transfer required by a computation to make it processor bound.

The series of examples presented in this section illustrate the following concepts:

• Exploiting spatial and temporal locality in applications is critical for amortizing
memory latency and increasing effective memory bandwidth.

• Certain applications have inherently greater temporal locality than others, and thus
have greater tolerance to low memory bandwidth. The ratio of the number of oper-
ations to number of memory accesses is a good indicator of anticipated tolerance to
memory bandwidth.

• Memory layouts and organizing computation appropriately can make a significant
impact on the spatial and temporal locality.

2.2.3 Alternate Approaches for Hiding Memory Latency

Imagine sitting at your computer browsing the web during peak network traffic hours. The
lack of response from your browser can be alleviated using one of three simple approaches:
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(i) we anticipate which pages we are going to browse ahead of time and issue requests
for them in advance; (ii) we open multiple browsers and access different pages in each
browser, thus while we are waiting for one page to load, we could be reading others; or
(iii) we access a whole bunch of pages in one go – amortizing the latency across various
accesses. The first approach is called prefetching, the second multithreading, and the third
one corresponds to spatial locality in accessing memory words. Of these three approaches,
spatial locality of memory accesses has been discussed before. We focus on prefetching
and multithreading as techniques for latency hiding in this section.

Multithreading for Latency Hiding

A thread is a single stream of control in the flow of a program. We illustrate threads with a
simple example:

Example 2.7 Threaded execution of matrix multiplication
Consider the following code segment for multiplying an n × n matrix a by a vector
b to get vector c.

1 for (i = 0; i < n; i++)
2 c[i] = dot_product(get_row(a, i), b);

This code computes each element of c as the dot product of the corresponding
row of a with the vector b. Notice that each dot-product is independent of the other,
and therefore represents a concurrent unit of execution. We can safely rewrite the
above code segment as:

1 for (i = 0; i < n; i++)
2 c[i] = create_thread(dot_product, get_row(a, i), b);

The only difference between the two code segments is that we have explicitly
specified each instance of the dot-product computation as being a thread. (As we
shall learn in Chapter 7, there are a number of APIs for specifying threads. We have
simply chosen an intuitive name for a function to create threads.) Now, consider the
execution of each instance of the function dot product. The first instance of this
function accesses a pair of vector elements and waits for them. In the meantime,
the second instance of this function can access two other vector elements in the next
cycle, and so on. After l units of time, where l is the latency of the memory system,
the first function instance gets the requested data from memory and can perform the
required computation. In the next cycle, the data items for the next function instance
arrive, and so on. In this way, in every clock cycle, we can perform a computation.

The execution schedule in Example 2.7 is predicated upon two assumptions: the mem-
ory system is capable of servicing multiple outstanding requests, and the processor is ca-
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pable of switching threads at every cycle. In addition, it also requires the program to have
an explicit specification of concurrency in the form of threads. Multithreaded processors
are capable of maintaining the context of a number of threads of computation with out-
standing requests (memory accesses, I/O, or communication requests) and execute them
as the requests are satisfied. Machines such as the HEP and Tera rely on multithreaded
processors that can switch the context of execution in every cycle. Consequently, they are
able to hide latency effectively, provided there is enough concurrency (threads) to keep the
processor from idling. The tradeoffs between concurrency and latency will be a recurring
theme through many chapters of this text.

Prefetching for Latency Hiding

In a typical program, a data item is loaded and used by a processor in a small time window.
If the load results in a cache miss, then the use stalls. A simple solution to this problem is
to advance the load operation so that even if there is a cache miss, the data is likely to have
arrived by the time it is used. However, if the data item has been overwritten between load
and use, a fresh load is issued. Note that this is no worse than the situation in which the load
had not been advanced. A careful examination of this technique reveals that prefetching
works for much the same reason as multithreading. In advancing the loads, we are trying
to identify independent threads of execution that have no resource dependency (i.e., use the
same registers) with respect to other threads. Many compilers aggressively try to advance
loads to mask memory system latency.

Example 2.8 Hiding latency by prefetching
Consider the problem of adding two vectors a and b using a single for loop. In the
first iteration of the loop, the processor requests a[0] and b[0]. Since these are
not in the cache, the processor must pay the memory latency. While these requests
are being serviced, the processor also requests a[1] and b[1]. Assuming that each
request is generated in one cycle (1 ns) and memory requests are satisfied in 100 ns,
after 100 such requests the first set of data items is returned by the memory system.
Subsequently, one pair of vector components will be returned every cycle. In this
way, in each subsequent cycle, one addition can be performed and processor cycles
are not wasted.

2.2.4 Tradeoffs of Multithreading and Prefetching

While it might seem that multithreading and prefetching solve all the problems related to
memory system performance, they are critically impacted by the memory bandwidth.

Example 2.9 Impact of bandwidth on multithreaded programs
Consider a computation running on a machine with a 1 GHz clock, 4-word cache line,
single cycle access to the cache, and 100 ns latency to DRAM. The computation has
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a cache hit ratio at 1 KB of 25% and at 32 KB of 90%. Consider two cases: first, a
single threaded execution in which the entire cache is available to the serial context,
and second, a multithreaded execution with 32 threads where each thread has a cache
residency of 1 KB. If the computation makes one data request in every cycle of 1
ns, in the first case the bandwidth requirement to DRAM is one word every 10 ns
since the other words come from the cache (90% cache hit ratio). This corresponds
to a bandwidth of 400 MB/s. In the second case, the bandwidth requirement to
DRAM increases to three words every four cycles of each thread (25% cache hit
ratio). Assuming that all threads exhibit similar cache behavior, this corresponds to
0.75 words/ns, or 3 GB/s.

Example 2.9 illustrates a very important issue, namely that the bandwidth requirements
of a multithreaded system may increase very significantly because of the smaller cache
residency of each thread. In the example, while a sustained DRAM bandwidth of 400
MB/s is reasonable, 3.0 GB/s is more than most systems currently offer. At this point,
multithreaded systems become bandwidth bound instead of latency bound. It is important
to realize that multithreading and prefetching only address the latency problem and may
often exacerbate the bandwidth problem.

Another issue relates to the additional hardware resources required to effectively use
prefetching and multithreading. Consider a situation in which we have advanced 10 loads
into registers. These loads require 10 registers to be free for the duration. If an intervening
instruction overwrites the registers, we would have to load the data again. This would not
increase the latency of the fetch any more than the case in which there was no prefetch-
ing. However, now we are fetching the same data item twice, resulting in doubling of
the bandwidth requirement from the memory system. This situation is similar to the one
due to cache constraints as illustrated in Example 2.9. It can be alleviated by supporting
prefetching and multithreading with larger register files and caches.

2.3 Dichotomy of Parallel Computing Platforms

In the preceding sections, we pointed out various factors that impact the performance of
a serial or implicitly parallel program. The increasing gap in peak and sustainable per-
formance of current microprocessors, the impact of memory system performance, and the
distributed nature of many problems present overarching motivations for parallelism. We
now introduce, at a high level, the elements of parallel computing platforms that are critical
for performance oriented and portable parallel programming. To facilitate our discussion
of parallel platforms, we first explore a dichotomy based on the logical and physical or-
ganization of parallel platforms. The logical organization refers to a programmer’s view
of the platform while the physical organization refers to the actual hardware organization
of the platform. The two critical components of parallel computing from a programmer’s
perspective are ways of expressing parallel tasks and mechanisms for specifying interac-
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tion between these tasks. The former is sometimes also referred to as the control structure
and the latter as the communication model.

2.3.1 Control Structure of Parallel Platforms

Parallel tasks can be specified at various levels of granularity. At one extreme, each pro-
gram in a set of programs can be viewed as one parallel task. At the other extreme, in-
dividual instructions within a program can be viewed as parallel tasks. Between these
extremes lie a range of models for specifying the control structure of programs and the
corresponding architectural support for them.

Example 2.10 Parallelism from single instruction on multiple processors
Consider the following code segment that adds two vectors:

1 for (i = 0; i < 1000; i++)
2 c[i] = a[i] + b[i];

In this example, various iterations of the loop are independent of each other;
i.e., c[0] = a[0] + b[0]; c[1] = a[1] + b[1];, etc., can all be exe-
cuted independently of each other. Consequently, if there is a mechanism for exe-
cuting the same instruction, in this case add on all the processors with appropriate
data, we could execute this loop much faster.

Processing units in parallel computers either operate under the centralized control of a
single control unit or work independently. In architectures referred to as single instruction
stream, multiple data stream (SIMD), a single control unit dispatches instructions to each
processing unit. Figure 2.3(a) illustrates a typical SIMD architecture. In an SIMD parallel
computer, the same instruction is executed synchronously by all processing units. In Ex-
ample 2.10, the add instruction is dispatched to all processors and executed concurrently
by them. Some of the earliest parallel computers such as the Illiac IV, MPP, DAP, CM-2,
and MasPar MP-1 belonged to this class of machines. More recently, variants of this con-
cept have found use in co-processing units such as the MMX units in Intel processors and
DSP chips such as the Sharc. The Intel Pentium processor with its SSE (Streaming SIMD
Extensions) provides a number of instructions that execute the same instruction on mul-
tiple data items. These architectural enhancements rely on the highly structured (regular)
nature of the underlying computations, for example in image processing and graphics, to
deliver improved performance.

While the SIMD concept works well for structured computations on parallel data struc-
tures such as arrays, often it is necessary to selectively turn off operations on certain data
items. For this reason, most SIMD programming paradigms allow for an “activity mask”.
This is a binary mask associated with each data item and operation that specifies whether
it should participate in the operation or not. Primitives such as where (condition)
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Figure 2.3 A typical SIMD architecture (a) and a typical MIMD architecture (b).

then <stmnt> <elsewhere stmnt> are used to support selective execution. Con-
ditional execution can be detrimental to the performance of SIMD processors and therefore
must be used with care.

In contrast to SIMD architectures, computers in which each processing element is
capable of executing a different program independent of the other processing elements
are called multiple instruction stream, multiple data stream (MIMD) computers. Fig-
ure 2.3(b) depicts a typical MIMD computer. A simple variant of this model, called the
single program multiple data (SPMD) model, relies on multiple instances of the same
program executing on different data. It is easy to see that the SPMD model has the same
expressiveness as the MIMD model since each of the multiple programs can be inserted
into one large if-else block with conditions specified by the task identifiers. The SPMD
model is widely used by many parallel platforms and requires minimal architectural sup-
port. Examples of such platforms include the Sun Ultra Servers, multiprocessor PCs, work-
station clusters, and the IBM SP.

SIMD computers require less hardware than MIMD computers because they have only
one global control unit. Furthermore, SIMD computers require less memory because only
one copy of the program needs to be stored. In contrast, MIMD computers store the pro-
gram and operating system at each processor. However, the relative unpopularity of SIMD
processors as general purpose compute engines can be attributed to their specialized hard-
ware architectures, economic factors, design constraints, product life-cycle, and applica-
tion characteristics. In contrast, platforms supporting the SPMD paradigm can be built
from inexpensive off-the-shelf components with relatively little effort in a short amount of
time. SIMD computers require extensive design effort resulting in longer product devel-
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opment times. Since the underlying serial processors change so rapidly, SIMD computers
suffer from fast obsolescence. The irregular nature of many applications also makes SIMD
architectures less suitable. Example 2.11 illustrates a case in which SIMD architectures
yield poor resource utilization in the case of conditional execution.

Example 2.11 Execution of conditional statements on a SIMD architecture
Consider the execution of a conditional statement illustrated in Figure 2.4. The con-
ditional statement in Figure 2.4(a) is executed in two steps. In the first step, all
processors that have B equal to zero execute the instruction C = A. All other pro-
cessors are idle. In the second step, the ‘else’ part of the instruction (C = A/B) is
executed. The processors that were active in the first step now become idle. This
illustrates one of the drawbacks of SIMD architectures.

2.3.2 Communication Model of Parallel Platforms

There are two primary forms of data exchange between parallel tasks – accessing a shared
data space and exchanging messages.

Shared-Address-Space Platforms

The “shared-address-space” view of a parallel platform supports a common data space
that is accessible to all processors. Processors interact by modifying data objects stored
in this shared-address-space. Shared-address-space platforms supporting SPMD program-
ming are also referred to as multiprocessors. Memory in shared-address-space platforms
can be local (exclusive to a processor) or global (common to all processors). If the time
taken by a processor to access any memory word in the system (global or local) is iden-
tical, the platform is classified as a uniform memory access (UMA) multicomputer. On
the other hand, if the time taken to access certain memory words is longer than others, the
platform is called a non-uniform memory access (NUMA) multicomputer. Figures 2.5(a)
and (b) illustrate UMA platforms, whereas Figure 2.5(c) illustrates a NUMA platform.
An interesting case is illustrated in Figure 2.5(b). Here, it is faster to access a memory
word in cache than a location in memory. However, we still classify this as a UMA ar-
chitecture. The reason for this is that all current microprocessors have cache hierarchies.
Consequently, even a uniprocessor would not be termed UMA if cache access times are
considered. For this reason, we define NUMA and UMA architectures only in terms of
memory access times and not cache access times. Machines such as the SGI Origin 2000
and Sun Ultra HPC servers belong to the class of NUMA multiprocessors. The distinction
between UMA and NUMA platforms is important. If accessing local memory is cheaper
than accessing global memory, algorithms must build locality and structure data and com-
putation accordingly.

The presence of a global memory space makes programming such platforms much eas-
ier. All read-only interactions are invisible to the programmer, as they are coded no differ-
ently than in a serial program. This greatly eases the burden of writing parallel programs.
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Read/write interactions are, however, harder to program than the read-only interactions, as
these operations require mutual exclusion for concurrent accesses. Shared-address-space
programming paradigms such as threads (POSIX, NT) and directives (OpenMP) therefore
support synchronization using locks and related mechanisms.

The presence of caches on processors also raises the issue of multiple copies of a single
memory word being manipulated by two or more processors at the same time. Support-
ing a shared-address-space in this context involves two major tasks: providing an address
translation mechanism that locates a memory word in the system, and ensuring that concur-
rent operations on multiple copies of the same memory word have well-defined semantics.
The latter is also referred to as the cache coherence mechanism. This mechanism and its
implementation are discussed in greater detail in Section 2.4.6. Supporting cache coher-
ence requires considerable hardware support. Consequently, some shared-address-space
machines only support an address translation mechanism and leave the task of ensuring
coherence to the programmer. The native programming model for such platforms consists
of primitives such as get and put. These primitives allow a processor to get (and put)
variables stored at a remote processor. However, if one of the copies of this variable is
changed, the other copies are not automatically updated or invalidated.

