
CHAPTER 4

Basic Communication
Operations

In most parallel algorithms, processes need to exchange data with other processes. This ex-
change of data can significantly impact the efficiency of parallel programs by introducing
interaction delays during their execution. For instance, recall from Section 2.5 that it takes
roughly ts +mtw time for a simple exchange of an m-word message between two processes
running on different nodes of an interconnection network with cut-through routing. Here
ts is the latency or the startup time for the data transfer and tw is the per-word transfer
time, which is inversely proportional to the available bandwidth between the nodes. Many
interactions in practical parallel programs occur in well-defined patterns involving more
than two processes. Often either all processes participate together in a single global in-
teraction operation, or subsets of processes participate in interactions local to each subset.
These common basic patterns of interprocess interaction or communication are frequently
used as building blocks in a variety of parallel algorithms. Proper implementation of these
basic communication operations on various parallel architectures is a key to the efficient
execution of the parallel algorithms that use them.

In this chapter, we present algorithms to implement some commonly used communica-
tion patterns on simple interconnection networks, such as the linear array, two-dimensional
mesh, and the hypercube. The choice of these interconnection networks is motivated pri-
marily by pedagogical reasons. For instance, although it is unlikely that large scale parallel
computers will be based on the linear array or ring topology, it is important to understand
various communication operations in the context of linear arrays because the rows and
columns of meshes are linear arrays. Parallel algorithms that perform rowwise or column-
wise communication on meshes use linear array algorithms. The algorithms for a number
of communication operations on a mesh are simple extensions of the corresponding linear
array algorithms to two dimensions. Furthermore, parallel algorithms using regular data

January 25, 2004 – 06 : 06 147

148 Basic Communication Operations

structures such as arrays often map naturally onto one- or two-dimensional arrays of pro-
cesses. This too makes it important to study interprocess interaction on a linear array or
mesh interconnection network. The hypercube architecture, on the other hand, is inter-
esting because many algorithms with recursive interaction patterns map naturally onto a
hypercube topology. Most of these algorithms may perform equally well on interconnec-
tion networks other than the hypercube, but it is simpler to visualize their communication
patterns on a hypercube.

The algorithms presented in this chapter in the context of simple network topologies
are practical and are highly suitable for modern parallel computers, even though most such
computers are unlikely to have an interconnection network that exactly matches one of the
networks considered in this chapter. The reason is that on a modern parallel computer,
the time to transfer data of a certain size between two nodes is often independent of the
relative location of the nodes in the interconnection network. This homogeneity is afforded
by a variety of firmware and hardware features such as randomized routing algorithms and
cut-through routing, etc. Furthermore, the end user usually does not have explicit control
over mapping processes onto physical processors. Therefore, we assume that the transfer
of m words of data between any pair of nodes in an interconnection network incurs a cost
of ts +mtw. On most architectures, this assumption is reasonably accurate as long as a free
link is available between the source and destination nodes for the data to traverse. However,
if many pairs of nodes are communicating simultaneously, then the messages may take
longer. This can happen if the number of messages passing through a cross-section of
the network exceeds the cross-section bandwidth (Section 2.4.4) of the network. In such
situations, we need to adjust the value of tw to reflect the slowdown due to congestion. As
discussed in Section 2.5.1, we refer to the adjusted value of tw as effective tw. We will
make a note in the text when we come across communication operations that may cause
congestion on certain networks.

As discussed in Section 2.5.2, the cost of data-sharing among processors in the shared-
address-space paradigm can be modeled using the same expression ts + mtw, usually with
different values of ts and tw relative to each other as well as relative to the computation
speed of the processors of the parallel computer. Therefore, parallel algorithms requiring
one or more of the interaction patterns discussed in this chapter can be assumed to incur
costs whose expression is close to one derived in the context of message-passing.

In the following sections we describe various communication operations and derive ex-
pressions for their time complexity. We assume that the interconnection network supports
cut-through routing (Section 2.5.1) and that the communication time between any pair of
nodes is practically independent of of the number of intermediate nodes along the paths
between them. We also assume that the communication links are bidirectional; that is,
two directly-connected nodes can send messages of size m to each other simultaneously in
time ts + twm. We assume a single-port communication model, in which a node can send
a message on only one of its links at a time. Similarly, it can receive a message on only
one link at a time. However, a node can receive a message while sending another message
at the same time on the same or a different link.

4.1 One-to-All Broadcast and All-to-One Reduction 149

Many of the operations described here have duals and other related operations that we
can perform by using procedures very similar to those for the original operations. The
dual of a communication operation is the opposite of the original operation and can be
performed by reversing the direction and sequence of messages in the original operation.
We will mention such operations wherever applicable.

4.1 One-to-All Broadcast and All-to-One Reduction

Parallel algorithms often require a single process to send identical data to all other pro-
cesses or to a subset of them. This operation is known as one-to-all broadcast. Initially,
only the source process has the data of size m that needs to be broadcast. At the termination
of the procedure, there are p copies of the initial data – one belonging to each process. The
dual of one-to-all broadcast is all-to-one reduction. In an all-to-one reduction operation,
each of the p participating processes starts with a buffer M containing m words. The data
from all processes are combined through an associative operator and accumulated at a sin-
gle destination process into one buffer of size m. Reduction can be used to find the sum,
product, maximum, or minimum of sets of numbers – the i th word of the accumulated M is
the sum, product, maximum, or minimum of the i th words of each of the original buffers.
Figure 4.1 shows one-to-all broadcast and all-to-one reduction among p processes.

One-to-all broadcast and all-to-one reduction are used in several important parallel al-
gorithms including matrix-vector multiplication, Gaussian elimination, shortest paths, and
vector inner product. In the following subsections, we consider the implementation of
one-to-all broadcast in detail on a variety of interconnection topologies.

4.1.1 Ring or Linear Array

A naive way to perform one-to-all broadcast is to sequentially send p − 1 messages from
the source to the other p − 1 processes. However, this is inefficient because the source
process becomes a bottleneck. Moreover, the communication network is underutilized be-
cause only the connection between a single pair of nodes is used at a time. A better broad-
cast algorithm can be devised using a technique commonly known as recursive doubling.
The source process first sends the message to another process. Now both these processes
can simultaneously send the message to two other processes that are still waiting for the

p-11 1 p-1

All-to-one Reduction
0 0.
M M M M

One-to-all Broadcast

Figure 4.1 One-to-all broadcast and all-to-one reduction.

150 Basic Communication Operations

2

33

2

0 1 2 3

4567

1

33

Figure 4.2 One-to-all broadcast on an eight-node ring. Node 0 is the source of the broadcast.
Each message transfer step is shown by a numbered, dotted arrow from the source of the message
to its destination. The number on an arrow indicates the time step during which the message is
transferred.

message. By continuing this procedure until all the processes have received the data, the
message can be broadcast in log p steps.

The steps in a one-to-all broadcast on an eight-node linear array or ring are shown in
Figure 4.2. The nodes are labeled from 0 to 7. Each message transmission step is shown
by a numbered, dotted arrow from the source of the message to its destination. Arrows
indicating messages sent during the same time step have the same number.

Note that on a linear array, the destination node to which the message is sent in each
step must be carefully chosen. In Figure 4.2, the message is first sent to the farthest node
(4) from the source (0). In the second step, the distance between the sending and receiving
nodes is halved, and so on. The message recipients are selected in this manner at each
step to avoid congestion on the network. For example, if node 0 sent the message to node
1 in the first step and then nodes 0 and 1 attempted to send messages to nodes 2 and 3,
respectively, in the second step, the link between nodes 1 and 2 would be congested as it
would be a part of the shortest route for both the messages in the second step.

Reduction on a linear array can be performed by simply reversing the direction and the
sequence of communication, as shown in Figure 4.3. In the first step, each odd numbered
node sends its buffer to the even numbered node just before itself, where the contents of
the two buffers are combined into one. After the first step, there are four buffers left to be
reduced on nodes 0, 2, 4, and 6, respectively. In the second step, the contents of the buffers
on nodes 0 and 2 are accumulated on node 0 and those on nodes 6 and 4 are accumulated
on node 4. Finally, node 4 sends its buffer to node 0, which computes the final result of the
reduction.

4.1.1 Ring or Linear Array 151

1

0 1 2 3

4567

2

2

1 1

3

1

Figure 4.3 Reduction on an eight-node ring with node 0 as the destination of the reduction.

Example 4.1 Matrix-vector multiplication
Consider the problem of multiplying an n × n matrix A with an n × 1 vector x on an
n × n mesh of nodes to yield an n × 1 result vector y. Algorithm 8.1 shows a serial
algorithm for this problem. Figure 4.4 shows one possible mapping of the matrix
and the vectors in which each element of the matrix belongs to a different process,
and the vector is distributed among the processes in the topmost row of the mesh and
the result vector is generated on the leftmost column of processes.

Since all the rows of the matrix must be multiplied with the vector, each pro-
cess needs the element of the vector residing in the topmost process of its column.
Hence, before computing the matrix-vector product, each column of nodes performs
a one-to-all broadcast of the vector elements with the topmost process of the column
as the source. This is done by treating each column of the n × n mesh as an n-
node linear array, and simultaneously applying the linear array broadcast procedure
described previously to all columns.

After the broadcast, each process multiplies its matrix element with the result
of the broadcast. Now, each row of processes needs to add its result to generate the
corresponding element of the product vector. This is accomplished by performing
all-to-one reduction on each row of the process mesh with the first process of each
row as the destination of the reduction operation.

For example, P9 will receive x[1] from P1 as a result of the broadcast, will
multiply it with A[2, 1] and will participate in an all-to-one reduction with P8, P10,
and P11 to accumulate y[2] on P8.

152 Basic Communication Operations

P

0

4

8

12

P

P

P

P

0

4

8

12

P

P

P 1

5

9

13P

P

P

P

2

6

10

14P

P

P

P

3

7

Matrix11

15P

P

P

P

All-to-one
reduction

P P PP0 1 2 3

Output

One-to-all broadcast

Vector

Input Vector

Figure 4.4 One-to-all broadcast and all-to-one reduction in the multiplication of a 4×4 matrix with
a 4 × 1 vector.

4.1.2 Mesh

We can regard each row and column of a square mesh of p nodes as a linear array of
√

p
nodes. So a number of communication algorithms on the mesh are simple extensions of
their linear array counterparts. A linear array communication operation can be performed
in two phases on a mesh. In the first phase, the operation is performed along one or all
rows by treating the rows as linear arrays. In the second phase, the columns are treated
similarly.

Consider the problem of one-to-all broadcast on a two-dimensional square mesh with√
p rows and

√
p columns. First, a one-to-all broadcast is performed from the source to

the remaining (
√

p − 1) nodes of the same row. Once all the nodes in a row of the mesh
have acquired the data, they initiate a one-to-all broadcast in their respective columns. At
the end of the second phase, every node in the mesh has a copy of the initial message. The
communication steps for one-to-all broadcast on a mesh are illustrated in Figure 4.5 for
p = 16, with node 0 at the bottom-left corner as the source. Steps 1 and 2 correspond to
the first phase, and steps 3 and 4 correspond to the second phase.

We can use a similar procedure for one-to-all broadcast on a three-dimensional mesh as
well. In this case, rows of p1/3 nodes in each of the three dimensions of the mesh would
be treated as linear arrays. As in the case of a linear array, reduction can be performed
on two- and three-dimensional meshes by simply reversing the direction and the order of
messages.