It is important to note the difference between two commonly used and often misun-
derstood terms – shared-address-space and shared-memory computers. The term shared-
memory computer is historically used for architectures in which the memory is physically
shared among various processors, i.e., each processor has equal access to any memory
segment. This is identical to the UMA model we just discussed. This is in contrast to
a distributed-memory computer, in which different segments of the memory are phys-
ically associated with different processing elements. The dichotomy of shared- versus
distributed-memory computers pertains to the physical organization of the machine and
is discussed in greater detail in Section 2.4. Either of these physical models, shared or
distributed memory, can present the logical view of a disjoint or shared-address-space plat-
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form. A distributed-memory shared-address-space computer is identical to a NUMA ma-
chine.

Message-Passing Platforms

The logical machine view of a message-passing platform consists of p processing nodes,
each with its own exclusive address space. Each of these processing nodes can either be
single processors or a shared-address-space multiprocessor – a trend that is fast gaining
momentum in modern message-passing parallel computers. Instances of such a view come
naturally from clustered workstations and non-shared-address-space multicomputers. On
such platforms, interactions between processes running on different nodes must be accom-
plished using messages, hence the name message passing. This exchange of messages is
used to transfer data, work, and to synchronize actions among the processes. In its most
general form, message-passing paradigms support execution of a different program on each
of the p nodes.

Since interactions are accomplished by sending and receiving messages, the basic op-
erations in this programming paradigm are send and receive (the corresponding calls
may differ across APIs but the semantics are largely identical). In addition, since the send
and receive operations must specify target addresses, there must be a mechanism to assign
a unique identification or ID to each of the multiple processes executing a parallel program.
This ID is typically made available to the program using a function such as whoami, which
returns to a calling process its ID. There is one other function that is typically needed to
complete the basic set of message-passing operations – numprocs, which specifies the
number of processes participating in the ensemble. With these four basic operations, it is
possible to write any message-passing program. Different message-passing APIs, such as
the Message Passing Interface (MPI) and Parallel Virtual Machine (PVM), support these
basic operations and a variety of higher level functionality under different function names.
Examples of parallel platforms that support the message-passing paradigm include the IBM
SP, SGI Origin 2000, and workstation clusters.

It is easy to emulate a message-passing architecture containing p nodes on a shared-
address-space computer with an identical number of nodes. Assuming uniprocessor nodes,
this can be done by partitioning the shared-address-space into p disjoint parts and assigning
one such partition exclusively to each processor. A processor can then “send” or “receive”
messages by writing to or reading from another processor’s partition while using appro-
priate synchronization primitives to inform its communication partner when it has finished
reading or writing the data. However, emulating a shared-address-space architecture on
a message-passing computer is costly, since accessing another node’s memory requires
sending and receiving messages.
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2.4 Physical Organization of Parallel Platforms

In this section, we discuss the physical architecture of parallel machines. We start with
an ideal architecture, outline practical difficulties associated with realizing this model, and
discuss some conventional architectures.

2.4.1 Architecture of an Ideal Parallel Computer

A natural extension of the serial model of computation (the Random Access Machine, or
RAM) consists of p processors and a global memory of unbounded size that is uniformly
accessible to all processors. All processors access the same address space. Processors
share a common clock but may execute different instructions in each cycle. This ideal
model is also referred to as a parallel random access machine (PRAM). Since PRAMs
allow concurrent access to various memory locations, depending on how simultaneous
memory accesses are handled, PRAMs can be divided into four subclasses.

1. Exclusive-read, exclusive-write (EREW) PRAM. In this class, access to a memory
location is exclusive. No concurrent read or write operations are allowed. This is the
weakest PRAM model, affording minimum concurrency in memory access.

2. Concurrent-read, exclusive-write (CREW) PRAM. In this class, multiple read ac-
cesses to a memory location are allowed. However, multiple write accesses to a
memory location are serialized.

3. Exclusive-read, concurrent-write (ERCW) PRAM. Multiple write accesses are al-
lowed to a memory location, but multiple read accesses are serialized.

4. Concurrent-read, concurrent-write (CRCW) PRAM. This class allows multiple
read and write accesses to a common memory location. This is the most power-
ful PRAM model.

Allowing concurrent read access does not create any semantic discrepancies in the pro-
gram. However, concurrent write access to a memory location requires arbitration. Several
protocols are used to resolve concurrent writes. The most frequently used protocols are as
follows:

• Common, in which the concurrent write is allowed if all the values that the proces-
sors are attempting to write are identical.

• Arbitrary, in which an arbitrary processor is allowed to proceed with the write oper-
ation and the rest fail.

• Priority, in which all processors are organized into a predefined prioritized list, and
the processor with the highest priority succeeds and the rest fail.
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• Sum, in which the sum of all the quantities is written (the sum-based write conflict
resolution model can be extended to any associative operator defined on the quanti-
ties being written).

Architectural Complexity of the Ideal Model

Consider the implementation of an EREW PRAM as a shared-memory computer with p
processors and a global memory of m words. The processors are connected to the memory
through a set of switches. These switches determine the memory word being accessed
by each processor. In an EREW PRAM, each of the p processors in the ensemble can
access any of the memory words, provided that a word is not accessed by more than one
processor simultaneously. To ensure such connectivity, the total number of switches must
be �(mp). (See the Appendix for an explanation of the � notation.) For a reasonable
memory size, constructing a switching network of this complexity is very expensive. Thus,
PRAM models of computation are impossible to realize in practice.

2.4.2 Interconnection Networks for Parallel Computers

Interconnection networks provide mechanisms for data transfer between processing nodes
or between processors and memory modules. A blackbox view of an interconnection net-
work consists of n inputs and m outputs. The outputs may or may not be distinct from the
inputs. Typical interconnection networks are built using links and switches. A link corre-
sponds to physical media such as a set of wires or fibers capable of carrying information. A
variety of factors influence link characteristics. For links based on conducting media, the
capacitive coupling between wires limits the speed of signal propagation. This capacitive
coupling and attenuation of signal strength are functions of the length of the link.

Interconnection networks can be classified as static or dynamic. Static networks consist
of point-to-point communication links among processing nodes and are also referred to
as direct networks. Dynamic networks, on the other hand, are built using switches and
communication links. Communication links are connected to one another dynamically
by the switches to establish paths among processing nodes and memory banks. Dynamic
networks are also referred to as indirect networks. Figure 2.6(a) illustrates a simple static
network of four processing elements or nodes. Each processing node is connected via a
network interface to two other nodes in a mesh configuration. Figure 2.6(b) illustrates a
dynamic network of four nodes connected via a network of switches to other nodes.

A single switch in an interconnection network consists of a set of input ports and a set
of output ports. Switches provide a range of functionality. The minimal functionality pro-
vided by a switch is a mapping from the input to the output ports. The total number of ports
on a switch is also called the degree of the switch. Switches may also provide support for
internal buffering (when the requested output port is busy), routing (to alleviate congestion
on the network), and multicast (same output on multiple ports). The mapping from input to
output ports can be provided using a variety of mechanisms based on physical crossbars,
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Figure 2.6 Classification of interconnection networks: (a) a static network; and (b) a dynamic
network.

multi-ported memories, multiplexor-demultiplexors, and multiplexed buses. The cost of
a switch is influenced by the cost of the mapping hardware, the peripheral hardware and
packaging costs. The mapping hardware typically grows as the square of the degree of the
switch, the peripheral hardware linearly as the degree, and the packaging costs linearly as
the number of pins.

The connectivity between the nodes and the network is provided by a network inter-
face. The network interface has input and output ports that pipe data into and out of the
network. It typically has the responsibility of packetizing data, computing routing informa-
tion, buffering incoming and outgoing data for matching speeds of network and processing
elements, and error checking. The position of the interface between the processing element
and the network is also important. While conventional network interfaces hang off the I/O
buses, interfaces in tightly coupled parallel machines hang off the memory bus. Since I/O
buses are typically slower than memory buses, the latter can support higher bandwidth.

2.4.3 Network Topologies

A wide variety of network topologies have been used in interconnection networks. These
topologies try to trade off cost and scalability with performance. While pure topologies
have attractive mathematical properties, in practice interconnection networks tend to be
combinations or modifications of the pure topologies discussed in this section.

Bus-Based Networks

A bus-based network is perhaps the simplest network consisting of a shared medium that
is common to all the nodes. A bus has the desirable property that the cost of the network
scales linearly as the number of nodes, p. This cost is typically associated with bus inter-
faces. Furthermore, the distance between any two nodes in the network is constant (O(1)).
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Buses are also ideal for broadcasting information among nodes. Since the transmission
medium is shared, there is little overhead associated with broadcast compared to point-to-
point message transfer. However, the bounded bandwidth of a bus places limitations on the
overall performance of the network as the number of nodes increases. Typical bus based
machines are limited to dozens of nodes. Sun Enterprise servers and Intel Pentium based
shared-bus multiprocessors are examples of such architectures.

The demands on bus bandwidth can be reduced by making use of the property that in
typical programs, a majority of the data accessed is local to the node. For such programs,
it is possible to provide a cache for each node. Private data is cached at the node and only
remote data is accessed through the bus.
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Figure 2.7 Bus-based interconnects (a) with no local caches; (b) with local memory/caches.

Example 2.12 Reducing shared-bus bandwidth using caches
Figure 2.7(a) illustrates p processors sharing a bus to the memory. Assuming that
each processor accesses k data items, and each data access takes time tcycle, the
execution time is lower bounded by tcycle × kp seconds. Now consider the hardware
organization of Figure 2.7(b). Let us assume that 50% of the memory accesses (0.5k)
are made to local data. This local data resides in the private memory of the processor.
We assume that access time to the private memory is identical to the global memory,
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i.e., tcycle. In this case, the total execution time is lower bounded by 0.5 × tcycle ×
k + 0.5 × tcycle × kp. Here, the first term results from accesses to local data and
the second term from access to shared data. It is easy to see that as p becomes
large, the organization of Figure 2.7(b) results in a lower bound that approaches
0.5 × tcycle × kp. This time is a 50% improvement in lower bound on execution time
compared to the organization of Figure 2.7(a).

In practice, shared and private data is handled in a more sophisticated manner. This is
briefly addressed with cache coherence issues in Section 2.4.6.

Crossbar Networks

A simple way to connect p processors to b memory banks is to use a crossbar network. A
crossbar network employs a grid of switches or switching nodes as shown in Figure 2.8.
The crossbar network is a non-blocking network in the sense that the connection of a
processing node to a memory bank does not block the connection of any other processing
nodes to other memory banks.

The total number of switching nodes required to implement such a network is�(pb). It
is reasonable to assume that the number of memory banks b is at least p; otherwise, at any
given time, there will be some processing nodes that will be unable to access any memory
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banks. Therefore, as the value of p is increased, the complexity (component count) of
the switching network grows as �(p2). (See the Appendix for an explanation of the �
notation.) As the number of processing nodes becomes large, this switch complexity is
difficult to realize at high data rates. Consequently, crossbar networks are not very scalable
in terms of cost.

Multistage Networks

The crossbar interconnection network is scalable in terms of performance but unscalable
in terms of cost. Conversely, the shared bus network is scalable in terms of cost but un-
scalable in terms of performance. An intermediate class of networks called multistage
interconnection networks lies between these two extremes. It is more scalable than the
bus in terms of performance and more scalable than the crossbar in terms of cost.

The general schematic of a multistage network consisting of p processing nodes and b
memory banks is shown in Figure 2.9. A commonly used multistage connection network
is the omega network. This network consists of log p stages, where p is the number of
inputs (processing nodes) and also the number of outputs (memory banks). Each stage
of the omega network consists of an interconnection pattern that connects p inputs and p
outputs; a link exists between input i and output j if the following is true:

j =
{

2i, 0 ≤ i ≤ p/2 − 1
2i + 1 − p, p/2 ≤ i ≤ p − 1

(2.1)

Equation 2.1 represents a left-rotation operation on the binary representation of i to
obtain j . This interconnection pattern is called a perfect shuffle. Figure 2.10 shows a
perfect shuffle interconnection pattern for eight inputs and outputs. At each stage of an
omega network, a perfect shuffle interconnection pattern feeds into a set of p/2 switches
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or switching nodes. Each switch is in one of two connection modes. In one mode, the
inputs are sent straight through to the outputs, as shown in Figure 2.11(a). This is called
the pass-through connection. In the other mode, the inputs to the switching node are
crossed over and then sent out, as shown in Figure 2.11(b). This is called the cross-over
connection.
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Figure 2.10 A perfect shuffle interconnection for eight inputs and outputs.

An omega network has p/2 × log p switching nodes, and the cost of such a network
grows as�(p log p). Note that this cost is less than the�(p2) cost of a complete crossbar
network. Figure 2.12 shows an omega network for eight processors (denoted by the binary
numbers on the left) and eight memory banks (denoted by the binary numbers on the right).
Routing data in an omega network is accomplished using a simple scheme. Let s be the
binary representation of a processor that needs to write some data into memory bank t .
The data traverses the link to the first switching node. If the most significant bits of s and
t are the same, then the data is routed in pass-through mode by the switch. If these bits are
different, then the data is routed through in crossover mode. This scheme is repeated at the
next switching stage using the next most significant bit. Traversing log p stages uses all
log p bits in the binary representations of s and t .

(b)(a)

Figure 2.11 Two switching configurations of the 2 × 2 switch: (a) Pass-through; (b) Cross-over.
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Figure 2.12 A complete omega network connecting eight inputs and eight outputs.

Figure 2.13 shows data routing over an omega network from processor two (010) to
memory bank seven (111) and from processor six (110) to memory bank four (100). This
figure also illustrates an important property of this network. When processor two (010) is
communicating with memory bank seven (111), it blocks the path from processor six (110)
to memory bank four (100). Communication link AB is used by both communication paths.
Thus, in an omega network, access to a memory bank by a processor may disallow access
to another memory bank by another processor. Networks with this property are referred to
as blocking networks.
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 B

Figure 2.13 An example of blocking in omega network: one of the messages (010 to 111 or 110
to 100) is blocked at link AB.



2.4.3 Network Topologies 39

(a) (b)

Figure 2.14 (a) A completely-connected network of eight nodes; (b) a star connected network of
nine nodes.

Completely-Connected Network

In a completely-connected network, each node has a direct communication link to every
other node in the network. Figure 2.14(a) illustrates a completely-connected network of
eight nodes. This network is ideal in the sense that a node can send a message to an-
other node in a single step, since a communication link exists between them. Completely-
connected networks are the static counterparts of crossbar switching networks, since in
both networks, the communication between any input/output pair does not block commu-
nication between any other pair.

Star-Connected Network

In a star-connected network, one processor acts as the central processor. Every other
processor has a communication link connecting it to this processor. Figure 2.14(b) shows
a star-connected network of nine processors. The star-connected network is similar to
bus-based networks. Communication between any pair of processors is routed through
the central processor, just as the shared bus forms the medium for all communication in a
bus-based network. The central processor is the bottleneck in the star topology.

Linear Arrays, Meshes, and k-d Meshes

Due to the large number of links in completely connected networks, sparser networks are
typically used to build parallel computers. A family of such networks spans the space of
linear arrays and hypercubes. A linear array is a static network in which each node (except
the two nodes at the ends) has two neighbors, one each to its left and right. A simple
extension of the linear array (Figure 2.15(a)) is the ring or a 1-D torus (Figure 2.15(b)).
The ring has a wraparound connection between the extremities of the linear array. In this
case, each node has two neighbors.

A two-dimensional mesh illustrated in Figure 2.16(a) is an extension of the linear array
to two-dimensions. Each dimension has

√
p nodes with a node identified by a two-tuple

(i, j). Every node (except those on the periphery) is connected to four other nodes whose
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(a) (b)

Figure 2.15 Linear arrays: (a) with no wraparound links; (b) with wraparound link.

(c)(b)(a)

Figure 2.16 Two and three dimensional meshes: (a) 2-D mesh with no wraparound; (b) 2-D mesh
with wraparound link (2-D torus); and (c) a 3-D mesh with no wraparound.

indices differ in any dimension by one. A 2-D mesh has the property that it can be laid
out in 2-D space, making it attractive from a wiring standpoint. Furthermore, a variety of
regularly structured computations map very naturally to a 2-D mesh. For this reason, 2-D
meshes were often used as interconnects in parallel machines. Two dimensional meshes
can be augmented with wraparound links to form two dimensional tori illustrated in Fig-
ure 2.16(b). The three-dimensional cube is a generalization of the 2-D mesh to three di-
mensions, as illustrated in Figure 2.16(c). Each node element in a 3-D cube, with the
exception of those on the periphery, is connected to six other nodes, two along each of
the three dimensions. A variety of physical simulations commonly executed on parallel
computers (for example, 3-D weather modeling, structural modeling, etc.) can be mapped
naturally to 3-D network topologies. For this reason, 3-D cubes are used commonly in
interconnection networks for parallel computers (for example, in the Cray T3E).

The general class of k-d meshes refers to the class of topologies consisting of d dimen-
sions with k nodes along each dimension. Just as a linear array forms one extreme of the
k-d mesh family, the other extreme is formed by an interesting topology called the hyper-
cube. The hypercube topology has two nodes along each dimension and log p dimensions.
The construction of a hypercube is illustrated in Figure 2.17. A zero-dimensional hyper-
cube consists of 20, i.e., one node. A one-dimensional hypercube is constructed from two
zero-dimensional hypercubes by connecting them. A two-dimensional hypercube of four
nodes is constructed from two one-dimensional hypercubes by connecting corresponding
nodes. In general a d-dimensional hypercube is constructed by connecting corresponding
nodes of two (d − 1) dimensional hypercubes. Figure 2.17 illustrates this for up to 16
nodes in a 4-D hypercube.
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Figure 2.17 Construction of hypercubes from hypercubes of lower dimension.

It is useful to derive a numbering scheme for nodes in a hypercube. A simple numbering
scheme can be derived from the construction of a hypercube. As illustrated in Figure 2.17,
if we have a numbering of two subcubes of p/2 nodes, we can derive a numbering scheme
for the cube of p nodes by prefixing the labels of one of the subcubes with a “0” and the
labels of the other subcube with a “1”. This numbering scheme has the useful property that
the minimum distance between two nodes is given by the number of bits that are different
in the two labels. For example, nodes labeled 0110 and 0101 are two links apart, since
they differ at two bit positions. This property is useful for deriving a number of parallel
algorithms for the hypercube architecture.
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(a) (b)

Processing nodes

Switching nodes

Figure 2.18 Complete binary tree networks: (a) a static tree network; and (b) a dynamic tree
network.

Tree-Based Networks

A tree network is one in which there is only one path between any pair of nodes. Both
linear arrays and star-connected networks are special cases of tree networks. Figure 2.18
shows networks based on complete binary trees. Static tree networks have a processing
element at each node of the tree (Figure 2.18(a)). Tree networks also have a dynamic
counterpart. In a dynamic tree network, nodes at intermediate levels are switching nodes
and the leaf nodes are processing elements (Figure 2.18(b)).

To route a message in a tree, the source node sends the message up the tree until it
reaches the node at the root of the smallest subtree containing both the source and destina-
tion nodes. Then the message is routed down the tree towards the destination node.

Tree networks suffer from a communication bottleneck at higher levels of the tree. For
example, when many nodes in the left subtree of a node communicate with nodes in the
right subtree, the root node must handle all the messages. This problem can be alleviated
in dynamic tree networks by increasing the number of communication links and switching
nodes closer to the root. This network, also called a fat tree, is illustrated in Figure 2.19.

Figure 2.19 A fat tree network of 16 processing nodes.
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2.4.4 Evaluating Static Interconnection Networks

We now discuss various criteria used to characterize the cost and performance of static
interconnection networks. We use these criteria to evaluate static networks introduced in
the previous subsection.

Diameter The diameter of a network is the maximum distance between any two pro-
cessing nodes in the network. The distance between two processing nodes is defined as the
shortest path (in terms of number of links) between them. The diameter of a completely-
connected network is one, and that of a star-connected network is two. The diameter of
a ring network is �p/2�. The diameter of a two-dimensional mesh without wraparound
connections is 2(

√
p − 1) for the two nodes at diagonally opposed corners, and that of a

wraparound mesh is 2�√p/2�. The diameter of a hypercube-connected network is log p
since two node labels can differ in at most log p positions. The diameter of a complete
binary tree is 2 log((p + 1)/2) because the two communicating nodes may be in separate
subtrees of the root node, and a message might have to travel all the way to the root and
then down the other subtree.

Connectivity The connectivity of a network is a measure of the multiplicity of paths
between any two processing nodes. A network with high connectivity is desirable, be-
cause it lowers contention for communication resources. One measure of connectivity is
the minimum number of arcs that must be removed from the network to break it into two
disconnected networks. This is called the arc connectivity of the network. The arc connec-
tivity is one for linear arrays, as well as tree and star networks. It is two for rings and 2-D
meshes without wraparound, four for 2-D wraparound meshes, and d for d-dimensional
hypercubes.

Bisection Width and Bisection Bandwidth The bisection width of a network is de-
fined as the minimum number of communication links that must be removed to partition the
network into two equal halves. The bisection width of a ring is two, since any partition cuts
across only two communication links. Similarly, the bisection width of a two-dimensional
p-node mesh without wraparound connections is

√
p and with wraparound connections is

2
√

p. The bisection width of a tree and a star is one, and that of a completely-connected
network of p nodes is p2/4. The bisection width of a hypercube can be derived from its
construction. We construct a d-dimensional hypercube by connecting corresponding links
of two (d − 1)-dimensional hypercubes. Since each of these subcubes contains 2(d−1) or
p/2 nodes, at least p/2 communication links must cross any partition of a hypercube into
two subcubes (Problem 2.15).

The number of bits that can be communicated simultaneously over a link connecting
two nodes is called the channel width. Channel width is equal to the number of physical
wires in each communication link. The peak rate at which a single physical wire can deliver
bits is called the channel rate. The peak rate at which data can be communicated between
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Table 2.1 A summary of the characteristics of various static network topologies connecting p
nodes.

Bisection Arc Cost
Network Diameter Width Connectivity (No. of links)

Completely-connected 1 p2/4 p − 1 p(p − 1)/2
Star 2 1 1 p − 1
Complete binary tree 2 log((p + 1)/2) 1 1 p − 1
Linear array p − 1 1 1 p − 1
2-D mesh, no wraparound 2(

√
p − 1)

√
p 2 2(p − √

p)
2-D wraparound mesh 2�√p/2� 2

√
p 4 2p

Hypercube log p p/2 log p (p log p)/2
Wraparound k-ary d-cube d�k/2� 2kd−1 2d dp

the ends of a communication link is called channel bandwidth. Channel bandwidth is the
product of channel rate and channel width.

The bisection bandwidth of a network is defined as the minimum volume of communi-
cation allowed between any two halves of the network. It is the product of the bisection
width and the channel bandwidth. Bisection bandwidth of a network is also sometimes
referred to as cross-section bandwidth.

Cost Many criteria can be used to evaluate the cost of a network. One way of defining
the cost of a network is in terms of the number of communication links or the number of
wires required by the network. Linear arrays and trees use only p − 1 links to connect p
nodes. A d-dimensional wraparound mesh has dp links. A hypercube-connected network
has (p log p)/2 links.

The bisection bandwidth of a network can also be used as a measure of its cost, as it
provides a lower bound on the area in a two-dimensional packaging or the volume in a
three-dimensional packaging. If the bisection width of a network is w, the lower bound
on the area in a two-dimensional packaging is �(w2), and the lower bound on the volume
in a three-dimensional packaging is �(w3/2). According to this criterion, hypercubes and
completely connected networks are more expensive than the other networks.

We summarize the characteristics of various static networks in Table 2.1, which high-
lights the various cost-performance tradeoffs.

2.4.5 Evaluating Dynamic Interconnection Networks

A number of evaluation metrics for dynamic networks follow from the corresponding met-
rics for static networks. Since a message traversing a switch must pay an overhead, it
is logical to think of each switch as a node in the network, in addition to the processing
nodes. The diameter of the network can now be defined as the maximum distance between
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any two nodes in the network. This is indicative of the maximum delay that a message
will encounter in being communicated between the selected pair of nodes. In reality, we
would like the metric to be the maximum distance between any two processing nodes;
however, for all networks of interest, this is equivalent to the maximum distance between
any (processing or switching) pair of nodes.

The connectivity of a dynamic network can be defined in terms of node or edge connec-
tivity. The node connectivity is the minimum number of nodes that must fail (be removed
from the network) to fragment the network into two parts. As before, we should consider
only switching nodes (as opposed to all nodes). However, considering all nodes gives a
good approximation to the multiplicity of paths in a dynamic network. The arc connectiv-
ity of the network can be similarly defined as the minimum number of edges that must fail
(be removed from the network) to fragment the network into two unreachable parts.

The bisection width of a dynamic network must be defined more precisely than diameter
and connectivity. In the case of bisection width, we consider any possible partitioning of
the p processing nodes into two equal parts. Note that this does not restrict the partitioning
of the switching nodes. For each such partition, we select an induced partitioning of the
switching nodes such that the number of edges crossing this partition is minimized. The
minimum number of edges for any such partition is the bisection width of the dynamic
network. Another intuitive way of thinking of bisection width is in terms of the minimum
number of edges that must be removed from the network so as to partition the network into
two halves with identical number of processing nodes. We illustrate this concept further in
the following example:

Example 2.13 Bisection width of dynamic networks

Consider the network illustrated in Figure 2.20. We illustrate here three bisections,
A, B, and C, each of which partitions the network into two groups of two processing
nodes each. Notice that these partitions need not partition the network nodes equally.
In the example, each partition results in an edge cut of four. We conclude that the
bisection width of this graph is four.

The cost of a dynamic network is determined by the link cost, as is the case with static
networks, as well as the switch cost. In typical dynamic networks, the degree of a switch
is constant. Therefore, the number of links and switches is asymptotically identical. Fur-
thermore, in typical networks, switch cost exceeds link cost. For this reason, the cost of
dynamic networks is often determined by the number of switching nodes in the network.

We summarize the characteristics of various dynamic networks in Table 2.2.

2.4.6 Cache Coherence in Multiprocessor Systems

While interconnection networks provide basic mechanisms for communicating messages
(data), in the case of shared-address-space computers additional hardware is required to
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Figure 2.20 Bisection width of a dynamic network is computed by examining various equi-
partitions of the processing nodes and selecting the minimum number of edges crossing the par-
tition. In this case, each partition yields an edge cut of four. Therefore, the bisection width of this
graph is four.

Table 2.2 A summary of the characteristics of various dynamic network topologies connecting p
processing nodes.

Bisection Arc Cost
Network Diameter Width Connectivity (No. of links)

Crossbar 1 p 1 p2

Omega Network log p p/2 2 p/2
Dynamic Tree 2 log p 1 2 p − 1

keep multiple copies of data consistent with each other. Specifically, if there exist two
copies of the data (in different caches/memory elements), how do we ensure that different
processors operate on these in a manner that follows predefined semantics?

The problem of keeping caches in multiprocessor systems coherent is significantly more
complex than in uniprocessor systems. This is because in addition to multiple copies as in
uniprocessor systems, there may also be multiple processors modifying these copies. Con-
sider a simple scenario illustrated in Figure 2.21. Two processors P0 and P1 are connected
over a shared bus to a globally accessible memory. Both processors load the same variable.
There are now three copies of the variable. The coherence mechanism must now ensure
that all operations performed on these copies are serializable (i.e., there exists some serial
order of instruction execution that corresponds to the parallel schedule). When a processor
changes the value of its copy of the variable, one of two things must happen: the other
copies must be invalidated, or the other copies must be updated. Failing this, other proces-
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sors may potentially work with incorrect (stale) values of the variable. These two protocols
are referred to as invalidate and update protocols and are illustrated in Figure 2.21(a) and
(b).

(b)

(a)

Invalidate
MemoryMemory

P1P0P1P0

Update
MemoryMemory

P1P0P1P0

load x

write #3, xload xload x

x = 1

x = 1x = 1

x = 1

x = 1x = 1

x = 3

x = 3

x = 3x = 3

x = 1

x = 1

write #3, xload x

Figure 2.21 Cache coherence in multiprocessor systems: (a) Invalidate protocol; (b) Update pro-
tocol for shared variables.