4.1.3 Hypercube 153

3

0

10

15

4

4

4

4

4

4

4

4

3333

22

1

1

2

4

5

6

8

9

11

14

7

13

12

Figure 4.5 One-to-all broadcast on a 16-node mesh.

4.1.3 Hypercube

The previous subsection showed that one-to-all broadcast is performed in two phases on a
two-dimensional mesh, with the communication taking place along a different dimension
in each phase. Similarly, the process is carried out in three phases on a three-dimensional
mesh. A hypercube with 2d nodes can be regarded as a d-dimensional mesh with two
nodes in each dimension. Hence, the mesh algorithm can be extended to the hypercube,
except that the process is now carried out in d steps – one in each dimension.

Figure 4.6 shows a one-to-all broadcast on an eight-node (three-dimensional) hypercube
with node 0 as the source. In this figure, communication starts along the highest dimension
(that is, the dimension specified by the most significant bit of the binary representation of
a node label) and proceeds along successively lower dimensions in subsequent steps. Note
that the source and the destination nodes in three communication steps of the algorithm
shown in Figure 4.6 are identical to the ones in the broadcast algorithm on a linear array
shown in Figure 4.2. However, on a hypercube, the order in which the dimensions are
chosen for communication does not affect the outcome of the procedure. Figure 4.6 shows
only one such order. Unlike a linear array, the hypercube broadcast would not suffer from
congestion if node 0 started out by sending the message to node 1 in the first step, followed
by nodes 0 and 1 sending messages to nodes 2 and 3, respectively, and finally nodes 0, 1,
2, and 3 sending messages to nodes 4, 5, 6, and 7, respectively.

4.1.4 Balanced Binary Tree

The hypercube algorithm for one-to-all broadcast maps naturally onto a balanced binary
tree in which each leaf is a processing node and intermediate nodes serve only as switching

154 Basic Communication Operations

0 1

32

(001)

4 5

76

3

3

3

12

2

(000)

(011)

(100) (101)

(111)

3

(010)

(110)

Figure 4.6 One-to-all broadcast on a three-dimensional hypercube. The binary representations of
node labels are shown in parentheses.

units. This is illustrated in Figure 4.7 for eight nodes. In this figure, the communicating
nodes have the same labels as in the hypercube algorithm illustrated in Figure 4.6. Fig-
ure 4.7 shows that there is no congestion on any of the communication links at any time.
The difference between the communication on a hypercube and the tree shown in Fig-
ure 4.7 is that there is a different number of switching nodes along different paths on the
tree.

4.1.5 Detailed Algorithms

A careful look at Figures 4.2, 4.5, 4.6, and 4.7 would reveal that the basic communica-
tion pattern for one-to-all broadcast is identical on all the four interconnection networks
considered in this section. We now describe procedures to implement the broadcast and
reduction operations. For the sake of simplicity, the algorithms are described here in the
context of a hypercube and assume that the number of communicating processes is a power
of 2. However, they apply to any network topology, and can be easily extended to work for
any number of processes (Problem 4.1).

Algorithm 4.1 shows a one-to-all broadcast procedure on a 2d -node network when
node 0 is the source of the broadcast. The procedure is executed at all the nodes. At any
node, the value of my id is the label of that node. Let X be the message to be broadcast,
which initially resides at the source node 0. The procedure performs d communication
steps, one along each dimension of a hypothetical hypercube. In Algorithm 4.1, commu-
nication proceeds from the highest to the lowest dimension (although the order in which
dimensions are chosen does not matter). The loop counter i indicates the current dimen-
sion of the hypercube in which communication is taking place. Only the nodes with zero in
the i least significant bits of their labels participate in communication along dimension i .
For instance, on the three-dimensional hypercube shown in Figure 4.6, i is equal to 2 in the

4.1.5 Detailed Algorithms 155

3
0 1 2 3 4 6 75

1

2

2

3 3 3

Figure 4.7 One-to-all broadcast on an eight-node tree.

first time step. Therefore, only nodes 0 and 4 communicate, since their two least significant
bits are zero. In the next time step, when i = 1, all nodes (that is, 0, 2, 4, and 6) with zero
in their least significant bits participate in communication. The procedure terminates after
communication has taken place along all dimensions.

The variable mask helps determine which nodes communicate in a particular iteration
of the loop. The variable mask has d (= log p) bits, all of which are initially set to one
(Line 3). At the beginning of each iteration, the most significant nonzero bit of mask is
reset to zero (Line 5). Line 6 determines which nodes communicate in the current iteration
of the outer loop. For instance, for the hypercube of Figure 4.6, mask is initially set to 111,
and it would be 011 during the iteration corresponding to i = 2 (the i least significant bits
of mask are ones). The AND operation on Line 6 selects only those nodes that have zeros
in their i least significant bits.

Among the nodes selected for communication along dimension i , the nodes with a zero
at bit position i send the data, and the nodes with a one at bit position i receive it. The
test to determine the sending and receiving nodes is performed on Line 7. For example,
in Figure 4.6, node 0 (000) is the sender and node 4 (100) is the receiver in the iteration
corresponding to i = 2. Similarly, for i = 1, nodes 0 (000) and 4 (100) are senders while
nodes 2 (010) and 6 (110) are receivers.

Algorithm 4.1 works only if node 0 is the source of the broadcast. For an arbitrary
source, we must relabel the nodes of the hypothetical hypercube by XORing the label of
each node with the label of the source node before we apply this procedure. A modified
one-to-all broadcast procedure that works for any value of source between 0 and p − 1
is shown in Algorithm 4.2. By performing the XOR operation at Line 3, Algorithm 4.2
relabels the source node to 0, and relabels the other nodes relative to the source. After this
relabeling, the algorithm of Algorithm 4.1 can be applied to perform the broadcast.

Algorithm 4.3 gives a procedure to perform an all-to-one reduction on a hypothetical

156 Basic Communication Operations

1. procedure ONE TO ALL BC(d, my id, X)
2. begin
3. mask := 2d − 1; /* Set all d bits of mask to 1 */
4. for i := d − 1 downto 0 do /* Outer loop */
5. mask := mask XOR 2i ; /* Set bit i of mask to 0 */
6. if (my id AND mask) = 0 then /* If lower i bits of my id are 0 */
7. if (my id AND 2i) = 0 then
8. msg destination := my id XOR 2i ;
9. send X to msg destination;
10. else
11. msg source := my id XOR 2i ;
12. receive X from msg source;
13. endelse;
14. endif;
15. endfor;
16. end ONE TO ALL BC

Algorithm 4.1 One-to-all broadcast of a message X from node 0 of a d-dimensional p-node
hypercube (d = log p). AND and XOR are bitwise logical-and and exclusive-or operations, respec-
tively.

d-dimensional hypercube such that the final result is accumulated on node 0. Single node-
accumulation is the dual of one-to-all broadcast. Therefore, we obtain the communication
pattern required to implement reduction by reversing the order and the direction of mes-
sages in one-to-all broadcast. Procedure ALL TO ONE REDUCE(d, my id, m, X , sum)
shown in Algorithm 4.3 is very similar to procedure ONE TO ALL BC(d, my id, X)
shown in Algorithm 4.1. One difference is that the communication in all-to-one reduction
proceeds from the lowest to the highest dimension. This change is reflected in the way that
variables mask and i are manipulated in Algorithm 4.3. The criterion for determining the
source and the destination among a pair of communicating nodes is also reversed (Line 7).
Apart from these differences, procedure ALL TO ONE REDUCE has extra instructions
(Lines 13 and 14) to add the contents of the messages received by a node in each iteration
(any associative operation can be used in place of addition).

4.1.6 Cost Analysis

Analyzing the cost of one-to-all broadcast and all-to-one reduction is fairly straightforward.
Assume that p processes participate in the operation and the data to be broadcast or reduced
contains m words. The broadcast or reduction procedure involves log p point-to-point
simple message transfers, each at a time cost of ts + twm. Therefore, the total time taken
by the procedure is

T = (ts + twm) log p. (4.1)

4.2 All-to-All Broadcast and Reduction 157

1. procedure GENERAL ONE TO ALL BC(d, my id, source, X)
2. begin
3. my vir tual id := my id XOR source;
4. mask := 2d − 1;
5. for i := d − 1 downto 0 do /* Outer loop */
6. mask := mask XOR 2i ; /* Set bit i of mask to 0 */
7. if (my vir tual id AND mask) = 0 then
8. if (my vir tual id AND 2i) = 0 then
9. vir tual dest := my vir tual id XOR 2i ;
10. send X to (virtual dest XOR source);

/* Convert virtual dest to the label of the physical destination */
11. else
12. vir tual source := my vir tual id XOR 2i ;
13. receive X from (virtual source XOR source);

/* Convert virtual source to the label of the physical source */
14. endelse;
15. endfor;
16. end GENERAL ONE TO ALL BC

Algorithm 4.2 One-to-all broadcast of a message X initiated by source on a d-dimensional
hypothetical hypercube. The AND and XOR operations are bitwise logical operations.

4.2 All-to-All Broadcast and Reduction

All-to-all broadcast is a generalization of one-to-all broadcast in which all p nodes simul-
taneously initiate a broadcast. A process sends the same m-word message to every other
process, but different processes may broadcast different messages. All-to-all broadcast is
used in matrix operations, including matrix multiplication and matrix-vector multiplica-
tion. The dual of all-to-all broadcast is all-to-all reduction, in which every node is the
destination of an all-to-one reduction (Problem 4.8). Figure 4.8 illustrates all-to-all broad-
cast and all-to-all reduction.

One way to perform an all-to-all broadcast is to perform p one-to-all broadcasts, one

1 pM -1M 0 M 0

M 1

M 0

M 1

M 0

M 1

pM -1 pM -1 pM

M

 -1

All-to-all reduction

...
...

...

p-11 1 p-10 0.

All-to-all broadcast

Figure 4.8 All-to-all broadcast and all-to-all reduction.

158 Basic Communication Operations

1. procedure ALL TO ONE REDUCE(d, my id, m, X , sum)
2. begin
3. for j := 0 to m − 1 do sum[j] := X [j];
4. mask := 0;
5. for i := 0 to d − 1 do

/* Select nodes whose lower i bits are 0 */
6. if (my id AND mask) = 0 then
7. if (my id AND 2i)
= 0 then
8. msg destination := my id XOR 2i ;
9. send sum to msg destination;
10. else
11. msg source := my id XOR 2i ;
12. receive X from msg source;
13. for j := 0 to m − 1 do
14. sum[j] :=sum[j] + X [j];
15. endelse;
16. mask := mask XOR 2i ; /* Set bit i of mask to 1 */
17. endfor;
18. end ALL TO ONE REDUCE

Algorithm 4.3 Single-node accumulation on a d-dimensional hypercube. Each node contributes
a message X containing m words, and node 0 is the destination of the sum. The AND and XOR
operations are bitwise logical operations.

starting at each node. If performed naively, on some architectures this approach may take
up to p times as long as a one-to-all broadcast. It is possible to use the communication links
in the interconnection network more efficiently by performing all p one-to-all broadcasts
simultaneously so that all messages traversing the same path at the same time are concate-
nated into a single message whose size is the sum of the sizes of individual messages.

The following sections describe all-to-all broadcast on linear array, mesh, and hyper-
cube topologies.