In an update protocol, whenever a data item is written, all of its copies in the system
are updated. For this reason, if a processor simply reads a data item once and never uses
it, subsequent updates to this item at other processors cause excess overhead in terms of
latency at source and bandwidth on the network. On the other hand, in this situation, an
invalidate protocol invalidates the data item on the first update at a remote processor and
subsequent updates need not be performed on this copy.

Another important factor affecting the performance of these protocols is false sharing.
False sharing refers to the situation in which different processors update different parts of
of the same cache-line. Thus, although the updates are not performed on shared variables,
the system does not detect this. In an invalidate protocol, when a processor updates its part
of the cache-line, the other copies of this line are invalidated. When other processors try
to update their parts of the cache-line, the line must actually be fetched from the remote
processor. It is easy to see that false-sharing can cause a cache-line to be ping-ponged
between various processors. In an update protocol, this situation is slightly better since all
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reads can be performed locally and the writes must be updated. This saves an invalidate
operation that is otherwise wasted.

The tradeoff between invalidate and update schemes is the classic tradeoff between
communication overhead (updates) and idling (stalling in invalidates). Current generation
cache coherent machines typically rely on invalidate protocols. The rest of our discussion
of multiprocessor cache systems therefore assumes invalidate protocols.

Maintaining Coherence Using Invalidate Protocols Multiple copies of a single
data item are kept consistent by keeping track of the number of copies and the state of each
of these copies. We discuss here one possible set of states associated with data items and
events that trigger transitions among these states. Note that this set of states and transitions
is not unique. It is possible to define other states and associated transitions as well.

Let us revisit the example in Figure 2.21. Initially the variable x resides in the global
memory. The first step executed by both processors is a load operation on this variable.
At this point, the state of the variable is said to be shared, since it is shared by multiple
processors. When processor P0 executes a store on this variable, it marks all other copies
of this variable as invalid. It must also mark its own copy as modified or dirty. This is done
to ensure that all subsequent accesses to this variable at other processors will be serviced by
processor P0 and not from the memory. At this point, say, processor P1 executes another
load operation on x . Processor P1 attempts to fetch this variable and, since the variable was
marked dirty by processor P0, processor P0 services the request. Copies of this variable
at processor P1 and the global memory are updated and the variable re-enters the shared
state. Thus, in this simple model, there are three states - shared, invalid, and dirty - that a
cache line goes through.

The complete state diagram of a simple three-state protocol is illustrated in Figure 2.22.
The solid lines depict processor actions and the dashed lines coherence actions. For ex-
ample, when a processor executes a read on an invalid block, the block is fetched and a
transition is made from invalid to shared. Similarly, if a processor does a write on a shared
block, the coherence protocol propagates a C write (a coherence write) on the block. This
triggers a transition from shared to invalid at all the other blocks.

Example 2.14 Maintaining coherence using a simple three-state protocol
Consider an example of two program segments being executed by processor P0 and
P1 as illustrated in Figure 2.23. The system consists of local memories (or caches)
at processors P0 and P1, and a global memory. The three-state protocol assumed
in this example corresponds to the state diagram illustrated in Figure 2.22. Cache
lines in this system can be either shared, invalid, or dirty. Each data item (variable) is
assumed to be on a different cache line. Initially, the two variables x and y are tagged
dirty and the only copies of these variables exist in the global memory. Figure 2.23
illustrates state transitions along with values of copies of the variables with each
instruction execution.
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Figure 2.22 State diagram of a simple three-state coherence protocol.

The implementation of coherence protocols can be carried out using a variety of hard-
ware mechanisms – snoopy systems, directory based systems, or combinations thereof.

Snoopy Cache Systems

Snoopy caches are typically associated with multiprocessor systems based on broadcast
interconnection networks such as a bus or a ring. In such systems, all processors snoop
on (monitor) the bus for transactions. This allows the processor to make state transitions
for its cache-blocks. Figure 2.24 illustrates a typical snoopy bus based system. Each
processor’s cache has a set of tag bits associated with it that determine the state of the
cache blocks. These tags are updated according to the state diagram associated with the
coherence protocol. For instance, when the snoop hardware detects that a read has been
issued to a cache block that it has a dirty copy of, it asserts control of the bus and puts the
data out. Similarly, when the snoop hardware detects that a write operation has been issued
on a cache block that it has a copy of, it invalidates the block. Other state transitions are
made in this fashion locally.

Performance of Snoopy Caches Snoopy protocols have been extensively studied
and used in commercial systems. This is largely because of their simplicity and the fact
that existing bus based systems can be upgraded to accommodate snoopy protocols. The
performance gains of snoopy systems are derived from the fact that if different processors
operate on different data items, these items can be cached. Once these items are tagged
dirty, all subsequent operations can be performed locally on the cache without generating
external traffic. Similarly, if a data item is read by a number of processors, it transitions
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Figure 2.23 Example of parallel program execution with the simple three-state coherence protocol
discussed in Section 2.4.6.

to the shared state in the cache and all subsequent read operations become local. In both
cases, the coherence protocol does not add any overhead. On the other hand, if multiple
processors read and update the same data item, they generate coherence functions across
processors. Since a shared bus has a finite bandwidth, only a constant number of such
coherence operations can execute in unit time. This presents a fundamental bottleneck for
snoopy bus based systems.

Snoopy protocols are intimately tied to multicomputers based on broadcast networks
such as buses. This is because all processors must snoop all the messages. Clearly, broad-
casting all of a processor’s memory operations to all the processors is not a scalable so-
lution. An obvious solution to this problem is to propagate coherence operations only to
those processors that must participate in the operation (i.e., processors that have relevant
copies of the data). This solution requires us to keep track of which processors have copies
of various data items and also the relevant state information for these data items. This in-
formation is stored in a directory, and the coherence mechanism based on such information
is called a directory-based system.
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Figure 2.24 A simple snoopy bus based cache coherence system.

Directory Based Systems

Consider a simple system in which the global memory is augmented with a directory that
maintains a bitmap representing cache-blocks and the processors at which they are cached
(Figure 2.25). These bitmap entries are sometimes referred to as the presence bits. As
before, we assume a three-state protocol with the states labeled invalid, dirty, and shared.
The key to the performance of directory based schemes is the simple observation that only
processors that hold a particular block (or are reading it) participate in the state transitions
due to coherence operations. Note that there may be other state transitions triggered by
processor read, write, or flush (retiring a line from cache) but these transitions can be
handled locally with the operation reflected in the presence bits and state in the directory.

Revisiting the code segment in Figure 2.21, when processors P0 and P1 access the block
corresponding to variable x , the state of the block is changed to shared, and the presence
bits updated to indicate that processors P0 and P1 share the block. When P0 executes a
store on the variable, the state in the directory is changed to dirty and the presence bit of P1

is reset. All subsequent operations on this variable performed at processor P0 can proceed
locally. If another processor reads the value, the directory notices the dirty tag and uses
the presence bits to direct the request to the appropriate processor. Processor P0 updates
the block in the memory, and sends it to the requesting processor. The presence bits are
modified to reflect this and the state transitions to shared.

Performance of Directory Based Schemes As is the case with snoopy protocols,
if different processors operate on distinct data blocks, these blocks become dirty in the
respective caches and all operations after the first one can be performed locally. Further-
more, if multiple processors read (but do not update) a single data block, the data block
gets replicated in the caches in the shared state and subsequent reads can happen without
triggering any coherence overheads.

Coherence actions are initiated when multiple processors attempt to update the same
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Figure 2.25 Architecture of typical directory based systems: (a) a centralized directory; and (b) a
distributed directory.

data item. In this case, in addition to the necessary data movement, coherence operations
add to the overhead in the form of propagation of state updates (invalidates or updates) and
generation of state information from the directory. The former takes the form of communi-
cation overhead and the latter adds contention. The communication overhead is a function
of the number of processors requiring state updates and the algorithm for propagating state
information. The contention overhead is more fundamental in nature. Since the directory
is in memory and the memory system can only service a bounded number of read/write
operations in unit time, the number of state updates is ultimately bounded by the direc-
tory. If a parallel program requires a large number of coherence actions (large number of
read/write shared data blocks) the directory will ultimately bound its parallel performance.

Finally, from the point of view of cost, the amount of memory required to store the
directory may itself become a bottleneck as the number of processors increases. Recall
that the directory size grows as O(mp), where m is the number of memory blocks and p
the number of processors. One solution would be to make the memory block larger (thus
reducing m for a given memory size). However, this adds to other overheads such as false
sharing, where two processors update distinct data items in a program but the data items
happen to lie in the same memory block. This phenomenon is discussed in greater detail
in Chapter 7.
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Since the directory forms a central point of contention, it is natural to break up the task
of maintaining coherence across multiple processors. The basic principle is to let each
processor maintain coherence of its own memory blocks, assuming a physical (or logical)
partitioning of the memory blocks across processors. This is the principle of a distributed
directory system.

Distributed Directory Schemes In scalable architectures, memory is physically dis-
tributed across processors. The corresponding presence bits of the blocks are also dis-
tributed. Each processor is responsible for maintaining the coherence of its own memory
blocks. The architecture of such a system is illustrated in Figure 2.25(b). Since each mem-
ory block has an owner (which can typically be computed from the block address), its
directory location is implicitly known to all processors. When a processor attempts to read
a block for the first time, it requests the owner for the block. The owner suitably directs
this request based on presence and state information locally available. Similarly, when a
processor writes into a memory block, it propagates an invalidate to the owner, which in
turn forwards the invalidate to all processors that have a cached copy of the block. In this
way, the directory is decentralized and the contention associated with the central directory
is alleviated. Note that the communication overhead associated with state update messages
is not reduced.

Performance of Distributed Directory Schemes As is evident, distributed direc-
tories permit O(p) simultaneous coherence operations, provided the underlying network
can sustain the associated state update messages. From this point of view, distributed direc-
tories are inherently more scalable than snoopy systems or centralized directory systems.
The latency and bandwidth of the network become fundamental performance bottlenecks
for such systems.

2.5 Communication Costs in Parallel Machines

One of the major overheads in the execution of parallel programs arises from communica-
tion of information between processing elements. The cost of communication is dependent
on a variety of features including the programming model semantics, the network topol-
ogy, data handling and routing, and associated software protocols. These issues form the
focus of our discussion here.

2.5.1 Message Passing Costs in Parallel Computers

The time taken to communicate a message between two nodes in a network is the sum of the
time to prepare a message for transmission and the time taken by the message to traverse
the network to its destination. The principal parameters that determine the communication
latency are as follows:
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1. Startup time (ts ): The startup time is the time required to handle a message at the
sending and receiving nodes. This includes the time to prepare the message (adding
header, trailer, and error correction information), the time to execute the routing
algorithm, and the time to establish an interface between the local node and the
router. This delay is incurred only once for a single message transfer.

2. Per-hop time (th): After a message leaves a node, it takes a finite amount of time
to reach the next node in its path. The time taken by the header of a message to
travel between two directly-connected nodes in the network is called the per-hop
time. It is also known as node latency. The per-hop time is directly related to the
latency within the routing switch for determining which output buffer or channel the
message should be forwarded to.

3. Per-word transfer time (tw): If the channel bandwidth is r words per second, then
each word takes time tw = 1/r to traverse the link. This time is called the per-word
transfer time. This time includes network as well as buffering overheads.

We now discuss two routing techniques that have been used in parallel computers –
store-and-forward routing and cut-through routing.

Store-and-Forward Routing

In store-and-forward routing, when a message is traversing a path with multiple links, each
intermediate node on the path forwards the message to the next node after it has received
and stored the entire message. Figure 2.26(a) shows the communication of a message
through a store-and-forward network.

Suppose that a message of size m is being transmitted through such a network. Assume
that it traverses l links. At each link, the message incurs a cost th for the header and twm
for the rest of the message to traverse the link. Since there are l such links, the total time is
(th + twm)l. Therefore, for store-and-forward routing, the total communication cost for a
message of size m words to traverse l communication links is

tcomm = ts + (mtw + th)l. (2.2)

In current parallel computers, the per-hop time th is quite small. For most parallel algo-
rithms, it is less than twm even for small values of m and thus can be ignored. For parallel
platforms using store-and-forward routing, the time given by Equation 2.2 can be simpli-
fied to

tcomm = ts + mltw.

Packet Routing

Store-and-forward routing makes poor use of communication resources. A message is sent
from one node to the next only after the entire message has been received (Figure 2.26(a)).
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Figure 2.26 Passing a message from node P0 to P3 (a) through a store-and-forward communica-
tion network; (b) and (c) extending the concept to cut-through routing. The shaded regions represent
the time that the message is in transit. The startup time associated with this message transfer is as-
sumed to be zero.

Consider the scenario shown in Figure 2.26(b), in which the original message is broken
into two equal sized parts before it is sent. In this case, an intermediate node waits for only
half of the original message to arrive before passing it on. The increased utilization of com-
munication resources and reduced communication time is apparent from Figure 2.26(b).
Figure 2.26(c) goes a step further and breaks the message into four parts. In addition to bet-
ter utilization of communication resources, this principle offers other advantages – lower
overhead from packet loss (errors), possibility of packets taking different paths, and better
error correction capability. For these reasons, this technique is the basis for long-haul com-
munication networks such as the Internet, where error rates, number of hops, and variation
in network state can be higher. Of course, the overhead here is that each packet must carry
routing, error correction, and sequencing information.

Consider the transfer of an m word message through the network. The time taken for
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programming the network interfaces and computing the routing information, etc., is inde-
pendent of the message length. This is aggregated into the startup time ts of the message
transfer. We assume a scenario in which routing tables are static over the time of message
transfer (i.e., all packets traverse the same path). While this is not a valid assumption under
all circumstances, it serves the purpose of motivating a cost model for message transfer.
The message is broken into packets, and packets are assembled with their error, routing,
and sequencing fields. The size of a packet is now given by r + s, where r is the original
message and s is the additional information carried in the packet. The time for packe-
tizing the message is proportional to the length of the message. We denote this time by
mtw1. If the network is capable of communicating one word every tw2 seconds, incurs a
delay of th on each hop, and if the first packet traverses l hops, then this packet takes time
thl + tw2(r + s) to reach the destination. After this time, the destination node receives an
additional packet every tw2(r + s) seconds. Since there are m/r −1 additional packets, the
total communication time is given by:

tcomm = ts + tw1m + thl + tw2(r + s)+
(m

r
− 1

)
tw2(r + s)

= ts + tw1m + thl + tw2m + tw2
s

r
m

= ts + thl + twm,

where
tw = tw1 + tw2

(
1 + s

r

)
.

Packet routing is suited to networks with highly dynamic states and higher error rates,
such as local- and wide-area networks. This is because individual packets may take differ-
ent routes and retransmissions can be localized to lost packets.

Cut-Through Routing

In interconnection networks for parallel computers, additional restrictions can be imposed
on message transfers to further reduce the overheads associated with packet switching. By
forcing all packets to take the same path, we can eliminate the overhead of transmitting
routing information with each packet. By forcing in-sequence delivery, sequencing infor-
mation can be eliminated. By associating error information at message level rather than
packet level, the overhead associated with error detection and correction can be reduced.
Finally, since error rates in interconnection networks for parallel machines are extremely
low, lean error detection mechanisms can be used instead of expensive error correction
schemes.

The routing scheme resulting from these optimizations is called cut-through routing. In
cut-through routing, a message is broken into fixed size units called flow control digits
or flits. Since flits do not contain the overheads of packets, they can be much smaller
than packets. A tracer is first sent from the source to the destination node to establish a
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connection. Once a connection has been established, the flits are sent one after the other.
All flits follow the same path in a dovetailed fashion. An intermediate node does not wait
for the entire message to arrive before forwarding it. As soon as a flit is received at an
intermediate node, the flit is passed on to the next node. Unlike store-and-forward routing,
it is no longer necessary to have buffer space at each intermediate node to store the entire
message. Therefore, cut-through routing uses less memory and memory bandwidth at
intermediate nodes, and is faster.

Consider a message that is traversing such a network. If the message traverses l links,
and th is the per-hop time, then the header of the message takes time lth to reach the
destination. If the message is m words long, then the entire message arrives in time twm
after the arrival of the header of the message. Therefore, the total communication time for
cut-through routing is

tcomm = ts + lth + twm. (2.3)

This time is an improvement over store-and-forward routing since terms corresponding
to number of hops and number of words are additive as opposed to multiplicative in the
former. Note that if the communication is between nearest neighbors (that is, l = 1), or
if the message size is small, then the communication time is similar for store-and-forward
and cut-through routing schemes.

Most current parallel computers and many local area networks support cut-through rout-
ing. The size of a flit is determined by a variety of network parameters. The control cir-
cuitry must operate at the flit rate. Therefore, if we select a very small flit size, for a given
link bandwidth, the required flit rate becomes large. This poses considerable challenges
for designing routers as it requires the control circuitry to operate at a very high speed.
On the other hand, as flit sizes become large, internal buffer sizes increase, so does the
latency of message transfer. Both of these are undesirable. Flit sizes in recent cut-through
interconnection networks range from four bits to 32 bytes. In many parallel programming
paradigms that rely predominantly on short messages (such as cache lines), the latency
of messages is critical. For these, it is unreasonable for a long message traversing a link
to hold up a short message. Such scenarios are addressed in routers using multilane cut-
through routing. In multilane cut-through routing, a single physical channel is split into a
number of virtual channels.

Messaging constants ts , tw, and th are determined by hardware characteristics, software
layers, and messaging semantics. Messaging semantics associated with paradigms such as
message passing are best served by variable length messages, others by fixed length short
messages. While effective bandwidth may be critical for the former, reducing latency is
more important for the latter. Messaging layers for these paradigms are tuned to reflect
these requirements.

While traversing the network, if a message needs to use a link that is currently in use,
then the message is blocked. This may lead to deadlock. Figure 2.27 illustrates deadlock in
a cut-through routing network. The destinations of messages 0, 1, 2, and 3 are A, B,C , and
D, respectively. A flit from message 0 occupies the link C B (and the associated buffers).
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Figure 2.27 An example of deadlock in a cut-through routing network.

However, since link B A is occupied by a flit from message 3, the flit from message 0 is
blocked. Similarly, the flit from message 3 is blocked since link AD is in use. We can
see that no messages can progress in the network and the network is deadlocked. Dead-
locks can be avoided in cut-through networks by using appropriate routing techniques and
message buffers. These are discussed in Section 2.6.

A Simplified Cost Model for Communicating Messages

As we have just seen in Section 2.5.1, the cost of communicating a message between two
nodes l hops away using cut-through routing is given by

tcomm = ts + lth + twm.

This equation implies that in order to optimize the cost of message transfers, we would
need to:

1. Communicate in bulk. That is, instead of sending small messages and paying a
startup cost ts for each, we want to aggregate small messages into a single large
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message and amortize the startup latency across a larger message. This is because
on typical platforms such as clusters and message-passing machines, the value of ts

is much larger than those of th or tw.

2. Minimize the volume of data. To minimize the overhead paid in terms of per-word
transfer time tw, it is desirable to reduce the volume of data communicated as much
as possible.

3. Minimize distance of data transfer. Minimize the number of hops l that a message
must traverse.

While the first two objectives are relatively easy to achieve, the task of minimizing
distance of communicating nodes is difficult, and in many cases an unnecessary burden
on the algorithm designer. This is a direct consequence of the following characteristics of
parallel platforms and paradigms:

• In many message-passing libraries such as MPI, the programmer has little control on
the mapping of processes onto physical processors. In such paradigms, while tasks
might have well defined topologies and may communicate only among neighbors in
the task topology, the mapping of processes to nodes might destroy this structure.

• Many architectures rely on randomized (two-step) routing, in which a message is
first sent to a random node from source and from this intermediate node to the desti-
nation. This alleviates hot-spots and contention on the network. Minimizing number
of hops in a randomized routing network yields no benefits.

• The per-hop time (th) is typically dominated either by the startup latency (ts) for
small messages or by per-word component (twm) for large messages. Since the
maximum number of hops (l) in most networks is relatively small, the per-hop time
can be ignored with little loss in accuracy.

All of these point to a simpler cost model in which the cost of transferring a message
between two nodes on a network is given by:

tcomm = ts + twm (2.4)

This expression has significant implications for architecture-independent algorithm design
as well as for the accuracy of runtime predictions. Since this cost model implies that it
takes the same amount of time to communicate between any pair of nodes, it corresponds
to a completely connected network. Instead of designing algorithms for each specific ar-
chitecture (for example, a mesh, hypercube, or tree), we can design algorithms with this
cost model in mind and port it to any target parallel computer.

This raises the important issue of loss of accuracy (or fidelity) of prediction when the
algorithm is ported from our simplified model (which assumes a completely connected
network) to an actual machine architecture. If our initial assumption that the th term is typ-
ically dominated by the ts or tw terms is valid, then the loss in accuracy should be minimal.
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However, it is important to note that our basic cost model is valid only for uncongested
networks. Architectures have varying thresholds for when they get congested; i.e., a linear
array has a much lower threshold for congestion than a hypercube. Furthermore, different
communication patterns congest a given network to different extents. Consequently, our
simplified cost model is valid only as long as the underlying communication pattern does
not congest the network.

Example 2.15 Effect of congestion on communication cost
Consider a

√
p × √

p mesh in which each node is only communicating with its
nearest neighbor. Since no links in the network are used for more than one commu-
nication, the time for this operation is ts + twm, where m is the number of words
communicated. This time is consistent with our simplified model.

Consider an alternate scenario in which each node is communicating with a
randomly selected node. This randomness implies that there are p/2 communica-
tions (or p/4 bi-directional communications) occurring across any equi-partition of
the machine (since the node being communicated with could be in either half with
equal probability). From our discussion of bisection width, we know that a 2-D mesh
has a bisection width of

√
p. From these two, we can infer that some links would

now have to carry at least p/4√
p = √

p/4 messages, assuming bi-directional commu-
nication channels. These messages must be serialized over the link. If each message
is of size m, the time for this operation is at least ts + twm × √

p/4. This time is not
in conformity with our simplified model.

The above example illustrates that for a given architecture, some communication pat-
terns can be non-congesting and others may be congesting. This makes the task of model-
ing communication costs dependent not just on the architecture, but also on the communi-
cation pattern. To address this, we introduce the notion of effective bandwidth. For com-
munication patterns that do not congest the network, the effective bandwidth is identical
to the link bandwidth. However, for communication operations that congest the network,
the effective bandwidth is the link bandwidth scaled down by the degree of congestion on
the most congested link. This is often difficult to estimate since it is a function of process
to node mapping, routing algorithms, and communication schedule. Therefore, we use a
lower bound on the message communication time. The associated link bandwidth is scaled
down by a factor p/b, where b is the bisection width of the network.

In the rest of this text, we will work with the simplified communication model for mes-
sage passing with effective per-word time tw because it allows us to design algorithms in
an architecture-independent manner. We will also make specific notes on when a commu-
nication operation within an algorithm congests the network and how its impact is factored
into parallel runtime. The communication times in the book apply to the general class of
k-d meshes. While these times may be realizable on other architectures as well, this is a
function of the underlying architecture.
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2.5.2 Communication Costs in Shared-Address-Space
Machines

The primary goal of associating communication costs with parallel programs is to associate
a figure of merit with a program to guide program development. This task is much more
difficult for cache-coherent shared-address-space machines than for message-passing or
non-cache-coherent architectures. The reasons for this are as follows:

• Memory layout is typically determined by the system. The programmer has min-
imal control on the location of specific data items over and above permuting data
structures to optimize access. This is particularly important in distributed memory
shared-address-space architectures because it is difficult to identify local and remote
accesses. If the access times for local and remote data items are significantly differ-
ent, then the cost of communication can vary greatly depending on the data layout.

• Finite cache sizes can result in cache thrashing. Consider a scenario in which a
node needs a certain fraction of the total data to compute its results. If this fraction
is smaller than locally available cache, the data can be fetched on first access and
computed on. However, if the fraction exceeds available cache, then certain por-
tions of this data might get overwritten, and consequently accessed several times.
This overhead can cause sharp degradation in program performance as the problem
size is increased. To remedy this, the programmer must alter execution schedules
(e.g., blocking loops as illustrated in serial matrix multiplication in Problem 2.5)
for minimizing working set size. While this problem is common to both serial and
multiprocessor platforms, the penalty is much higher in the case of multiprocessors
since each miss might now involve coherence operations and interprocessor commu-
nication.

• Overheads associated with invalidate and update operations are difficult to quantify.
After a data item has been fetched by a processor into cache, it may be subject to
a variety of operations at another processor. For example, in an invalidate protocol,
the cache line might be invalidated by a write operation at a remote processor. In this
case, the next read operation on the data item must pay a remote access latency cost
again. Similarly, the overhead associated with an update protocol might vary signif-
icantly depending on the number of copies of a data item. The number of concurrent
copies of a data item and the schedule of instruction execution are typically beyond
the control of the programmer.

• Spatial locality is difficult to model. Since cache lines are generally longer than
one word (anywhere from four to 128 words), different words might have different
access latencies associated with them even for the first access. Accessing a neighbor
of a previously fetched word might be extremely fast, if the cache line has not yet
been overwritten. Once again, the programmer has minimal control over this, other
than to permute data structures to maximize spatial locality of data reference.
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• Prefetching can play a role in reducing the overhead associated with data access.
Compilers can advance loads and, if sufficient resources exist, the overhead asso-
ciated with these loads may be completely masked. Since this is a function of the
compiler, the underlying program, and availability of resources (registers/cache), it
is very difficult to model accurately.

• False sharing is often an important overhead in many programs. Two words used by
(threads executing on) different processor may reside on the same cache line. This
may cause coherence actions and communication overheads, even though none of
the data might be shared. The programmer must adequately pad data structures used
by various processors to minimize false sharing.

• Contention in shared accesses is often a major contributing overhead in shared ad-
dress space machines. Unfortunately, contention is a function of execution schedule
and consequently very difficult to model accurately (independent of the scheduling
algorithm). While it is possible to get loose asymptotic estimates by counting the
number of shared accesses, such a bound is often not very meaningful.

Any cost model for shared-address-space machines must account for all of these overheads.
Building these into a single cost model results in a model that is too cumbersome to design
programs for and too specific to individual machines to be generally applicable.

As a first-order model, it is easy to see that accessing a remote word results in a cache
line being fetched into the local cache. The time associated with this includes the coher-
ence overheads, network overheads, and memory overheads. The coherence and network
overheads are functions of the underlying interconnect (since a coherence operation must
be potentially propagated to remote processors and the data item must be fetched). In the
absence of knowledge of what coherence operations are associated with a specific access
and where the word is coming from, we associate a constant overhead to accessing a cache
line of the shared data. For the sake of uniformity with the message-passing model, we
refer to this cost as ts . Because of various latency-hiding protocols, such as prefetching,
implemented in modern processor architectures, we assume that a constant cost of ts is as-
sociated with initiating access to a contiguous chunk of m words of shared data, even if m
is greater than the cache line size. We further assume that accessing shared data is costlier
than accessing local data (for instance, on a NUMA machine, local data is likely to reside
in a local memory module, while data shared by p processors will need to be fetched from
a nonlocal module for at least p − 1 processors). Therefore, we assign a per-word access
cost of tw to shared data.

From the above discussion, it follows that we can use the same expression ts + twm to
account for the cost of sharing a single chunk of m words between a pair of processors in
both shared-memory and message-passing paradigms (Equation 2.4) with the difference
that the value of the constant ts relative to tw is likely to be much smaller on a shared-
memory machine than on a distributed memory machine (tw is likely to be near zero for a
UMA machine). Note that the cost ts + twm assumes read-only access without contention.
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If multiple processes access the same data, then the cost is multiplied by the number of
processes, just as in the message-passing where the process that owns the data will need to
send a message to each receiving process. If the access is read-write, then the cost will be
incurred again for subsequent access by processors other than the one writing. Once again,
there is an equivalence with the message-passing model. If a process modifies the contents
of a message that it receives, then it must send it back to processes that subsequently need
access to the refreshed data. While this model seems overly simplified in the context of
shared-address-space machines, we note that the model provides a good estimate of the
cost of sharing an array of m words between a pair of processors.