4.2.1 Linear Array and Ring

While performing all-to-all broadcast on a linear array or a ring, all communication links
can be kept busy simultaneously until the operation is complete because each node always
has some information that it can pass along to its neighbor. Each node first sends to one
of its neighbors the data it needs to broadcast. In subsequent steps, it forwards the data
received from one of its neighbors to its other neighbor.

Figure 4.9 illustrates all-to-all broadcast for an eight-node ring. The same procedure
would also work on a linear array with bidirectional links. As with the previous figures,
the integer label of an arrow indicates the time step during which the message is sent. In
all-to-all broadcast, p different messages circulate in the p-node ensemble. In Figure 4.9,

4.2.1 Linear Array and Ring 159

.

.

..
.
.

7 (4)7 (3)7 (2)

(3,2,1,0,7,6,5)(1,0,7,6,5,4,3) (2,1,0,7,6,5,4)(0,7,6,5,4,3,2)

(5) (4)

(3)(2)(1)

(6)(7)

(0)

(7,6) (6,5) (5,4) (4,3)

(3,2)(2,1)(1,0)

7th communication step

(0,7)

7 (0) 7 (7) 7 (6)

0 1

67

2 3

45

2 (7) 2 (0) 2 (1)

2 (4) 2 (3)2 (5)

0 1

67

2 3

45

1 (0) 1 (1) 1 (2)

1 (6) 1 (5) 1 (4)

(7,6,5,4,3,2,1) (6,5,4,3,2,1,0) (5,4,3,2,1,0,7) (4,3,2,1,0,7,6)

0 1

67

2 3

45

7 (1) 7 (5)

2 (2)2 (6)

1 (7) 1 (3)

1st communication step

2nd communication step

Figure 4.9 All-to-all broadcast on an eight-node ring. The label of each arrow shows the time step
and, within parentheses, the label of the node that owned the current message being transferred
before the beginning of the broadcast. The number(s) in parentheses next to each node are the
labels of nodes from which data has been received prior to the current communication step. Only
the first, second, and last communication steps are shown.

160 Basic Communication Operations

1. procedure ALL TO ALL BC RING(my id, my msg, p, result)
2. begin
3. left := (my id − 1) mod p;
4. right := (my id + 1) mod p;
5. result := my msg;
6. msg := result;
7. for i := 1 to p − 1 do
8. send msg to right;
9. receive msg from left;
10. result := result ∪ msg;
11. endfor;
12. end ALL TO ALL BC RING

Algorithm 4.4 All-to-all broadcast on a p-node ring.

each message is identified by its initial source, whose label appears in parentheses along
with the time step. For instance, the arc labeled 2 (7) between nodes 0 and 1 represents the
data communicated in time step 2 that node 0 received from node 7 in the preceding step.
As Figure 4.9 shows, if communication is performed circularly in a single direction, then
each node receives all (p − 1) pieces of information from all other nodes in (p − 1) steps.

Algorithm 4.4 gives a procedure for all-to-all broadcast on a p-node ring. The initial
message to be broadcast is known locally as my msg at each node. At the end of the
procedure, each node stores the collection of all p messages in result. As the program
shows, all-to-all broadcast on a mesh applies the linear array procedure twice, once along
the rows and once along the columns.

In all-to-all reduction, the dual of all-to-all broadcast, each node starts with p mes-
sages, each one destined to be accumulated at a distinct node. All-to-all reduction can
be performed by reversing the direction and sequence of the messages. For example, the
first communication step for all-to-all reduction on an 8-node ring would correspond to the
last step of Figure 4.9 with node 0 sending msg[1] to 7 instead of receiving it. The only
additional step required is that upon receiving a message, a node must combine it with the
local copy of the message that has the same destination as the received message before
forwarding the combined message to the next neighbor. Algorithm 4.5 gives a procedure
for all-to-all reduction on a p-node ring.

4.2.2 Mesh

Just like one-to-all broadcast, the all-to-all broadcast algorithm for the 2-D mesh is based
on the linear array algorithm, treating rows and columns of the mesh as linear arrays. Once
again, communication takes place in two phases. In the first phase, each row of the mesh
performs an all-to-all broadcast using the procedure for the linear array. In this phase, all
nodes collect

√
p messages corresponding to the

√
p nodes of their respective rows. Each

4.2.3 Hypercube 161

1. procedure ALL TO ALL RED RING(my id, my msg, p, result)
2. begin
3. left := (my id − 1) mod p;
4. right := (my id + 1) mod p;
5. recv := 0;
6. for i := 1 to p − 1 do
7. j := (my id + i) mod p;
8. temp := msg[j] + recv;
9. send temp to left;
10. receive recv from right;
11. endfor;
12. result := msg[my id] + recv;
13. end ALL TO ALL RED RING

Algorithm 4.5 All-to-all reduction on a p-node ring.

node consolidates this information into a single message of size m
√

p, and proceeds to
the second communication phase of the algorithm. The second communication phase is
a columnwise all-to-all broadcast of the consolidated messages. By the end of this phase,
each node obtains all p pieces of m-word data that originally resided on different nodes.
The distribution of data among the nodes of a 3 × 3 mesh at the beginning of the first and
the second phases of the algorithm is shown in Figure 4.10.

Algorithm 4.6 gives a procedure for all-to-all broadcast on a
√

p×√
p mesh. The mesh

procedure for all-to-all reduction is left as an exercise for the reader (Problem 4.4).

4.2.3 Hypercube

The hypercube algorithm for all-to-all broadcast is an extension of the mesh algorithm to
log p dimensions. The procedure requires log p steps. Communication takes place along
a different dimension of the p-node hypercube in each step. In every step, pairs of nodes
exchange their data and double the size of the message to be transmitted in the next step by
concatenating the received message with their current data. Figure 4.11 shows these steps
for an eight-node hypercube with bidirectional communication channels.

Algorithm 4.7 gives a procedure for implementing all-to-all broadcast on a d-
dimensional hypercube. Communication starts from the lowest dimension of the hypercube
and then proceeds along successively higher dimensions (Line 4). In each iteration, nodes
communicate in pairs so that the labels of the nodes communicating with each other in the
i th iteration differ in the i th least significant bit of their binary representations (Line 5).
After an iteration’s communication steps, each node concatenates the data it receives dur-
ing that iteration with its resident data (Line 8). This concatenated message is transmitted
in the following iteration.

As usual, the algorithm for all-to-all reduction can be derived by reversing the order

162 Basic Communication Operations

1. procedure ALL TO ALL BC MESH(my id, my msg, p, result)
2. begin

/* Communication along rows */
3. left := my id − (my id mod

√
p)+ (my id − 1)mod

√
p;

4. right := my id − (my id mod
√

p)+ (my id + 1) mod
√

p;
5. result := my msg;
6. msg := result;
7. for i := 1 to

√
p − 1 do

8. send msg to right;
9. receive msg from left;
10. result := result ∪ msg;
11. endfor;

/* Communication along columns */
12. up := (my id − √

p) mod p;
13. down := (my id + √

p) mod p;
14. msg := result;
15. for i := 1 to

√
p − 1 do

16. send msg to down;
17. receive msg from up;
18. result := result ∪ msg;
19. endfor;
20. end ALL TO ALL BC MESH

Algorithm 4.6 All-to-all broadcast on a square mesh of p nodes.

1. procedure ALL TO ALL BC HCUBE(my id, my msg, d, result)
2. begin
3. result := my msg;
4. for i := 0 to d − 1 do
5. partner := my id XOR 2i ;
6. send result to partner;
7. receive msg from partner;
8. result := result ∪ msg;
9. endfor;
10. end ALL TO ALL BC HCUBE

Algorithm 4.7 All-to-all broadcast on a d-dimensional hypercube.

4.2.3 Hypercube 163

7

0 1 2

53 4

86

(3,4,5) (3,4,5)(3,4,5)

0 1 2

53 4

876

(6) (8)

(3) (4) (5)

(0) (1) (2)

(7)

(a) Initial data distribution

(0,1,2)

(b) Data distribution after rowwise broadcast

(6,7,8) (6,7,8) (6,7,8)

(0,1,2) (0,1,2)

Figure 4.10 All-to-all broadcast on a 3 × 3 mesh. The groups of nodes communicating with each
other in each phase are enclosed by dotted boundaries. By the end of the second phase, all nodes
get (0,1,2,3,4,5,6,7) (that is, a message from each node).

1. procedure ALL TO ALL RED HCUBE(my id, msg, d, result)
2. begin
3. recloc := 0;
4. for i := d − 1 to 0 do
5. partner := my id XOR 2i ;
6. j := my id AND 2i ;
7. k := (my id XOR 2i) AND 2i ;
8. senloc := recloc + k;
9. recloc := recloc + j ;
10. send msg[senloc .. senloc + 2i − 1] to partner;
11. receive temp[0 .. 2i − 1] from partner;
12. for j := 0 to 2i − 1 do
13. msg[recloc + j] := msg[recloc + j] + temp[j];
14. endfor;
15. endfor;
16. result := msg[my id];
17. end ALL TO ALL RED HCUBE

Algorithm 4.8 All-to-all broadcast on a d-dimensional hypercube. AND and XOR are bitwise
logical-and and exclusive-or operations, respectively.

164 Basic Communication Operations

(0,...,7)

(0,...,7)(0,...,7)

(0,1,

(0,...,7)

(b) Distribution before the second step

(0,...,7)

 6,7)

(4,5,

 6,7)

(4,5,

 6,7)

(4,5,

 6,7)

(4,5,

 2,3)

(0,1,

 2,3)

(0,1,

 2,3)

(0,1,

 2,3)
0 1

32

4 5

76

(c) Distribution before the third step

0 1

32

4 5

76

(d) Final distribution of messages

(0,...,7) (0,...,7)

(0,...,7)

0 1

32

4 5

76

(0)

(2)

(4)

(1)

(5)

(3)

(7)(6)

(a) Initial distribution of messages

0 1

32

4 5

76

(0,1)

(2,3) (2,3)

(0,1)

(6,7) (6,7)

(4,5) (4,5)

Figure 4.11 All-to-all broadcast on an eight-node hypercube.

and direction of messages in all-to-all broadcast. Furthermore, instead of concatenating
the messages, the reduction operation needs to select the appropriate subsets of the buffer
to send out and accumulate received messages in each iteration. Algorithm 4.8 gives a
procedure for all-to-all reduction on a d-dimensional hypercube. It uses senloc to index
into the starting location of the outgoing message and recloc to index into the location
where the incoming message is added in each iteration.

4.2.4 Cost Analysis

On a ring or a linear array, all-to-all broadcast involves p − 1 steps of communication
between nearest neighbors. Each step, involving a message of size m, takes time ts + twm.
Therefore, the time taken by the entire operation is

T = (ts + twm)(p − 1). (4.2)

Similarly, on a mesh, the first phase of
√

p simultaneous all-to-all broadcasts (each
among

√
p nodes) concludes in time (ts + twm)(

√
p −1). The number of nodes participat-

4.2.4 Cost Analysis 165

ing in each all-to-all broadcast in the second phase is also
√

p, but the size of each message
is now m

√
p. Therefore, this phase takes time (ts + twm

√
p)(

√
p − 1) to complete. The

time for the entire all-to-all broadcast on a p-node two-dimensional square mesh is the sum
of the times spent in the individual phases, which is

T = 2ts(
√

p − 1)+ twm(p − 1). (4.3)

On a p-node hypercube, the size of each message exchanged in the i th of the log p steps
is 2i−1m. It takes a pair of nodes time ts + 2i−1twm to send and receive messages from
each other during the i th step. Hence, the time to complete the entire procedure is

T =
log p∑
i=1

(ts + 2i−1twm)

= ts log p + twm(p − 1). (4.4)

Equations 4.2, 4.3, and 4.4 show that the term associated with tw in the expressions
for the communication time of all-to-all broadcast is twm(p − 1) for all the architectures.
This term also serves as a lower bound for the communication time of all-to-all broadcast
for parallel computers on which a node can communicate on only one of its ports at a
time. This is because each node receives at least m(p − 1) words of data, regardless of
the architecture. Thus, for large messages, a highly connected network like a hypercube
is no better than a simple ring in performing all-to-all broadcast or all-to-all reduction. In
fact, the straightforward all-to-all broadcast algorithm for a simple architecture like a ring
has great practical importance. A close look at the algorithm reveals that it is a sequence
of p one-to-all broadcasts, each with a different source. These broadcasts are pipelined
so that all of them are complete in a total of p nearest-neighbor communication steps.
Many parallel algorithms involve a series of one-to-all broadcasts with different sources,
often interspersed with some computation. If each one-to-all broadcast is performed using
the hypercube algorithm of Section 4.1.3, then n broadcasts would require time n(ts +
twm) log p. On the other hand, by pipelining the broadcasts as shown in Figure 4.9, all of
them can be performed spending no more than time (ts + twm)(p − 1) in communication,
provided that the sources of all broadcasts are different and n ≤ p. In later chapters, we
show how such pipelined broadcast improves the performance of some parallel algorithms
such as Gaussian elimination (Section 8.3.1), back substitution (Section 8.3.3), and Floyd’s
algorithm for finding the shortest paths in a graph (Section 10.4.2).

Another noteworthy property of all-to-all broadcast is that, unlike one-to-all broadcast,
the hypercube algorithm cannot be applied unaltered to mesh and ring architectures. The
reason is that the hypercube procedure for all-to-all broadcast would cause congestion
on the communication channels of a smaller-dimensional network with the same number
of nodes. For instance, Figure 4.12 shows the result of performing the third step (Fig-
ure 4.11(c)) of the hypercube all-to-all broadcast procedure on a ring. One of the links
of the ring is traversed by all four messages and would take four times as much time to
complete the communication step.

166 Basic Communication Operations

messages

0 1

67

2 3

45

Contention for a single
channel by multiple

Figure 4.12 Contention for a channel when the communication step of Figure 4.11(c) for the hy-
percube is mapped onto a ring.

4.3 All-Reduce and Prefix-Sum Operations

The communication pattern of all-to-all broadcast can be used to perform some other op-
erations as well. One of these operations is a third variation of reduction, in which each
node starts with a buffer of size m and the final results of the operation are identical buffers
of size m on each node that are formed by combining the original p buffers using an asso-
ciative operator. Semantically, this operation, often referred to as the all-reduce operation,
is identical to performing an all-to-one reduction followed by a one-to-all broadcast of
the result. This operation is different from all-to-all reduction, in which p simultaneous
all-to-one reductions take place, each with a different destination for the result.

An all-reduce operation with a single-word message on each node is often used to im-
plement barrier synchronization on a message-passing computer. The semantics of the
reduction operation are such that, while executing a parallel program, no node can finish
the reduction before each node has contributed a value.

A simple method to perform all-reduce is to perform an all-to-one reduction followed
by a one-to-all broadcast. However, there is a faster way to perform all-reduce by using
the communication pattern of all-to-all broadcast. Figure 4.11 illustrates this algorithm for
an eight-node hypercube. Assume that each integer in parentheses in the figure, instead
of denoting a message, denotes a number to be added that originally resided at the node
with that integer label. To perform reduction, we follow the communication steps of the
all-to-all broadcast procedure, but at the end of each step, add two numbers instead of
concatenating two messages. At the termination of the reduction procedure, each node
holds the sum (0 + 1 + 2 + · · · + 7) (rather than eight messages numbered from 0 to 7,
as in the case of all-to-all broadcast). Unlike all-to-all broadcast, each message transferred
in the reduction operation has only one word. The size of the messages does not double
in each step because the numbers are added instead of being concatenated. Therefore, the

4.4 Scatter and Gather 167

total communication time for all log p steps is

T = (ts + twm) log p. (4.5)

Algorithm 4.7 can be used to perform a sum of p numbers if my msg, msg, and result
are numbers (rather than messages), and the union operation (‘∪’) on Line 8 is replaced by
addition.

Finding prefix sums (also known as the scan operation) is another important problem
that can be solved by using a communication pattern similar to that used in all-to-all broad-
cast and all-reduce operations. Given p numbers n0, n1, . . . , n p−1 (one on each node), the
problem is to compute the sums sk = �k

i=0ni for all k between 0 and p − 1. For ex-
ample, if the original sequence of numbers is 〈3, 1, 4, 0, 2〉, then the sequence of prefix
sums is 〈3, 4, 8, 8, 10〉. Initially, nk resides on the node labeled k, and at the end of the
procedure, the same node holds sk . Instead of starting with a single numbers, each node
could start with a buffer or vector of size m and the m-word result would be the sum of the
corresponding elements of buffers.

Figure 4.13 illustrates the prefix sums procedure for an eight-node hypercube. This
figure is a modification of Figure 4.11. The modification is required to accommodate the
fact that in prefix sums the node with label k uses information from only the k-node subset
of those nodes whose labels are less than or equal to k. To accumulate the correct prefix
sum, every node maintains an additional result buffer. This buffer is denoted by square
brackets in Figure 4.13. At the end of a communication step, the content of an incoming
message is added to the result buffer only if the message comes from a node with a smaller
label than that of the recipient node. The contents of the outgoing message (denoted by
parentheses in the figure) are updated with every incoming message, just as in the case of
the all-reduce operation. For instance, after the first communication step, nodes 0, 2, and
4 do not add the data received from nodes 1, 3, and 5 to their result buffers. However, the
contents of the outgoing messages for the next step are updated.

Since not all of the messages received by a node contribute to its final result, some of the
messages it receives may be redundant. We have omitted these steps of the standard all-to-
all broadcast communication pattern from Figure 4.13, although the presence or absence of
these messages does not affect the results of the algorithm. Algorithm 4.9 gives a procedure
to solve the prefix sums problem on a d-dimensional hypercube.

4.4 Scatter and Gather

In the scatter operation, a single node sends a unique message of size m to every other
node. This operation is also known as one-to-all personalized communication. One-to-all
personalized communication is different from one-to-all broadcast in that the source node
starts with p unique messages, one destined for each node. Unlike one-to-all broadcast,
one-to-all personalized communication does not involve any duplication of data. The dual
of one-to-all personalized communication or the scatter operation is the gather operation,

168 Basic Communication Operations

0

(c) Distribution of sums before third step

1

32

4 5

76

0 1

32

4 5

76

(3)

(7)(6)

(4) [4]

(6+7)(6)

[4]

(4+5)

(2)

[2]

(2+3)

[2]

(4+5)

(0+1) 0+1

[0]

(0)

[0]

(2+3)

(5)

(1)

[6] [7]

[3]

[5]

[1]

[6]

[2+3]

[4+5]

[6+7]

0 1

32

4 5

76

0 1

32

4 5

76

[0+ .. +7][0+ .. +6]

[0+1+2](0+1+

 2+3)

[0+1+2]

(4+5)

[0+1+2+3+4] [0+ .. +5]

[4]

(4+5)

 2+3)

(0+1+

[0]

2+3)

(0+1+
[0] [0+1]

[0+1+2+3][0+1+2+3]

(4+5+6+7) [4+5+6+7](4+5+6) [4+5+6]

[4+5]

[0+1]

(0+1+2+3)

(a) Initial distribution of values

(d) Final distribution of prefix sums

(b) Distribution of sums before second step

Figure 4.13 Computing prefix sums on an eight-node hypercube. At each node, square brackets
show the local prefix sum accumulated in the result buffer and parentheses enclose the contents of
the outgoing message buffer for the next step.

1. procedure PREFIX SUMS HCUBE(my id, my number , d, result)
2. begin
3. result := my number ;
4. msg := result;
5. for i := 0 to d − 1 do
6. partner := my id XOR 2i ;
7. send msg to partner;
8. receive number from partner;
9. msg := msg + number;
10. if (partner < my id) then result := result + number;
11. endfor;
12. end PREFIX SUMS HCUBE

Algorithm 4.9 Prefix sums on a d-dimensional hypercube.

4.4 Scatter and Gather 169

M -1

M 0

M 1

...

M 1 pM -1M 0

p

Scatter

p-11 1 p-10 0.Gather

Figure 4.14 Scatter and gather operations.

or concatenation, in which a single node collects a unique message from each node. A
gather operation is different from an all-to-one reduce operation in that it does not involve
any combination or reduction of data. Figure 4.14 illustrates the scatter and gather opera-
tions.

Although the scatter operation is semantically different from one-to-all broadcast, the
scatter algorithm is quite similar to that of the broadcast. Figure 4.15 shows the commu-
nication steps for the scatter operation on an eight-node hypercube. The communication
patterns of one-to-all broadcast (Figure 4.6) and scatter (Figure 4.15) are identical. Only
the size and the contents of messages are different. In Figure 4.15, the source node (node 0)
contains all the messages. The messages are identified by the labels of their destination
nodes. In the first communication step, the source transfers half of the messages to one
of its neighbors. In subsequent steps, each node that has some data transfers half of it to
a neighbor that has yet to receive any data. There is a total of log p communication steps
corresponding to the log p dimensions of the hypercube.

The gather operation is simply the reverse of scatter. Each node starts with an m word
message. In the first step, every odd numbered node sends its buffer to an even numbered
neighbor behind it, which concatenates the received message with its own buffer. Only the
even numbered nodes participate in the next communication step which results in nodes
with multiples of four labels gathering more data and doubling the sizes of their data. The
process continues similarly, until node 0 has gathered the entire data.

Just like one-to-all broadcast and all-to-one reduction, the hypercube algorithms for
scatter and gather can be applied unaltered to linear array and mesh interconnection topolo-
gies without any increase in the communication time.

Cost Analysis All links of a p-node hypercube along a certain dimension join two
p/2-node subcubes (Section 2.4.3). As Figure 4.15 illustrates, in each communication
step of the scatter operations, data flow from one subcube to another. The data that a node
owns before starting communication in a certain dimension are such that half of them need
to be sent to a node in the other subcube. In every step, a communicating node keeps half
of its data, meant for the nodes in its subcube, and sends the other half to its neighbor in the
other subcube. The time in which all data are distributed to their respective destinations is

T = ts log p + twm(p − 1). (4.6)

170 Basic Communication Operations

 2,3)

(0,1,

(4,5,

0 1

 6,7)

3

(b) Distribution before the second step

2

4 5

76

0 1

32

4 5

76

(0,1,2,3,

 4,5,6,7)

0 1

32

4 5

76

0 1

32

4 5

76

(6,7)

(4) (5)

(7)(6)

(0,1)

(2,3)

(4,5)

(0)

(2)

(1)

(3)

(d) Final distribution of messages

(a) Initial distribution of messages

(c) Distribution before the third step

Figure 4.15 The scatter operation on an eight-node hypercube.