The simplified model presented above accounts primarily for remote data access but
does not model a variety of other overheads. Contention for shared data access must be
explicitly accounted for by counting the number of accesses to shared data between co-
scheduled tasks. The model does not explicitly include many of the other overheads. Since
different machines have caches of varying sizes, it is difficult to identify the point at which
working set size exceeds the cache size resulting in cache thrashing, in an architecture
independent manner. For this reason, effects arising from finite caches are ignored in this
cost model. Maximizing spatial locality (cache line effects) is not explicitly included in the
cost. False sharing is a function of the instruction schedules as well as data layouts. The
cost model assumes that shared data structures are suitably padded and, therefore, does
not include false sharing costs. Finally, the cost model does not account for overlapping
communication and computation. Other models have been proposed to model overlapped
communication. However, designing even simple algorithms for these models is cumber-
some. The related issue of multiple concurrent computations (threads) on a single proces-
sor is not modeled in the expression. Instead, each processor is assumed to execute a single
concurrent unit of computation.

2.6 Routing Mechanisms for Interconnection
Networks

Efficient algorithms for routing a message to its destination are critical to the performance
of parallel computers. A routing mechanism determines the path a message takes through
the network to get from the source to the destination node. It takes as input a message’s
source and destination nodes. It may also use information about the state of the network.
It returns one or more paths through the network from the source to the destination node.

Routing mechanisms can be classified as minimal or non-minimal. A minimal routing
mechanism always selects one of the shortest paths between the source and the destination.
In a minimal routing scheme, each link brings a message closer to its destination, but the
scheme can lead to congestion in parts of the network. A non-minimal routing scheme, in
contrast, may route the message along a longer path to avoid network congestion.

Routing mechanisms can also be classified on the basis of how they use information
regarding the state of the network. A deterministic routing scheme determines a unique
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path for a message, based on its source and destination. It does not use any information
regarding the state of the network. Deterministic schemes may result in uneven use of
the communication resources in a network. In contrast, an adaptive routing scheme uses
information regarding the current state of the network to determine the path of the message.
Adaptive routing detects congestion in the network and routes messages around it.

One commonly used deterministic minimal routing technique is called dimension-
ordered routing. Dimension-ordered routing assigns successive channels for traversal by
a message based on a numbering scheme determined by the dimension of the channel. The
dimension-ordered routing technique for a two-dimensional mesh is called XY-routing and
that for a hypercube is called E-cube routing.

Consider a two-dimensional mesh without wraparound connections. In the XY-routing
scheme, a message is sent first along the X dimension until it reaches the column of the
destination node and then along the Y dimension until it reaches its destination. Let PSy,Sx

represent the position of the source node and PDy,Dx represent that of the destination
node. Any minimal routing scheme should return a path of length |Sx − Dx |+ |Sy − Dy|.
Assume that Dx ≥ Sx and Dy ≥ Sy. In the XY-routing scheme, the message is passed
through intermediate nodes PSy,Sx+1, PSy,Sx+2, . . . , PSy,Dx along the X dimension and
then through nodes PSy+1,Dx , PSy+2,Dx, . . . , PDy,Dx along the Y dimension to reach the
destination. Note that the length of this path is indeed |Sx − Dx | + |Sy − Dy|.

E-cube routing for hypercube-connected networks works similarly. Consider a d-
dimensional hypercube of p nodes. Let Ps and Pd be the labels of the source and des-
tination nodes. We know from Section 2.4.3 that the binary representations of these labels
are d bits long. Furthermore, the minimum distance between these nodes is given by the
number of ones in Ps ⊕ Pd (where ⊕ represents the bitwise exclusive-OR operation). In the
E-cube algorithm, node Ps computes Ps ⊕ Pd and sends the message along dimension k,
where k is the position of the least significant nonzero bit in Ps ⊕ Pd . At each intermediate
step, node Pi , which receives the message, computes Pi ⊕ Pd and forwards the message
along the dimension corresponding to the least significant nonzero bit. This process con-
tinues until the message reaches its destination. Example 2.16 illustrates E-cube routing in
a three-dimensional hypercube network.

Example 2.16 E-cube routing in a hypercube network
Consider the three-dimensional hypercube shown in Figure 2.28. Let Ps = 010
and Pd = 111 represent the source and destination nodes for a message. Node Ps

computes 010 ⊕ 111 = 101. In the first step, Ps forwards the message along the
dimension corresponding to the least significant bit to node 011. Node 011 sends the
message along the dimension corresponding to the most significant bit (011⊕111 =
100). The message reaches node 111, which is the destination of the message.

In the rest of this book we assume deterministic and minimal message routing for ana-
lyzing parallel algorithms.
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Figure 2.28 Routing a message from node Ps (010) to node Pd (111) in a three-dimensional
hypercube using E-cube routing.

2.7 Impact of Process-Processor Mapping and
Mapping Techniques

As we have discussed in Section 2.5.1, a programmer often does not have control over
how logical processes are mapped to physical nodes in a network. For this reason, even
communication patterns that are not inherently congesting may congest the network. We
illustrate this with the following example:

Example 2.17 Impact of process mapping
Consider the scenario illustrated in Figure 2.29. The underlying architecture is a
16-node mesh with nodes labeled from 1 to 16 (Figure 2.29(a)) and the algorithm
has been implemented as 16 processes, labeled ‘a’ through ‘p’ (Figure 2.29(b)). The
algorithm has been tuned for execution on a mesh in such a way that there are no
congesting communication operations. We now consider two mappings of the pro-
cesses to nodes as illustrated in Figures 2.29(c) and (d). Figure 2.29(c) is an in-
tuitive mapping and is such that a single link in the underlying architecture only
carries data corresponding to a single communication channel between processes.
Figure 2.29(d), on the other hand, corresponds to a situation in which processes have
been mapped randomly to processing nodes. In this case, it is easy to see that each
link in the machine carries up to six channels of data between processes. This may
potentially result in considerably larger communication times if the required data
rates on communication channels between processes is high.

It is evident from the above example that while an algorithm may be fashioned out of
non-congesting communication operations, the mapping of processes to nodes may in fact
induce congestion on the network and cause degradation in performance.
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Figure 2.29 Impact of process mapping on performance: (a) underlying architecture; (b) pro-
cesses and their interactions; (c) an intuitive mapping of processes to nodes; and (d) a random
mapping of processes to nodes.

2.7.1 Mapping Techniques for Graphs

While the programmer generally does not have control over process-processor mapping, it
is important to understand algorithms for such mappings. This is because these mappings
can be used to determine degradation in the performance of an algorithm. Given two
graphs, G(V, E) and G ′(V ′, E ′), mapping graph G into graph G ′ maps each vertex in the
set V onto a vertex (or a set of vertices) in set V ′ and each edge in the set E onto an edge (or
a set of edges) in E ′. When mapping graph G(V, E) into G ′(V ′, E ′), three parameters are
important. First, it is possible that more than one edge in E is mapped onto a single edge in
E ′. The maximum number of edges mapped onto any edge in E ′ is called the congestion of
the mapping. In Example 2.17, the mapping in Figure 2.29(c) has a congestion of one and
that in Figure 2.29(d) has a congestion of six. Second, an edge in E may be mapped onto
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multiple contiguous edges in E ′. This is significant because traffic on the corresponding
communication link must traverse more than one link, possibly contributing to congestion
on the network. The maximum number of links in E ′ that any edge in E is mapped onto is
called the dilation of the mapping. Third, the sets V and V ′ may contain different numbers
of vertices. In this case, a node in V corresponds to more than one node in V ′. The ratio of
the number of nodes in the set V ′ to that in set V is called the expansion of the mapping.
In the context of process-processor mapping, we want the expansion of the mapping to be
identical to the ratio of virtual and physical processors.

In this section, we discuss embeddings of some commonly encountered graphs such
as 2-D meshes (matrix operations illustrated in Chapter 8), hypercubes (sorting and FFT
algorithms in Chapters 9 and 13, respectively), and trees (broadcast, barriers in Chapter 4).
We limit the scope of the discussion to cases in which sets V and V ′ contain an equal
number of nodes (i.e., an expansion of one).

Embedding a Linear Array into a Hypercube

A linear array (or a ring) composed of 2d nodes (labeled 0 through 2d −1) can be embedded
into a d-dimensional hypercube by mapping node i of the linear array onto node G(i, d)
of the hypercube. The function G(i, x) is defined as follows:

G(0, 1) = 0

G(1, 1) = 1

G(i, x + 1) =
{

G(i, x), i < 2x

2x + G(2x+1 − 1 − i, x), i ≥ 2x

The function G is called the binary reflected Gray code (RGC). The entry G(i, d)
denotes the i th entry in the sequence of Gray codes of d bits. Gray codes of d + 1 bits
are derived from a table of Gray codes of d bits by reflecting the table and prefixing the
reflected entries with a 1 and the original entries with a 0. This process is illustrated in
Figure 2.30(a).

A careful look at the Gray code table reveals that two adjoining entries (G(i, d) and
G(i + 1, d)) differ from each other at only one bit position. Since node i in the linear array
is mapped to node G(i, d), and node i +1 is mapped to G(i +1, d), there is a direct link in
the hypercube that corresponds to each direct link in the linear array. (Recall that two nodes
whose labels differ at only one bit position have a direct link in a hypercube.) Therefore,
the mapping specified by the function G has a dilation of one and a congestion of one.
Figure 2.30(b) illustrates the embedding of an eight-node ring into a three-dimensional
hypercube.

Embedding a Mesh into a Hypercube

Embedding a mesh into a hypercube is a natural extension of embedding a ring into a
hypercube. We can embed a 2r × 2s wraparound mesh into a 2r+s -node hypercube by
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Figure 2.30 (a) A three-bit reflected Gray code ring; and (b) its embedding into a three-dimensional
hypercube.

mapping node (i, j) of the mesh onto node G(i, r − 1)‖G( j, s − 1) of the hypercube
(where ‖ denotes concatenation of the two Gray codes). Note that immediate neighbors in
the mesh are mapped to hypercube nodes whose labels differ in exactly one bit position.
Therefore, this mapping has a dilation of one and a congestion of one.

For example, consider embedding a 2 × 4 mesh into an eight-node hypercube. The
values of r and s are 1 and 2, respectively. Node (i, j) of the mesh is mapped to node
G(i, 1)‖G( j, 2) of the hypercube. Therefore, node (0, 0) of the mesh is mapped to node
000 of the hypercube, because G(0, 1) is 0 and G(0, 2) is 00; concatenating the two yields
the label 000 for the hypercube node. Similarly, node (0, 1) of the mesh is mapped to
node 001 of the hypercube, and so on. Figure 2.31 illustrates embedding meshes into
hypercubes.

This mapping of a mesh into a hypercube has certain useful properties. All nodes in
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Text Box
bug?
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Figure 2.31 (a) A 4 × 4 mesh illustrating the mapping of mesh nodes to the nodes in a four-
dimensional hypercube; and (b) a 2 × 4 mesh embedded into a three-dimensional hypercube.

the same row of the mesh are mapped to hypercube nodes whose labels have r identical
most significant bits. We know from Section 2.4.3 that fixing any r bits in the node label
of an (r + s)-dimensional hypercube yields a subcube of dimension s with 2s nodes. Since
each mesh node is mapped onto a unique node in the hypercube, and each row in the mesh
has 2s nodes, every row in the mesh is mapped to a distinct subcube in the hypercube.
Similarly, each column in the mesh is mapped to a distinct subcube in the hypercube.

Embedding a Mesh into a Linear Array

We have, up until this point, considered embeddings of sparser networks into denser net-
works. A 2-D mesh has 2 × p links. In contrast, a p-node linear array has p links.
Consequently, there must be a congestion associated with this mapping.
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(a) Mapping a linear array into a

linear array (congestion 5)
(b) Inverting the mapping − mapping a 2D mesh into a

2D mesh (congestion 1).

Figure 2.32 (a) Embedding a 16 node linear array into a 2-D mesh; and (b) the inverse of the
mapping. Solid lines correspond to links in the linear array and normal lines to links in the mesh.

Consider first the mapping of a linear array into a mesh. We assume that neither the
mesh nor the linear array has wraparound connections. An intuitive mapping of a linear
array into a mesh is illustrated in Figure 2.32. Here, the solid lines correspond to links in
the linear array and normal lines to links in the mesh. It is easy to see from Figure 2.32(a)
that a congestion-one, dilation-one mapping of a linear array to a mesh is possible.

Consider now the inverse of this mapping, i.e., we are given a mesh and we map vertices
of the mesh to those in a linear array using the inverse of the same mapping function. This
mapping is illustrated in Figure 2.32(b). As before, the solid lines correspond to edges in
the linear array and normal lines to edges in the mesh. As is evident from the figure, the
congestion of the mapping in this case is five – i.e., no solid line carries more than five
normal lines. In general, it is easy to show that the congestion of this (inverse) mapping is√

p + 1 for a general p-node mapping (one for each of the
√

p edges to the next row, and
one additional edge).

While this is a simple mapping, the question at this point is whether we can do better.
To answer this question, we use the bisection width of the two networks. We know that the
bisection width of a 2-D mesh without wraparound links is

√
p, and that of a linear array

is 1. Assume that the best mapping of a 2-D mesh into a linear array has a congestion of
r . This implies that if we take the linear array and cut it in half (at the middle), we will cut
only one linear array link, or no more than r mesh links. We claim that r must be at least
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equal to the bisection width of the mesh. This follows from the fact that an equi-partition
of the linear array into two also partitions the mesh into two. Therefore, at least

√
p mesh

links must cross the partition, by definition of bisection width. Consequently, the one
linear array link connecting the two halves must carry at least

√
p mesh links. Therefore,

the congestion of any mapping is lower bounded by
√

p. This is almost identical to the
simple (inverse) mapping we have illustrated in Figure 2.32(b).

The lower bound established above has a more general applicability when mapping
denser networks to sparser ones. One may reasonably believe that the lower bound on con-
gestion of a mapping of network S with x links into network Q with y links is x/y. In the
case of the mapping from a mesh to a linear array, this would be 2p/p, or 2. However, this
lower bound is overly conservative. A tighter lower bound is in fact possible by examining
the bisection width of the two networks. We illustrate this further in the next section.