The scatter and gather operations can also be performed on a linear array and on a 2-D
square mesh in time ts log p + twm(p − 1) (Problem 4.7). Note that disregarding the term
due to message-startup time, the cost of scatter and gather operations for large messages on
any k-d mesh interconnection network (Section 2.4.3) is similar. In the scatter operation,
at least m(p − 1) words of data must be transmitted out of the source node, and in the
gather operation, at least m(p − 1) words of data must be received by the destination
node. Therefore, as in the case of all-to-all broadcast, twm(p − 1) is a lower bound on the
communication time of scatter and gather operations. This lower bound is independent of
the interconnection network.

4.5 All-to-All Personalized Communication

In all-to-all personalized communication, each node sends a distinct message of size m to
every other node. Each node sends different messages to different nodes, unlike all-to-all
broadcast, in which each node sends the same message to all other nodes. Figure 4.16

4.5.1 Ring 171

..

pM -1,0
...

p -1Mp -1,
...

p -1M 0,

p -1M 1,

1 p-10 . . .

M

M 0,0

1,0

pM

M

M 0,1

1,1

 -1,1
.

All-to-all personalized

.

communication

p -1Mp -1,p -1M 1,p -1M 0,

p-110 . . .

...
M

M

.....
M

M 0,0

0,1

1,0

1,1

pM -1,0

pM -1,1

Figure 4.16 All-to-all personalized communication.

illustrates the all-to-all personalized communication operation. A careful observation of
this figure would reveal that this operation is equivalent to transposing a two-dimensional
array of data distributed among p processes using one-dimensional array partitioning (Fig-
ure 3.24). All-to-all personalized communication is also known as total exchange. This
operation is used in a variety of parallel algorithms such as fast Fourier transform, matrix
transpose, sample sort, and some parallel database join operations.

Example 4.2 Matrix transposition
The transpose of an n × n matrix A is a matrix AT of the same size, such that
AT [i, j] = A[j, i] for 0 ≤ i, j < n. Consider an n × n matrix mapped onto
n processors such that each processor contains one full row of the matrix. With
this mapping, processor Pi initially contains the elements of the matrix with indices
[i, 0], [i, 1], . . . , [i, n − 1]. After the transposition, element [i, 0] belongs to P0,
element [i, 1] belongs to P1, and so on. In general, element [i, j] initially resides on
Pi , but moves to P j during the transposition. The data-communication pattern of this
procedure is shown in Figure 4.17 for a 4 × 4 matrix mapped onto four processes
using one-dimensional rowwise partitioning. Note that in this figure every processor
sends a distinct element of the matrix to every other processor. This is an example of
all-to-all personalized communication.

In general, if we use p processes such that p ≤ n, then each process initially
holds n/p rows (that is, n2/p elements) of the matrix. Performing the transposi-
tion now involves an all-to-all personalized communication of matrix blocks of size
n/p × n/p, instead of individual elements.

We now discuss the implementation of all-to-all personalized communication on par-
allel computers with linear array, mesh, and hypercube interconnection networks. The
communication patterns of all-to-all personalized communication are identical to those of
all-to-all broadcast on all three architectures. Only the size and the contents of messages
are different.

172 Basic Communication Operations

0P

3

n

P

P

P1

2

Figure 4.17 All-to-all personalized communication in transposing a 4 × 4 matrix using four pro-
cesses.

({2,0},({1,0})

({0,1} ... {0,5}) ({1,2} ... {1,0})

({0,2} ... {0,5})

({2,1}) ({3,2})

({5,2} ... {5,4})

({5,1} ... {5,4})

({4,1} ... {4,3})

({4,2}, {4,3})({3,1}, {3,2})

({2,3},
 {2,4},
 {2,5},
 {2,0},

 {1,0})
 {1,5},
 {1,4},
({1,3},

 {0,5})
 {0,4},
({0,3}, ({5,3},

 {5,4})

 {2,1})

({4,3}) {4,2},
 {4,3}) {5,4})

 {5,3},
 {5,2},
 {5,1},
({5,0},

1

 {4,1},

 {3,2})
 {3,1},
({3,0}, ({4,0},

 {2,1})

0 1 2

345

({3,4} ... {3,2})

({2,4} ... {2,1})

({1,4} ... {1,0})

({4,5} ... {4,3})

({3,5} ... {3,2})

({2,5} ... {2,1})

({0,4}, {0,5})({1,5}, {1,0})

({0,5}) ({5,4})

3 3

1

2

3

4

5

1

2

3

4

5

2345

2 43 5

1

1

1

2

4

5 5

4

2

Figure 4.18 All-to-all personalized communication on a six-node ring. The label of each mes-
sage is of the form {x, y}, where x is the label of the node that originally owned the mes-
sage, and y is the label of the node that is the final destination of the message. The label
({x1, y1}, {x2, y2}, . . . , {xn, yn}) indicates a message that is formed by concatenating n indi-
vidual messages.

4.5.1 Ring 173

4.5.1 Ring

Figure 4.18 shows the steps in an all-to-all personalized communication on a six-node
linear array. To perform this operation, every node sends p − 1 pieces of data, each of size
m. In the figure, these pieces of data are identified by pairs of integers of the form {i, j},
where i is the source of the message and j is its final destination. First, each node sends
all pieces of data as one consolidated message of size m(p − 1) to one of its neighbors
(all nodes communicate in the same direction). Of the m(p − 1) words of data received
by a node in this step, one m-word packet belongs to it. Therefore, each node extracts the
information meant for it from the data received, and forwards the remaining (p − 2) pieces
of size m each to the next node. This process continues for p − 1 steps. The total size
of data being transferred between nodes decreases by m words in each successive step. In
every step, each node adds to its collection one m-word packet originating from a different
node. Hence, in p − 1 steps, every node receives the information from all other nodes in
the ensemble.

In the above procedure, all messages are sent in the same direction. If half of the
messages are sent in one direction and the remaining half are sent in the other direction,
then the communication cost due to the tw can be reduced by a factor of two. For the sake
of simplicity, we ignore this constant-factor improvement.

Cost Analysis On a ring or a bidirectional linear array, all-to-all personalized commu-
nication involves p − 1 communication steps. Since the size of the messages transferred
in the i th step is m(p − i), the total time taken by this operation is

T =
p−1∑
i=1

(ts + twm(p − i))

= ts(p − 1)+
p−1∑
i=1

i twm

= (ts + twmp/2)(p − 1). (4.7)

In the all-to-all personalized communication procedure described above, each node
sends m(p − 1) words of data because it has an m-word packet for every other node.
Assume that all messages are sent either clockwise or counterclockwise. The average dis-
tance that an m-word packet travels is (� p−1

i=1 i)/(p−1), which is equal to p/2. Since there
are p nodes, each performing the same type of communication, the total traffic (the to-
tal number of data words transferred between directly-connected nodes) on the network is
m(p −1)× p/2× p. The total number of inter-node links in the network to share this load
is p. Hence, the communication time for this operation is at least (tw × m(p − 1)p2/2)/p,
which is equal to twm(p − 1)p/2. Disregarding the message startup time ts , this is ex-
actly the time taken by the linear array procedure. Therefore, the all-to-all personalized
communication algorithm described in this section is optimal.

174 Basic Communication Operations

 {2,0},{2,3},{2,6})

 {1,0},{1,3},{1,6},

 {5,0},{5,3},{5,6})

 {4,0},{4,3},{4,6},

({3,0},{3,3},{3,6},

 {8,0},{8,3},{8,6})

 {7,0},{7,3},{7,6},

({6,0},{6,3},{6,6},

 {8,1},{8,4},{8,7})

({6,1},{6,4},{6,7},

 {7,1},{7,4},{7,7},

 {8,2},{8,5},{8,8})

 {7,2},{7,5},{7,8},

0 1 2

53 4

({6,2},{6,5},{6,8},

8

 beginning of first phase

76

(b) Data distribution at the beginning of second phase

 {4,4},{4,7},

 {5,1},{5,,4},

 {5,7})

({0,2},{0,5},

 {0,8},{1,2},

 {1,5},{1,8},

 {2,2},{2,5},

 {2,8})

({3,2},{3,5},

 {3,8},{4,2},

 {4,5},{4,8},

 {5,2},{5,5},

 {5,8})

({3,1},{3,4},

 {3,7},{4,1},

 {2,7})

 {2,1},{2,4},

 {1,4},{1,7},

 {0,7},{1,1},

({0,1},{0,4},

({0,0},{0,3},{0,6},

0 1 2

53 4

876

 {1,1},{1,4},{1,7},

({0,0},{0,3},{0,6},

({3,0},{3,3},{3,6},

 {4,1},{4,4},{4,7},

 {5,2},{5,5},{5,8})

 {8,2},{8,5},{8,8})

 {7,1},{7,4},{7,7},

({6,0},{6,3},{6,6},

 {2,2},{2,5},{2,8})

({1,0},{1,3},{1,6},

 {0,1},{0,4},{0,7},

 {0,2},{0,5},{0,8}) {1,2},{1,5},{1,8})

 {2,1},{2,4},{2,7},

({2,0},{2,3},{2,6},

 {3,1},{3,4},{3,7},

 {3,2},{3,5},{3,8})

({4,0},{4,3},{4,6},

 {4,2},{4,5},{4,8})

({5,0},{5,3},{5,6},

 {5,1},{5,4},{4,7},

 {6,1},{6,4},{6,7},

 {6,2},{6,5},{6,8})

({7,0},{7,3},{7,6},

 {7,2},{7,5},{7,8})

({8,0},{8,3},{8,6},

 {8,1},{8,4},{8,7},

(a) Data distribution at the

Figure 4.19 The distribution of messages at the beginning of each phase of all-to-all personalized
communication on a 3 × 3 mesh. At the end of the second phase, node i has messages ({0,i},
. . . ,{8,i}), where 0 ≤ i ≤ 8. The groups of nodes communicating together in each phase are
enclosed in dotted boundaries.

4.5.2 Mesh

In all-to-all personalized communication on a
√

p × √
p mesh, each node first groups its

p messages according to the columns of their destination nodes. Figure 4.19 shows a 3×3
mesh, in which every node initially has nine m-word messages, one meant for each node.
Each node assembles its data into three groups of three messages each (in general,

√
p

groups of
√

p messages each). The first group contains the messages destined for nodes
labeled 0, 3, and 6; the second group contains the messages for nodes labeled 1, 4, and 7;
and the last group has messages for nodes labeled 2, 5, and 8.

After the messages are grouped, all-to-all personalized communication is performed
independently in each row with clustered messages of size m

√
p. One cluster contains the

information for all
√

p nodes of a particular column. Figure 4.19(b) shows the distribution

4.5.3 Hypercube 175

of data among the nodes at the end of this phase of communication.
Before the second communication phase, the messages in each node are sorted again,

this time according to the rows of their destination nodes; then communication similar to
the first phase takes place in all the columns of the mesh. By the end of this phase, each
node receives a message from every other node.

Cost Analysis We can compute the time spent in the first phase by substituting
√

p for
the number of nodes, and m

√
p for the message size in Equation 4.7. The result of this

substitution is (ts + twmp/2)(
√

p − 1). The time spent in the second phase is the same as
that in the first phase. Therefore, the total time for all-to-all personalized communication
of messages of size m on a p-node two-dimensional square mesh is

T = (2ts + twmp)(
√

p − 1). (4.8)

The expression for the communication time of all-to-all personalized communication
in Equation 4.8 does not take into account the time required for the local rearrangement
of data (that is, sorting the messages by rows or columns). Assuming that initially the
data is ready for the first communication phase, the second communication phase requires
the rearrangement of mp words of data. If tr is the time to perform a read and a write
operation on a single word of data in a node’s local memory, then the total time spent in
data rearrangement by a node during the entire procedure is tr mp (Problem 4.21). This
time is much smaller than the time spent by each node in communication.

An analysis along the lines of that for the linear array would show that the communi-
cation time given by Equation 4.8 for all-to-all personalized communication on a square
mesh is optimal within a small constant factor (Problem 4.11).

4.5.3 Hypercube

One way of performing all-to-all personalized communication on a p-node hypercube is
to simply extend the two-dimensional mesh algorithm to log p dimensions. Figure 4.20
shows the communication steps required to perform this operation on a three-dimensional
hypercube. As shown in the figure, communication takes place in log p steps. Pairs of
nodes exchange data in a different dimension in each step. Recall that in a p-node hyper-
cube, a set of p/2 links in the same dimension connects two subcubes of p/2 nodes each
(Section 2.4.3). At any stage in all-to-all personalized communication, every node holds p
packets of size m each. While communicating in a particular dimension, every node sends
p/2 of these packets (consolidated as one message). The destinations of these packets are
the nodes of the other subcube connected by the links in current dimension.

176 Basic Communication Operations

({0,0} ... {0,7})

({4,1},{6,1},

 {4,5},{6,5},

 {5,1},{7,1},

 {5,5},{7,5})

({1,0} ... {1,7})

({4,0} ... {4,7}) ({5,0} ... {5,7})

({3,0} ... {3,7})({2,0} ... {2,7})

({7,0} ... {7,7})({6,0} ... {6,7})

(a) Initial distribution of messages

6 7

54

2 3

10

 {1,0},{1,2},{1,4},{1,6})

({0,0},{0,2},{0,4},{0,6},

 {3,4},{3,6})

 {3,0},{3,2},

 {2,4},{2,6},

({0,6} ... {7,6})

({2,0},{2,2},

({6,0},{6,2},{6,4},{6,6}, ({6,1},{6,3},{6,5},{6,7},

0 1

32

4 5

76

({1,1},{1,3},{1,5},{1,7},

 {0,1},{0,3},{0,5},{0,7})

 {7,0},{7,2},{7,4},{7,6}) {7,1},{7,3},{7,5},{7,7})

({4,1},{4,3},

 {4,5},{4,7},

 {5,1},{5,3},

 {5,5},{5,7})

0 1

32

4 5

76

(b) Distribution before the second step

(d) Final distribution of messages

({0,0} ... {7,0}) ({0,1} ... {7,1})

({0,5} ... {7,5})({0,4} ... {7,4})

({0,7} ... {7,7})

({0,3} ... {7,3})({0,2} ... {7,2})

 {1,0},{1,4},{3,0},{3,4}) {0,1},{0,5},{2,1},{2,5})

0 1

32

4 5

76

({0,0},{0,4},{2,0},{2,4}, ({1,1},{1,5},{3,1},{3,5},

({6,2},{6,6},{4,2},{4,6},

 {7,2},{7,6},{5,2},{5,6})

({7,3},{7,7},{5,3},{5,7},

 {6,3},{6,7},{4,3},{4,7})

({0,2},{2,2},

 {0,6},{2,6},

 {1,2},{3,2},

 {1,6},{3,6})

(c) Distribution before the third step

Figure 4.20 An all-to-all personalized communication algorithm on a three-dimensional hypercube.

In the preceding procedure, a node must rearrange its messages locally before each
of the log p communication steps. This is necessary to make sure that all p/2 messages
destined for the same node in a communication step occupy contiguous memory locations
so that they can be transmitted as a single consolidated message.

Cost Analysis In the above hypercube algorithm for all-to-all personalized communi-
cation, mp/2 words of data are exchanged along the bidirectional channels in each of the
log p iterations. The resulting total communication time is

T = (ts + twmp/2) log p. (4.9)

4.5.3 Hypercube 177

Before each of the log p communication steps, a node rearranges mp words of data.
Hence, a total time of tr mp log p is spent by each node in local rearrangement of data dur-
ing the entire procedure. Here tr is the time needed to perform a read and a write operation
on a single word of data in a node’s local memory. For most practical computers, tr is
much smaller than tw; hence, the time to perform an all-to-all personalized communication
is dominated by the communication time.

Interestingly, unlike the linear array and mesh algorithms described in this section, the
hypercube algorithm is not optimal. Each of the p nodes sends and receives m(p − 1)
words of data and the average distance between any two nodes on a hypercube is (log p)/2.
Therefore, the total data traffic on the network is p × m(p − 1) × (log p)/2. Since there
is a total of (p log p)/2 links in the hypercube network, the lower bound on the all-to-all
personalized communication time is

T = tw pm(p − 1)(log p)/2

(p log p)/2
= twm(p − 1).

An Optimal Algorithm

An all-to-all personalized communication effectively results in all pairs of nodes exchang-
ing some data. On a hypercube, the best way to perform this exchange is to have every pair
of nodes communicate directly with each other. Thus, each node simply performs p − 1
communication steps, exchanging m words of data with a different node in every step. A
node must choose its communication partner in each step so that the hypercube links do
not suffer congestion. Figure 4.21 shows one such congestion-free schedule for pairwise
exchange of data in a three-dimensional hypercube. As the figure shows, in the j th com-
munication step, node i exchanges data with node (i XOR j). For example, in part (a) of
the figure (step 1), the labels of communicating partners differ in the least significant bit.
In part (g) (step 7), the labels of communicating partners differ in all the bits, as the binary
representation of seven is 111. In this figure, all the paths in every communication step
are congestion-free, and none of the bidirectional links carry more than one message in the
same direction. This is true in general for a hypercube of any dimension. If the messages
are routed appropriately, a congestion-free schedule exists for the p − 1 communication
steps of all-to-all personalized communication on a p-node hypercube. Recall from Sec-
tion 2.4.3 that a message traveling from node i to node j on a hypercube must pass through
at least l links, where l is the Hamming distance between i and j (that is, the number of
nonzero bits in the binary representation of (i XOR j)). A message traveling from node i
to node j traverses links in l dimensions (corresponding to the nonzero bits in the binary
representation of (i XOR j)). Although the message can follow one of the several paths
of length l that exist between i and j (assuming l > 1), a distinct path is obtained by
sorting the dimensions along which the message travels in ascending order. According to
this strategy, the first link is chosen in the dimension corresponding to the least significant
nonzero bit of (i XOR j), and so on. This routing scheme is known as E-cube routing.

178 Basic Communication Operations

2

6

6

(a)

(d)

0 1

32

4 5

76

0 1

32

4 5

76

7

(c)

(f)

0 1

32

4 5

76

0 1

32

4 5

76

0467

1576

45

354

4023

5

6

132

201

7310

(b)

(e)

(g)

0 1

32

4 5

76

0 1

32

4 5

76

0 1

32

4 5

7

Figure 4.21 Seven steps in all-to-all personalized communication on an eight-node hypercube.

4.6 Circular Shift 179

1. procedure ALL TO ALL PERSONAL(d, my id)
2. begin
3. for i := 1 to 2d − 1 do
4. begin
5. partner := my id XOR i ;
6. send Mmy id,partner to partner;
7. receive Mpartner,my id from partner;
8. endfor;
9. end ALL TO ALL PERSONAL

Algorithm 4.10 A procedure to perform all-to-all personalized communication on a d-dimensional
hypercube. The message Mi, j initially resides on node i and is destined for node j .

Algorithm 4.10 for all-to-all personalized communication on a d-dimensional hypercube
is based on this strategy.

Cost Analysis E-cube routing ensures that by choosing communication pairs according
to Algorithm 4.10, a communication time of ts + twm is guaranteed for a message transfer
between node i and node j because there is no contention with any other message traveling
in the same direction along the link between nodes i and j . The total communication time
for the entire operation is

T=(ts + twm)(p − 1). (4.10)

A comparison of Equations 4.9 and 4.10 shows the term associated with ts is higher
for the second hypercube algorithm, while the term associated with tw is higher for the
first algorithm. Therefore, for small messages, the startup time may dominate, and the first
algorithm may still be useful.

4.6 Circular Shift

Circular shift is a member of a broader class of global communication operations known as
permutation. A permutation is a simultaneous, one-to-one data redistribution operation in
which each node sends a packet of m words to a unique node. We define a circular q-shift
as the operation in which node i sends a data packet to node (i + q) mod p in a p-node
ensemble (0 < q < p). The shift operation finds application in some matrix computations
and in string and image pattern matching.

4.6.1 Mesh

The implementation of a circular q-shift is fairly intuitive on a ring or a bidirectional linear
array. It can be performed by min{q, p − q} neighbor-to-neighbor communications in one
direction. Mesh algorithms for circular shift can be derived by using the ring algorithm.

180 Basic Communication Operations

11

(14)(13)(12)

(8)

(0) (2)

(10)(9)

(6)(5)(4)

(1)(15)

(3)

(7)

(c) Column shifts in the third communication step

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15
(12) (13) (14)(11)

0 1 2 3

4 5 6 7

8 9 10

12 13 14 15

(3)

(7)

(11)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(3)

(7)

(1)

(4) (5) (6)

(2)(0)

(11) (8) (9) (10)

(14)(13)(12)(15)

(d) Final distribution of the data

(a) Initial data distribution and the
first communication step

(b) Step to compensate for backward row shifts

(1)

(4) (5) (6)

(9) (10)

(2)(0)

(8)

(12) (13) (14) (15)

(11)

(3)

(7)

(15) (1)

(4) (5) (6)

(9) (10)

(2)(0)

(8)

Figure 4.22 The communication steps in a circular 5-shift on a 4 × 4 mesh.

4.6.2 Hypercube 181

If the nodes of the mesh have row-major labels, a circular q-shift can be performed on
a p-node square wraparound mesh in two stages. This is illustrated in Figure 4.22 for a
circular 5-shift on a 4 × 4 mesh. First, the entire set of data is shifted simultaneously by
(q mod

√
p) steps along the rows. Then it is shifted by �q/

√
p� steps along the columns.

During the circular row shifts, some of the data traverse the wraparound connection from
the highest to the lowest labeled nodes of the rows. All such data packets must shift an
additional step forward along the columns to compensate for the

√
p distance that they lost

while traversing the backward edge in their respective rows. For example, the 5-shift in
Figure 4.22 requires one row shift, a compensatory column shift, and finally one column
shift.

In practice, we can choose the direction of the shifts in both the rows and the columns
to minimize the number of steps in a circular shift. For instance, a 3-shift on a 4 × 4 mesh
can be performed by a single backward row shift. Using this strategy, the number of unit
shifts in a direction cannot exceed �√p/2�.

Cost Analysis Taking into account the compensating column shift for some packets,
the total time for any circular q-shift on a p-node mesh using packets of size m has an
upper bound of

T = (ts + twm)(
√

p + 1).

4.6.2 Hypercube

In developing a hypercube algorithm for the shift operation, we map a linear array with 2d

nodes onto a d-dimensional hypercube. We do this by assigning node i of the linear array
to node j of the hypercube such that j is the d-bit binary reflected Gray code (RGC) of i .
Figure 4.23 illustrates this mapping for eight nodes. A property of this mapping is that any
two nodes at a distance of 2i on the linear array are separated by exactly two links on the
hypercube. An exception is i = 0 (that is, directly-connected nodes on the linear array)
when only one hypercube link separates the two nodes.