Embedding a Hypercube into a 2-D Mesh

Consider the embedding of a p-node hypercube into a p-node 2-D mesh. For the sake of
convenience, we assume that p is an even power of two. In this scenario, it is possible
to visualize the hypercube as

√
p subcubes, each with

√
p nodes. We do this as follows:

let d = log p be the dimension of the hypercube. From our assumption, we know that d
is even. We take the d/2 least significant bits and use them to define individual subcubes
of

√
p nodes. For example, in the case of a 4D hypercube, we use the lower two bits to

define the subcubes as (0000, 0001, 0011, 0010), (0100, 0101, 0111, 0110), (1100, 1101,
1111, 1110), and (1000, 1001, 1011, 1010). Note at this point that if we fix the d/2 least
significant bits across all of these subcubes, we will have another subcube as defined by the
d/2 most significant bits. For example, if we fix the lower two bits across the subcubes to
10, we get the nodes (0010, 0110, 1110, 1010). The reader can verify that this corresponds
to a 2-D subcube.

The mapping from a hypercube to a mesh can now be defined as follows: each
√

p
node subcube is mapped to a

√
p node row of the mesh. We do this by simply inverting

the linear-array to hypercube mapping. The bisection width of the
√

p node hypercube is√
p/2. The corresponding bisection width of a

√
p node row is 1. Therefore the congestion

of this subcube-to-row mapping is
√

p/2 (at the edge that connects the two halves of the
row). This is illustrated for the cases of p = 16 and p = 32 in Figure 2.33(a) and (b).
In this fashion, we can map each subcube to a different row in the mesh. Note that while
we have computed the congestion resulting from the subcube-to-row mapping, we have
not addressed the congestion resulting from the column mapping. We map the hypercube
nodes into the mesh in such a way that nodes with identical d/2 least significant bits in the
hypercube are mapped to the same column. This results in a subcube-to-column mapping,
where each subcube/column has

√
p nodes. Using the same argument as in the case of

subcube-to-row mapping, this results in a congestion of
√

p/2. Since the congestion from
the row and column mappings affects disjoint sets of edges, the total congestion of this
mapping is

√
p/2.
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P = 32(b) 

P = 16(a)

Figure 2.33 Embedding a hypercube into a 2-D mesh.

To establish a lower bound on the congestion, we follow the same argument as in Sec-
tion 2.7.1. Since the bisection width of a hypercube is p/2 and that of a mesh is

√
p, the

lower bound on congestion is the ratio of these, i.e.,
√

p/2. We notice that our mapping
yields this lower bound on congestion.

Process-Processor Mapping and Design of Interconnection Networks

Our analysis in previous sections reveals that it is possible to map denser networks into
sparser networks with associated congestion overheads. This implies that a sparser net-
work whose link bandwidth is increased to compensate for the congestion can be expected
to perform as well as the denser network (modulo dilation effects). For example, a mesh
whose links are faster by a factor of

√
p/2 will yield comparable performance to a hyper-

cube. We call such a mesh a fat-mesh. A fat-mesh has the same bisection-bandwidth as a
hypercube; however it has a higher diameter. As we have seen in Section 2.5.1, by using
appropriate message routing techniques, the effect of node distance can be minimized. It
is important to note that higher dimensional networks involve more complicated layouts,
wire crossings, and variable wire-lengths. For these reasons, fattened lower dimensional
networks provide attractive alternate approaches to designing interconnects. We now do a
more formal examination of the cost-performance tradeoffs of parallel architectures.
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2.7.2 Cost-Performance Tradeoffs

We now examine how various cost metrics can be used to investigate cost-performance
tradeoffs in interconnection networks. We illustrate this by analyzing the performance of a
mesh and a hypercube network with identical costs.

If the cost of a network is proportional to the number of wires, then a square p-node
wraparound mesh with (log p)/4 wires per channel costs as much as a p-node hypercube
with one wire per channel. Let us compare the average communication times of these
two networks. The average distance lav between any two nodes in a two-dimensional
wraparound mesh is

√
p/2 and that in a hypercube is (log p)/2. The time for sending a

message of size m between nodes that are lav hops apart is given by ts + thlav + twm in
networks that use cut-through routing. Since the channel width of the mesh is scaled up
by a factor of (log p)/4, the per-word transfer time is reduced by the same factor. Hence,
if the per-word transfer time on the hypercube is tw, then the same time on a mesh with
fattened channels is given by 4tw/(log p). Hence, the average communication latency for
a hypercube is given by ts + th(log p)/2+ twm and that for a wraparound mesh of the same
cost is ts + th

√
p/2 + 4twm/(log p).

Let us now investigate the behavior of these expressions. For a fixed number of nodes,
as the message size is increased, the communication term due to tw dominates. Comparing
tw for the two networks, we see that the time for a wraparound mesh (4twm/(log p)) is
less than the time for a hypercube (twm) if p is greater than 16 and the message size m
is sufficiently large. Under these circumstances, point-to-point communication of large
messages between random pairs of nodes takes less time on a wraparound mesh with cut-
through routing than on a hypercube of the same cost. Furthermore, for algorithms in
which communication is suited to a mesh, the extra bandwidth of each channel results in
better performance. Note that, with store-and-forward routing, the mesh is no longer more
cost-efficient than a hypercube. Similar cost-performance tradeoffs can be analyzed for the
general case of k-ary d-cubes (Problems 2.25–2.29).

The communication times above are computed under light load conditions in the net-
work. As the number of messages increases, there is contention on the network. Con-
tention affects the mesh network more adversely than the hypercube network. Therefore,
if the network is heavily loaded, the hypercube will outperform the mesh.

If the cost of a network is proportional to its bisection width, then a p-node wraparound
mesh with

√
p/4 wires per channel has a cost equal to a p-node hypercube with one

wire per channel. Let us perform an analysis similar to the one above to investigate cost-
performance tradeoffs using this cost metric. Since the mesh channels are wider by a factor
of

√
p/4, the per-word transfer time will be lower by an identical factor. Therefore, the

communication times for the hypercube and the mesh networks of the same cost are given
by ts + th(log p)/2 + twm and ts + th

√
p/2 + 4twm/

√
p, respectively. Once again, as

the message size m becomes large for a given number of nodes, the tw term dominates.
Comparing this term for the two networks, we see that for p > 16 and sufficiently large
message sizes, a mesh outperforms a hypercube of the same cost. Therefore, for large
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enough messages, a mesh is always better than a hypercube of the same cost, provided the
network is lightly loaded. Even when the network is heavily loaded, the performance of a
mesh is similar to that of a hypercube of the same cost.

2.8 Bibliographic Remarks

Several textbooks discuss various aspects of high-performance architectures [PH90,
PH96, Sto93]. Parallel architectures and interconnection networks have been well de-
scribed [CSG98, LW95, HX98, Fly95, AG94, DeC89, HB84, Lil92, Sie85, Sto93]. Histor-
ically, the classification of parallel computers as SISD, SIMD, and MIMD was introduced
by Flynn [Fly72]. He also proposed the MISD (multiple instruction stream, single data
stream) model. MISD is less natural than the other classes, although it can be viewed as
a model for pipelining. Darema [DRGNP] introduced the Single Program Multiple Data
(SPMD) paradigm. Ni [Ni91] provides a layered classification of parallel computers based
on hardware architecture, address space, communication model, language, programming
environment, and applications.

Interconnection networks have been an area of active interest for decades. Feng [Fen81]
provides a tutorial on static and dynamic interconnection networks. The perfect shuffle in-
terconnection pattern was introduced by Stone [Sto71]. Omega networks were introduced
by Lawrie [Law75]. Other multistage networks have also been proposed. These include
the Flip network [Bat76] and the Baseline network [WF80]. Mesh of trees and pyrami-
dal mesh are discussed by Leighton [Lei92]. Leighton [Lei92] also provides a detailed
discussion of many related networks.

The C.mmp was an early research prototype MIMD shared-address-space parallel com-
puter based on the Crossbar switch [WB72]. The Sun Ultra HPC Server and Fujitsu
VPP 500 are examples of crossbar-based parallel computers or their variants. Several paral-
lel computers were based on multistage interconnection networks including the BBN But-
terfly [BBN89], the NYU Ultracomputer [GGK+83], and the IBM RP-3 [PBG+85]. The
SGI Origin 2000, Stanford Dash [LLG+92] and the KSR-1 [Ken90] are NUMA shared-
address-space computers.

The Cosmic Cube [Sei85] was among the first message-passing parallel computers
based on a hypercube-connected network. These were followed by the nCUBE 2 [nCU90]
and the Intel iPSC-1, iPSC-2, and iPSC/860. More recently, the SGI Origin 2000 uses a
network similar to a hypercube. Saad and Shultz [SS88, SS89a] derive interesting prop-
erties of the hypercube-connected network and a variety of other static networks [SS89b].
Many parallel computers, such as the Cray T3E, are based on the mesh network. The Intel
Paragon XP/S [Sup91] and the Mosaic C [Sei92] are earlier examples of two-dimensional
mesh-based computers. The MIT J-Machine [D+92] was based on a three-dimensional
mesh network. The performance of mesh-connected computers can be improved by aug-
menting the mesh network with broadcast buses [KR87a]. The reconfigurable mesh archi-
tecture (Figure 2.35 in Problem 2.16) was introduced by Miller et al. [MKRS88]. Other
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examples of reconfigurable meshes include the TRAC and PCHIP.
The DADO parallel computer was based on a tree network [SM86]. It used a complete

binary tree of depth 10. Leiserson [Lei85b] introduced the fat-tree interconnection network
and proved several interesting characteristics of it. He showed that for a given volume of
hardware, no network has much better performance than a fat tree. The Thinking Machines
CM-5 [Thi91] parallel computer was based on a fat tree interconnection network.

The Illiac IV [Bar68] was among the first SIMD parallel computers. Other SIMD com-
puters include the Goodyear MPP [Bat80], the DAP 610, and the CM-2 [Thi90], MasPar
MP-1, and MasPar MP-2 [Nic90]. The CM-5 and DADO incorporate both SIMD and
MIMD features. Both are MIMD computers but have extra hardware for fast synchroniza-
tion, which enables them to operate in SIMD mode. The CM-5 had a control network
to augment the data network. The control network provides such functions as broadcast,
reduction, combining, and other global operations.

Leighton [Lei92] and Ranka and Sahni [RS90b] discuss embedding one interconnection
network into another. Gray codes, used in embedding linear array and mesh topologies,
are discussed by Reingold [RND77]. Ranka and Sahni [RS90b] discuss the concepts of
congestion, dilation, and expansion.

A comprehensive survey of cut-through routing techniques is provided by Ni and
McKinley [NM93]. The wormhole routing technique was proposed by Dally and Seitz
[DS86]. A related technique called virtual cut-through, in which communication buffers
are provided at intermediate nodes, was described by Kermani and Kleinrock [KK79].
Dally and Seitz [DS87] discuss deadlock-free wormhole routing based on channel depen-
dence graphs. Deterministic routing schemes based on dimension ordering are often used
to avoid deadlocks. Cut-through routing has been used in several parallel computers. The
E-cube routing scheme for hypercubes was proposed by [SB77].

Dally [Dal90b] discusses cost-performance tradeoffs of networks for message-passing
computers. Using the bisection bandwidth of a network as a measure of the cost of the
network, he shows that low-dimensional networks (such as two-dimensional meshes) are
more cost-effective than high-dimensional networks (such as hypercubes) [Dal87, Dal90b,
Dal90a]. Kreeger and Vempaty [KV92] derive the bandwidth equalization factor for a mesh
with respect to a hypercube-connected computer for all-to-all personalized communication
(Section 4.5). Gupta and Kumar [GK93b] analyze the cost-performance tradeoffs of FFT
computations on mesh and hypercube networks.

The properties of PRAMs have been studied extensively [FW78, KR88, LY86, Sni82,
Sni85]. Books by Akl [Akl89], Gibbons [GR90], and Jaja [Jaj92] address PRAM algo-
rithms. Our discussion of PRAM is based upon the book by Jaja [Jaj92]. A number
of processor networks have been proposed to simulate PRAM models [AHMP87, HP89,
LPP88, LPP89, MV84, Upf84, UW84]. Mehlhorn and Vishkin [MV84] propose the mod-
ule parallel computer (MPC) to simulate PRAM models. The MPC is a message-passing
parallel computer composed of p processors, each with a fixed amount of memory and
connected by a completely-connected network. The MPC is capable of probabilistically
simulating T steps of a PRAM in T log p steps if the total memory is increased by a factor
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of log p. The main drawback of the MPC model is that a completely-connected network
is difficult to construct for a large number of processors. Alt et al. [AHMP87] propose
another model called the bounded-degree network (BDN). In this network, each processor
is connected to a fixed number of other processors. Karlin and Upfal [KU86] describe an
O(T log p) time probabilistic simulation of a PRAM on a BDN. Hornick and Preparata
[HP89] propose a bipartite network that connects sets of processors and memory pools.
They investigate both the message-passing MPC and BDN based on a mesh of trees.

Many modifications of the PRAM model have been proposed that attempt to bring it
closer to practical parallel computers. Aggarwal, Chandra, and Snir [ACS89b] propose the
LPRAM (local-memory PRAM) model and the BPRAM (block PRAM) model [ACS89b].
They also introduce a hierarchical memory model of computation [ACS89a]. In this model,
memory units at different levels are accessed in different times. Parallel algorithms for this
model induce locality by bringing data into faster memory units before using them and
returning them to the slower memory units. Other PRAM models such as phase PRAM
[Gib89], XPRAM [Val90b], and the delay model [PY88] have also been proposed. Many
researchers have investigated abstract universal models for parallel computers [CKP+93a,
Sny86, Val90a]. Models such as BSP [Val90a], Postal model [BNK92], LogP [CKP+93b],
A3 [GKRS96], C3 [HK96], CGM [DFRC96], and QSM [Ram97] have been proposed with
similar objectives.

Problems

2.1 Design an experiment (i.e., design and write programs and take measurements) to
determine the memory bandwidth of your computer and to estimate the caches at
various levels of the hierarchy. Use this experiment to estimate the bandwidth and
L1 cache of your computer. Justify your answer. (Hint: To test bandwidth, you do
not want reuse. To test cache size, you want reuse to see the effect of the cache and
to increase this size until the reuse decreases sharply.)

2.2 Consider a memory system with a level 1 cache of 32 KB and DRAM of 512 MB
with the processor operating at 1 GHz. The latency to L1 cache is one cycle and the
latency to DRAM is 100 cycles. In each memory cycle, the processor fetches four
words (cache line size is four words). What is the peak achievable performance of
a dot product of two vectors? Note: Where necessary, assume an optimal cache
placement policy.