To perform a q-shift, we expand q as a sum of distinct powers of 2. The number of
terms in the sum is the same as the number of ones in the binary representation of q. For
example, the number 5 can be expressed as 22 + 20. These two terms correspond to bit
positions 0 and 2 in the binary representation of 5, which is 101. If q is the sum of s distinct
powers of 2, then the circular q-shift on a hypercube is performed in s phases.

In each phase of communication, all data packets move closer to their respective desti-
nations by short cutting the linear array (mapped onto the hypercube) in leaps of the powers
of 2. For example, as Figure 4.23 shows, a 5-shift is performed by a 4-shift followed by a
1-shift. The number of communication phases in a q-shift is exactly equal to the number
of ones in the binary representation of q. Each phase consists of two communication steps,
except the 1-shift, which, if required (that is, if the least significant bit of q is 1), consists of
a single step. For example, in a 5-shift, the first phase of a 4-shift (Figure 4.23(a)) consists

182 Basic Communication Operations

0 1

23

4 5

6

(c) Final data distribution after the 5-shift

7

(7)

(0)

(3)

(4)

(6)

(1)

(2)

(5)

0 1

23

4 5

67

(2)
(3)

(0)
(1)

(4)

(7)

(5)

(6)

0 1

23

4 5

67

(3)

(6)

(7) (0)

(5)

(4)

(1)
(2)

0 1

23

4 5

67

(4)

(7)

(0)

(3)

(1)

(2)

(6)

(5)

First communication step of the 4-shift Second communication step of the 4-shift

(a) The first phase (a 4-shift)

(b) The second phase (a 1-shift)

Figure 4.23 The mapping of an eight-node linear array onto a three-dimensional hypercube to
perform a circular 5-shift as a combination of a 4-shift and a 1-shift.

of two steps and the second phase of a 1-shift (Figure 4.23(b)) consists of one step. Thus,
the total number of steps for any q in a p-node hypercube is at most 2 log p − 1.

All communications in a given time step are congestion-free. This is ensured by the
property of the linear array mapping that all nodes whose mutual distance on the linear
array is a power of 2 are arranged in disjoint subarrays on the hypercube. Thus, all nodes
can freely communicate in a circular fashion in their respective subarrays. This is shown
in Figure 4.23(a), in which nodes labeled 0, 3, 4, and 7 form one subarray and nodes
labeled 1, 2, 5, and 6 form another subarray.

4.6.2 Hypercube 183

The upper bound on the total communication time for any shift of m-word packets on a
p-node hypercube is

T = (ts + twm)(2 log p − 1). (4.11)

We can reduce this upper bound to (ts + twm) log p by performing both forward and
backward shifts. For example, on eight nodes, a 6-shift can be performed by a single
backward 2-shift instead of a forward 4-shift followed by a forward 2-shift.

0 1

32

4 5

76

0 1

3

4 5

76

2 3

10

2

4 5

76

0 1

32

4 5

76

(g) 7-shift

(f) 6-shift(d) 4-shift (e) 5-shift

6

(c) 3-shift(a) 1-shift (b) 2-shift

0 1

32

4 5

76

0 1

32

4 5

76

0 1

32

4 5

7

Figure 4.24 Circular q-shifts on an 8-node hypercube for 1 ≤ q < 8.

184 Basic Communication Operations

We now show that if the E-cube routing introduced in Section 4.5 is used, then the time
for circular shift on a hypercube can be improved by almost a factor of log p for large
messages. This is because with E-cube routing, each pair of nodes with a constant distance
l (i ≤ l < p) has a congestion-free path (Problem 4.22) in a p-node hypercube with
bidirectional channels. Figure 4.24 illustrates the non-conflicting paths of all the messages
in circular q-shift operations for 1 ≤ q < 8 on an eight-node hypercube. In a circular
q-shift on a p-node hypercube, the longest path contains log p − γ (q) links, where γ (q)
is the highest integer j such that q is divisible by 2 j (Problem 4.23). Thus, the total
communication time for messages of length m is

T = ts + twm. (4.12)

4.7 Improving the Speed of Some Communication
Operations

So far in this chapter, we have derived procedures for various communication operations
and their communication times under the assumptions that the original messages could not
be split into smaller parts and that each node had a single port for sending and receiving
data. In this section, we briefly discuss the impact of relaxing these assumptions on some
of the communication operations.

4.7.1 Splitting and Routing Messages in Parts

In the procedures described in Sections 4.1–4.6, we assumed that an entire m-word packet
of data travels between the source and the destination nodes along the same path. If we
split large messages into smaller parts and then route these parts through different paths,
we can sometimes utilize the communication network better. We have already shown that,
with a few exceptions like one-to-all broadcast, all-to-one reduction, all-reduce, etc., the
communication operations discussed in this chapter are asymptotically optimal for large
messages; that is, the terms associated with tw in the costs of these operations cannot be
reduced asymptotically. In this section, we present asymptotically optimal algorithms for
three global communication operations.

Note that the algorithms of this section rely on m being large enough to be split into p
roughly equal parts. Therefore, the earlier algorithms are still useful for shorter messages.
A comparison of the cost of the algorithms in this section with those presented earlier in this
chapter for the same operations would reveal that the term associated with ts increases and
the term associated with tw decreases when the messages are split. Therefore, depending
on the actual values of ts , tw, and p, there is a cut-off value for the message size m and
only the messages longer than the cut-off would benefit from the algorithms in this section.

4.7.1 Splitting and Routing Messages in Parts 185

One-to-All Broadcast

Consider broadcasting a single message M of size m from one source node to all the
nodes in a p-node ensemble. If m is large enough so that M can be split into p parts
M0,M1, . . . ,Mp−1 of size m/p each, then a scatter operation (Section 4.4) can place Mi

on node i in time ts log p + tw(m/p)(p − 1). Note that the desired result of the one-to-all
broadcast is to place M = M0∪M1∪· · ·∪Mp−1 on all nodes. This can be accomplished by
an all-to-all broadcast of the messages of size m/p residing on each node after the scatter
operation. This all-to-all broadcast can be completed in time ts log p + tw(m/p)(p − 1) on
a hypercube. Thus, on a hypercube, one-to-all broadcast can be performed in time

T = 2 × (ts log p + tw(p − 1)
m

p
)

≈ 2 × (ts log p + twm). (4.13)

Compared to Equation 4.1, this algorithm has double the startup cost, but the cost due
to the tw term has been reduced by a factor of (log p)/2. Similarly, one-to-all broadcast
can be improved on linear array and mesh interconnection networks as well.

All-to-One Reduction

All-to-one reduction is a dual of one-to-all broadcast. Therefore, an algorithm for all-to-
one reduction can be obtained by reversing the direction and the sequence of communica-
tion in one-to-all broadcast. We showed above how an optimal one-to-all broadcast algo-
rithm can be obtained by performing a scatter operation followed by an all-to-all broadcast.
Therefore, using the notion of duality, we should be able to perform an all-to-one reduc-
tion by performing all-to-all reduction (dual of all-to-all broadcast) followed by a gather
operation (dual of scatter). We leave the details of such an algorithm as an exercise for the
reader (Problem 4.17).

All-Reduce

Since an all-reduce operation is semantically equivalent to an all-to-one reduction followed
by a one-to-all broadcast, the asymptotically optimal algorithms for these two operations
presented above can be used to construct a similar algorithm for the all-reduce operation.
Breaking all-to-one reduction and one-to-all broadcast into their component operations, it
can be shown that an all-reduce operation can be accomplished by an all-to-all reduction
followed by a gather followed by a scatter followed by an all-to-all broadcast. Since the
intermediate gather and scatter would simply nullify each other’s effect, all-reduce just
requires an all-to-all reduction and an all-to-all broadcast. First, the m-word messages on
each of the p nodes are logically split into p components of size roughly m/p words.
Then, an all-to-all reduction combines all the i th components on pi . After this step, each
node is left with a distinct m/p-word component of the final result. An all-to-all broadcast
can construct the concatenation of these components on each node.

186 Basic Communication Operations

A p-node hypercube interconnection network allows all-to-one reduction and one-to-
all broadcast involving messages of size m/p in time ts log p + tw(m/p)(p − 1) each.
Therefore, the all-reduce operation can be completed in time

T = 2 × (ts log p + tw(p − 1)
m

p
)

≈ 2 × (ts log p + twm). (4.14)

4.7.2 All-Port Communication

In a parallel architecture, a single node may have multiple communication ports with links
to other nodes in the ensemble. For example, each node in a two-dimensional wraparound
mesh has four ports, and each node in a d-dimensional hypercube has d ports. In this book,
we generally assume what is known as the single-port communication model. In single-
port communication, a node can send data on only one of its ports at a time. Similarly, a
node can receive data on only one port at a time. However, a node can send and receive
data simultaneously, either on the same port or on separate ports. In contrast to the single-
port model, an all-port communication model permits simultaneous communication on all
the channels connected to a node.

On a p-node hypercube with all-port communication, the coefficients of tw in the ex-
pressions for the communication times of one-to-all and all-to-all broadcast and personal-
ized communication are all smaller than their single-port counterparts by a factor of log p.
Since the number of channels per node for a linear array or a mesh is constant, all-port
communication does not provide any asymptotic improvement in communication time on
these architectures.

Despite the apparent speedup, the all-port communication model has certain limitations.
For instance, not only is it difficult to program, but it requires that the messages are large
enough to be split efficiently among different channels. In several parallel algorithms,
an increase in the size of messages means a corresponding increase in the granularity of
computation at the nodes. When the nodes are working with large data sets, the internode
communication time is dominated by the computation time if the computational complex-
ity of the algorithm is higher than the communication complexity. For example, in the case
of matrix multiplication, there are n3 computations for n2 words of data transferred among
the nodes. If the communication time is a small fraction of the total parallel run time, then
improving the communication by using sophisticated techniques is not very advantageous
in terms of the overall run time of the parallel algorithm.

Another limitation of all-port communication is that it can be effective only if data can
be fetched and stored in memory at a rate sufficient to sustain all the parallel communica-
tion. For example, to utilize all-port communication effectively on a p-node hypercube,
the memory bandwidth must be greater than the communication bandwidth of a single
channel by a factor of at least log p; that is, the memory bandwidth must increase with
the number of nodes to support simultaneous communication on all ports. Some modern
parallel computers, like the IBM SP, have a very natural solution for this problem. Each

4.8 Summary 187

Table 4.1 Summary of communication times of various operations discussed in Sections 4.1–4.7
on a hypercube interconnection network. The message size for each operation is m and the number
of nodes is p.

Operation Hypercube Time B/W Requirement

One-to-all broadcast, min((ts + twm) log p, 2(ts log p + twm)) �(1)
All-to-one reduction

All-to-all broadcast, ts log p + twm(p − 1) �(1)
All-to-all reduction

All-reduce min((ts + twm) log p, 2(ts log p + twm)) �(1)

Scatter, Gather ts log p + twm(p − 1) �(1)

All-to-all personalized (ts + twm)(p − 1) �(p)

Circular shift ts + twm �(p)

node of the distributed-memory parallel computer is a NUMA shared-memory multipro-
cessor. Multiple ports are then served by separate memory banks and full memory and
communication bandwidth can be utilized if the buffers for sending and receiving data are
placed appropriately across different memory banks.