1 /* dot product loop */
2 for (i = 0; i < dim; i++)
3 dot_prod += a[i] * b[i];

2.3 Now consider the problem of multiplying a dense matrix with a vector using a two-
loop dot-product formulation. The matrix is of dimension 4K × 4K . (Each row
of the matrix takes 16 KB of storage.) What is the peak achievable performance of
this technique using a two-loop dot-product based matrix-vector product?
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1 /* matrix-vector product loop */
2 for (i = 0; i < dim; i++)
3 for (j = 0; i < dim; j++)
4 c[i] += a[i][j] * b[j];

2.4 Extending this further, consider the problem of multiplying two dense matrices of
dimension 4K × 4K . What is the peak achievable performance using a three-loop
dot-product based formulation? (Assume that matrices are laid out in a row-major
fashion.)

1 /* matrix-matrix product loop */
2 for (i = 0; i < dim; i++)
3 for (j = 0; i < dim; j++)
4 for (k = 0; k < dim; k++)
5 c[i][j] += a[i][k] * b[k][j];

2.5 Restructure the matrix multiplication algorithm to achieve better cache perfor-
mance. The most obvious cause of the poor performance of matrix multiplica-
tion was the absence of spatial locality. In some cases, we were wasting three of
the four words fetched from memory. To fix this problem, we compute the ele-
ments of the result matrix four at a time. Using this approach, we can increase our
FLOP count with a simple restructuring of the program. However, it is possible
to achieve much higher performance from this problem. This is possible by view-
ing the matrix multiplication problem as a cube in which each internal grid point
corresponds to a multiply-add operation. Matrix multiplication algorithms traverse
this cube in different ways, which induce different partitions of the cube. The data
required for computing a partition grows as the surface area of the input faces of
the partition and the computation as the volume of the partition. For the algorithms
discussed above, we were slicing thin partitions of the cube for which the area and
volume were comparable (thus achieving poor cache performance). To remedy
this, we restructure the computation by partitioning the cube into subcubes of size
k × k × k. The data associated with this is 3 × k2 (k2 data for each of the three
matrices) and the computation is k3. To maximize performance, we would like
3 × k2 to be equal to 8K since that is the amount of cache available (assuming the
same machine parameters as in Problem 2.2). This corresponds to k = 51. The
computation associated with a cube of this dimension is 132651 multiply-add op-
erations or 265302 FLOPs. To perform this computation, we needed to fetch two
submatrices of size 51 × 51. This corresponds to 5202 words or 1301 cache lines.
Accessing these cache lines takes 130100 ns. Since 265302 FLOPs are performed
in 130100 ns, the peak computation rate of this formulation is 2.04 GFLOPS. Code
this example and plot the performance as a function of k. (Code on any conven-
tional microprocessor. Make sure you note the clock speed, the microprocessor
and the cache available at each level.)

2.6 Consider an SMP with a distributed shared-address-space. Consider a simple cost
model in which it takes 10 ns to access local cache, 100 ns to access local mem-
ory, and 400 ns to access remote memory. A parallel program is running on this
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machine. The program is perfectly load balanced with 80% of all accesses going
to local cache, 10% to local memory, and 10% to remote memory. What is the
effective memory access time for this computation? If the computation is memory
bound, what is the peak computation rate?
Now consider the same computation running on one processor. Here, the proces-
sor hits the cache 70% of the time and local memory 30% of the time. What is
the effective peak computation rate for one processor? What is the fractional com-
putation rate of a processor in a parallel configuration as compared to the serial
configuration?
Hint: Notice that the cache hit for multiple processors is higher than that for one
processor. This is typically because the aggregate cache available on multiproces-
sors is larger than on single processor systems.

2.7 What are the major differences between message-passing and shared-address-
space computers? Also outline the advantages and disadvantages of the two.

2.8 Why is it difficult to construct a true shared-memory computer? What is the mini-
mum number of switches for connecting p processors to a shared memory with b
words (where each word can be accessed independently)?

2.9 Of the four PRAM models (EREW, CREW, ERCW, and CRCW), which model is
the most powerful? Why?

2.10 [Lei92] The Butterfly network is an interconnection network composed of log p
levels (as the omega network). In a Butterfly network, each switching node i at
a level l is connected to the identically numbered element at level l + 1 and to a
switching node whose number differs from itself only at the lth most significant
bit. Therefore, switching node Si is connected to element S j at level l if j = i or
j = i ⊕ (2log p−l).
Figure 2.34 illustrates a Butterfly network with eight processing nodes. Show the
equivalence of a Butterfly network and an omega network.
Hint: Rearrange the switches of an omega network so that it looks like a Butterfly
network.

2.11 Consider the omega network described in Section 2.4.3. As shown there, this net-
work is a blocking network (that is, a processor that uses the network to access a
memory location might prevent another processor from accessing another mem-
ory location). Consider an omega network that connects p processors. Define a
function f that maps P = [0, 1, . . . , p − 1] onto a permutation P ′ of P (that
is, P ′[i] = f (P[i]) and P ′[i] ∈ P for all 0 ≤ i < p). Think of this function as
mapping communication requests by the processors so that processor P[i] requests
communication with processor P ′[i].
1. How many distinct permutation functions exist?

2. How many of these functions result in non-blocking communication?

3. What is the probability that an arbitrary function will result in non-blocking
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Figure 2.34 A Butterfly network with eight processing nodes.

communication?

2.12 A cycle in a graph is defined as a path originating and terminating at the same
node. The length of a cycle is the number of edges in the cycle. Show that there
are no odd-length cycles in a d-dimensional hypercube.

2.13 The labels in a d-dimensional hypercube use d bits. Fixing any k of these bits,
show that the nodes whose labels differ in the remaining d − k bit positions form
a (d − k)-dimensional subcube composed of 2(d−k) nodes.

2.14 Let A and B be two nodes in a d-dimensional hypercube. Define H(A, B) to
be the Hamming distance between A and B, and P(A, B) to be the number of
distinct paths connecting A and B. These paths are called parallel paths and have
no common nodes other than A and B. Prove the following:

1. The minimum distance in terms of communication links between A and B is
given by H(A, B).

2. The total number of parallel paths between any two nodes is P(A, B) = d.

3. The number of parallel paths between A and B of length H(A, B) is
Plength=H(A,B)(A, B) = H(A, B).

4. The length of the remaining d − H(A, B) parallel paths is H(A, B)+ 2.

2.15 In the informal derivation of the bisection width of a hypercube, we used the con-
struction of a hypercube to show that a d-dimensional hypercube is formed from
two (d −1)-dimensional hypercubes. We argued that because corresponding nodes
in each of these subcubes have a direct communication link, there are 2d − 1 links
across the partition. However, it is possible to partition a hypercube into two parts
such that neither of the partitions is a hypercube. Show that any such partitions
will have more than 2d − 1 direct links between them.
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2.16 [MKRS88] A
√

p × √
p reconfigurable mesh consists of a

√
p × √

p array of
processing nodes connected to a grid-shaped reconfigurable broadcast bus. A 4×4
reconfigurable mesh is shown in Figure 2.35. Each node has locally-controllable
bus switches. The internal connections among the four ports, north (N), east (E),
west (W), and south (S), of a node can be configured during the execution of an
algorithm. Note that there are 15 connection patterns. For example, {SW, EN}
represents the configuration in which port S is connected to port W and port N is
connected to port E. Each bit of the bus carries one of 1-signal or 0-signal at any
time. The switches allow the broadcast bus to be divided into subbuses, providing
smaller reconfigurable meshes. For a given set of switch settings, a subbus is a
maximally-connected subset of the nodes. Other than the buses and the switches,
the reconfigurable mesh is similar to the standard two-dimensional mesh. Assume
that only one node is allowed to broadcast on a subbus shared by multiple nodes
at any time.
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Figure 2.35 Switch connection patterns in a reconfigurable mesh.

Determine the bisection width, the diameter, and the number of switching nodes
and communication links for a reconfigurable mesh of

√
p×√

p processing nodes.
What are the advantages and disadvantages of a reconfigurable mesh as compared
to a wraparound mesh?

2.17 [Lei92] A mesh of trees is a network that imposes a tree interconnection on a grid
of processing nodes. A

√
p ×√

p mesh of trees is constructed as follows. Starting
with a

√
p × √

p grid, a complete binary tree is imposed on each row of the grid.
Then a complete binary tree is imposed on each column of the grid. Figure 2.36
illustrates the construction of a 4 × 4 mesh of trees. Assume that the nodes at
intermediate levels are switching nodes. Determine the bisection width, diameter,
and total number of switching nodes in a

√
p × √

p mesh.
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(b)

(c) (d)

(a)

Figure 2.36 The construction of a 4 × 4 mesh of trees: (a) a 4 × 4 grid, (b) complete binary
trees imposed over individual rows, (c) complete binary trees imposed over each column, and (d)
the complete 4 × 4 mesh of trees.

2.18 [Lei92] Extend the two-dimensional mesh of trees (Problem 2.17) to d dimensions
to construct a p1/d × p1/d × · · · × p1/d mesh of trees. We can do this by fixing
grid positions in all dimensions to different values and imposing a complete binary
tree on the one dimension that is being varied.
Derive the total number of switching nodes in a p1/d × p1/d × · · · × p1/d mesh of
trees. Calculate the diameter, bisection width, and wiring cost in terms of the total
number of wires. What are the advantages and disadvantages of a mesh of trees as
compared to a wraparound mesh?

2.19 [Lei92] A network related to the mesh of trees is the d-dimensional pyramidal
mesh. A d-dimensional pyramidal mesh imposes a pyramid on the underlying
grid of processing nodes (as opposed to a complete tree in the mesh of trees). The
generalization is as follows. In the mesh of trees, all dimensions except one are
fixed and a tree is imposed on the remaining dimension. In a pyramid, all but two
dimensions are fixed and a pyramid is imposed on the mesh formed by these two
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Figure 2.37 A 4 × 4 pyramidal mesh.

dimensions. In a tree, each node i at level k is connected to node i/2 at level k − 1.
Similarly, in a pyramid, a node (i, j) at level k is connected to a node (i/2, j/2)
at level k − 1. Furthermore, the nodes at each level are connected in a mesh. A
two-dimensional pyramidal mesh is illustrated in Figure 2.37.
For a

√
p × √

p pyramidal mesh, assume that the intermediate nodes are switch-
ing nodes, and derive the diameter, bisection width, arc connectivity, and cost in
terms of the number of communication links and switching nodes. What are the
advantages and disadvantages of a pyramidal mesh as compared to a mesh of trees?

2.20 [Lei92] One of the drawbacks of a hypercube-connected network is that different
wires in the network are of different lengths. This implies that data takes different
times to traverse different communication links. It appears that two-dimensional
mesh networks with wraparound connections suffer from this drawback too. How-
ever, it is possible to fabricate a two-dimensional wraparound mesh using wires of
fixed length. Illustrate this layout by drawing such a 4 × 4 wraparound mesh.

2.21 Show how to embed a p-node three-dimensional mesh into a p-node hypercube.
What are the allowable values of p for your embedding?

2.22 Show how to embed a p-node mesh of trees into a p-node hypercube.

2.23 Consider a complete binary tree of 2d −1 nodes in which each node is a processing
node. What is the minimum-dilation mapping of such a tree onto a d-dimensional
hypercube?

2.24 The concept of a minimum congestion mapping is very useful. Consider two
parallel computers with different interconnection networks such that a congestion-
r mapping of the first into the second exists. Ignoring the dilation of the mapping,
if each communication link in the second computer is more than r times faster than
the first computer, the second computer is strictly superior to the first.
Now consider mapping a d-dimensional hypercube onto a 2d -node mesh. Ignor-
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ing the dilation of the mapping, what is the minimum-congestion mapping of the
hypercube onto the mesh? Use this result to determine whether a 1024-node mesh
with communication links operating at 25 million bytes per second is strictly better
than a 1024-node hypercube (whose nodes are identical to those used in the mesh)
with communication links operating at two million bytes per second.

2.25 Derive the diameter, number of links, and bisection width of a k-ary d-cube with p
nodes. Define lav to be the average distance between any two nodes in the network.
Derive lav for a k-ary d-cube.

2.26 Consider the routing of messages in a parallel computer that uses store-and-
forward routing. In such a network, the cost of sending a single message of size m
from Psource to Pdestination via a path of length d is ts + tw × d × m. An alternate
way of sending a message of size m is as follows. The user breaks the message
into k parts each of size m/k, and then sends these k distinct messages one by one
from Psource to Pdestination . For this new method, derive the expression for time to
transfer a message of size m to a node d hops away under the following two cases:

1. Assume that another message can be sent from Psource as soon as the previous
message has reached the next node in the path.

2. Assume that another message can be sent from Psource only after the previous
message has reached Pdestination .

For each case, comment on the value of this expression as the value of k varies
between 1 and m. Also, what is the optimal value of k if ts is very large, or if
ts = 0?

2.27 Consider a hypercube network of p nodes. Assume that the channel width of each
communication link is one. The channel width of the links in a k-ary d-cube (for
d < log p) can be increased by equating the cost of this network with that of a
hypercube. Two distinct measures can be used to evaluate the cost of a network.

1. The cost can be expressed in terms of the total number of wires in the network
(the total number of wires is a product of the number of communication links
and the channel width).

2. The bisection bandwidth can be used as a measure of cost.

Using each of these cost metrics and equating the cost of a k-ary d-cube with a
hypercube, what is the channel width of a k-ary d-cube with an identical number
of nodes, channel rate, and cost?

2.28 The results from Problems 2.25 and 2.27 can be used in a cost-performance analy-
sis of static interconnection networks. Consider a k-ary d-cube network of p nodes
with cut-through routing. Assume a hypercube-connected network of p nodes with
channel width one. The channel width of other networks in the family is scaled up
so that their cost is identical to that of the hypercube. Let s and s

′
be the scaling
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factors for the channel width derived by equating the costs specified by the two
cost metrics in Problem 2.27.
For each of the two scaling factors s and s

′
, express the average communication

time between any two nodes as a function of the dimensionality (d) of a k-ary
d-cube and the number of nodes. Plot the communication time as a function of
the dimensionality for p = 256, 512, and 1024, message size m = 512 bytes,
ts = 50.0µs, and th = tw = 0.5µs (for the hypercube). For these values of p and
m, what is the dimensionality of the network that yields the best performance for
a given cost?

2.29 Repeat Problem 2.28 for a k-ary d-cube with store-and-forward routing.