4.8 Summary

Table 4.1 summarizes the communication times for various collective communications op-
erations discussed in this chapter. The time for one-to-all broadcast, all-to-one reduction,
and the all-reduce operations is the minimum of two expressions. This is because, de-
pending on the message size m, either the algorithms described in Sections 4.1 and 4.3
or the ones described in Section 4.7 are faster. Table 4.1 assumes that the algorithm most
suitable for the given message size is chosen. The communication-time expressions in Ta-
ble 4.1 have been derived in the earlier sections of this chapter in the context of a hypercube
interconnection network with cut-through routing. However, these expressions and the cor-
responding algorithms are valid for any architecture with a �(p) cross-section bandwidth
(Section 2.4.4). In fact, the terms associated with tw for the expressions for all operations
listed in Table 4.1, except all-to-all personalized communication and circular shift, would
remain unchanged even on ring and mesh networks (or any k-d mesh network) provided
that the logical processes are mapped onto the physical nodes of the network appropriately.
The last column of Table 4.1 gives the asymptotic cross-section bandwidth required to per-
form an operation in the time given by the second column of the table, assuming an optimal
mapping of processes to nodes. For large messages, only all-to-all personalized commu-
nication and circular shift require the full �(p) cross-section bandwidth. Therefore, as

188 Basic Communication Operations

Table 4.2 MPI names of the various operations discussed in this chapter.

Operation MPI Name

One-to-all broadcast MPI Bcast
All-to-one reduction MPI Reduce
All-to-all broadcast MPI Allgather
All-to-all reduction MPI Reduce scatter
All-reduce MPI Allreduce
Gather MPI Gather
Scatter MPI Scatter
All-to-all personalized MPI Alltoall

discussed in Section 2.5.1, when applying the expressions for the time of these operations
on a network with a smaller cross-section bandwidth, the tw term must reflect the effective
bandwidth. For example, the bisection width of a p-node square mesh is �(

√
p) and that

of a p-node ring is �(1). Therefore, while performing all-to-all personalized communica-
tion on a square mesh, the effective per-word transfer time would be �(

√
p) times the tw

of individual links, and on a ring, it would be �(p) times the tw of individual links.
The collective communications operations discussed in this chapter occur frequently

in many parallel algorithms. In order to facilitate speedy and portable design of efficient
parallel programs, most parallel computer vendors provide pre-packaged software for per-
forming these collective communications operations. The most commonly used standard
API for these operations is known as the Message Passing Interface, or MPI. Table 4.2
gives the names of the MPI functions that correspond to the communications operations
described in this chapter.

4.9 Bibliographic Remarks

In this chapter, we studied a variety of data communication operations for the linear ar-
ray, mesh, and hypercube interconnection topologies. Saad and Schultz [SS89b] discuss
implementation issues for these operations on these and other architectures, such as shared-
memory and a switch or bus interconnect. Most parallel computer vendors provide stan-
dard APIs for inter-process communications via message-passing. Two of the most com-
mon APIs are the message passing interface (MPI) [SOHL+96] and the parallel virtual
machine (PVM) [GBD+94].

The hypercube algorithm for a certain communication operation is often the best algo-
rithm for other less-connected architectures too, if they support cut-through routing. Due
to the versatility of the hypercube architecture and the wide applicability of its algorithms,
extensive work has been done on implementing various communication operations on hy-
percubes [BOS+91, BR90, BT97, FF86, JH89, Joh90, MdV87, RS90b, SS89a, SW87].

4.9 Bibliographic Remarks 189

The properties of a hypercube network that are used in deriving the algorithms for various
communication operations on it are described by Saad and Schultz [SS88].

The all-to-all personalized communication problem in particular has been analyzed
for the hypercube architecture by Boppana and Raghavendra [BR90], Johnsson and
Ho [JH91], Seidel [Sei89], and Take [Tak87]. E-cube routing that guarantees congestion-
free communication in Algorithm 4.10 for all-to-all personalized communication is de-
scribed by Nugent [Nug88].

The all-reduce and the prefix sums algorithms of Section 4.3 are described by Ranka and
Sahni [RS90b]. Our discussion of the circular shift operation is adapted from Bertsekas
and Tsitsiklis [BT97]. A generalized form of prefix sums, often referred to as scan, has
been used by some researchers as a basic primitive in data-parallel programming. Blel-
loch [Ble90] defines a scan vector model, and describes how a wide variety of parallel
programs can be expressed in terms of the scan primitive and its variations.

The hypercube algorithm for one-to-all broadcast using spanning binomial trees is de-
scribed by Bertsekas and Tsitsiklis [BT97] and Johnsson and Ho [JH89]. In the span-
ning tree algorithm described in Section 4.7.1, we split the m-word message to be broad-
cast into log p parts of size m/log p for ease of presenting the algorithm. Johnsson and
Ho [JH89] show that the optimal size of the parts is (√tsm/tw log p)�. In this case,
the number of messages may be greater than log p. These smaller messages are sent
from the root of the spanning binomial tree to its log p subtrees in a circular fashion.
With this strategy, one-to-all broadcast on a p-node hypercube can be performed in time
ts log p + twm + 2tw(√tsm/tw log p)� log p.

Algorithms using the all-port communication model have been described for a vari-
ety of communication operations on the hypercube architecture by Bertsekas and Tsitsik-
lis [BT97], Johnsson and Ho [JH89], Ho and Johnsson [HJ87], Saad and Schultz [SS89a],
and Stout and Wagar [SW87]. Johnsson and Ho [JH89] show that on a p-node hypercube
with all-port communication, the coefficients of tw in the expressions for the communi-
cation times of one-to-all and all-to-all broadcast and personalized communication are
all smaller than those of their single-port counterparts by a factor of log p. Gupta and
Kumar [GK91] show that all-port communication may not improve the scalability of an
algorithm on a parallel architecture over single-port communication.

The elementary operations described in this chapter are not the only ones used in par-
allel applications. A variety of other useful operations for parallel computers have been
described in literature, including selection [Akl89], pointer jumping [HS86, Jaj92], BPC
permutations [Joh90, RS90b], fetch-and-op [GGK+83], packing [Lev87, Sch80], bit re-
versal [Loa92], and keyed-scan or multi-prefix [Ble90, Ran89].

Sometimes data communication does not follow any predefined pattern, but is arbi-
trary, depending on the application. In such cases, a simplistic approach of routing the
messages along the shortest data paths between their respective sources and destinations
leads to contention and imbalanced communication. Leighton, Maggs, and Rao [LMR88],
Valiant [Val82], and Valiant and Brebner [VB81] discuss efficient routing methods for ar-
bitrary permutations of messages.

190 Basic Communication Operations

Problems

4.1 Modify Algorithms 4.1, 4.2, and 4.3 so that they work for any number of processes,
not just the powers of 2.

4.2 Section 4.1 presents the recursive doubling algorithm for one-to-all broadcast, for
all three networks (ring, mesh, hypercube). Note that in the hypercube algorithm
of Figure 4.6, a message is sent along the highest dimension first, and then sent to
lower dimensions (in Algorithm 4.1, line 4, i goes down from d − 1 to 0). The
same algorithm can be used for mesh and ring and ensures that messages sent in
different time steps do not interfere with each other.
Let’s now change the algorithm so that the message is sent along the lowest dimen-
sion first (i.e., in Algorithm 3.1, line 4, i goes up from 0 to d − 1). So in the first
time step, processor 0 will communicate with processor 1; in the second time step,
processors 0 and 1 will communicate with 2 and 3, respectively; and so on.

1. What is the run time of this revised algorithm on hypercube?

2. What is the run time of this revised algorithm on ring?

For these derivations, if k messages have to traverse the same link at the same time,
then assume that the effective per-word-transfer time for these messages is ktw.

4.3 On a ring, all-to-all broadcast can be implemented in two different ways: (a) the
standard ring algorithm as shown in Figure 4.9 and (b) the hypercube algorithm as
shown in Figure 4.11.

1. What is the run time for case (a)?

2. What is the run time for case (b)?

If k messages have to traverse the same link at the same time, then assume that
the effective per-word-transfer time for these messages is ktw. Also assume that
ts = 100 × tw.

1. Which of the two methods, (a) or (b), above is better if the message size m is
very large?

2. Which method is better if m is very small (may be one word)?

4.4 Write a procedure along the lines of Algorithm 4.6 for performing all-to-all reduc-
tion on a mesh.

4.5 (All-to-all broadcast on a tree) Given a balanced binary tree as shown in Fig-
ure 4.7, describe a procedure to perform all-to-all broadcast that takes time
(ts + twmp/2) log p for m-word messages on p nodes. Assume that only the leaves
of the tree contain nodes, and that an exchange of two m-word messages between
any two nodes connected by bidirectional channels takes time ts + twmk if the
communication channel (or a part of it) is shared by k simultaneous messages.

4.9 Problems 191

4.6 Consider the all-reduce operation in which each processor starts with an array of m
words, and needs to get the global sum of the respective words in the array at each
processor. This operation can be implemented on a ring using one of the following
three alternatives:
(i) All-to-all broadcast of all the arrays followed by a local computation of the sum
of the respective elements of the array.
(ii) Single node accumulation of the elements of the array, followed by a one-to-all
broadcast of the result array.
(iii) An algorithm that uses the pattern of the all-to-all broadcast, but simply adds
numbers rather than concatenating messages.

1. For each of the above cases, compute the run time in terms of m, ts , and tw.

2. Assume that ts = 100, tw = 1, and m is very large. Which of the three
alternatives (among (i), (ii) or (iii)) is better?

3. Assume that ts = 100, tw = 1, and m is very small (say 1). Which of the
three alternatives (among (i), (ii) or (iii)) is better?

4.7 (One-to-all personalized communication on a linear array and a mesh) Give
the procedures and their communication times for one-to-all personalized com-
munication of m-word messages on p nodes for the linear array and the mesh
architectures.
Hint: For the mesh, the algorithm proceeds in two phases as usual and starts with
the source distributing pieces of m

√
p words among the

√
p nodes in its row such

that each of these nodes receives the data meant for all the
√

p nodes in its column.

4.8 (All-to-all reduction) The dual of all-to-all broadcast is all-to-all reduction, in
which each node is the destination of an all-to-one reduction. For example, con-
sider the scenario where p nodes have a vector of p elements each, and the i th
node (for all i such that 0 ≤ i < p) gets the sum of the i th elements of all the
vectors. Describe an algorithm to perform all-to-all reduction on a hypercube with
addition as the associative operator. If each message contains m words and tadd

is the time to perform one addition, how much time does your algorithm take (in
terms of m, p, tadd , ts and tw)?
Hint: In all-to-all broadcast, each node starts with a single message and collects
p such messages by the end of the operation. In all-to-all reduction, each node
starts with p distinct messages (one meant for each node) but ends up with a single
message.

4.9 Parts (c), (e), and (f) of Figure 4.21 show that for any node in a three-dimensional
hypercube, there are exactly three nodes whose shortest distance from the node is
two links. Derive an exact expression for the number of nodes (in terms of p and
l) whose shortest distance from any given node in a p-node hypercube is l.

4.10 Give a hypercube algorithm to compute prefix sums of n numbers if p is the num-
ber of nodes and n/p is an integer greater than 1. Assuming that it takes time

192 Basic Communication Operations

tadd to add two numbers and time ts to send a message of unit length between two
directly-connected nodes, give an exact expression for the total time taken by the
algorithm.

4.11 Show that if the message startup time ts is zero, then the expression twmp(
√

p−1)
for the time taken by all-to-all personalized communication on a

√
p × √

p mesh
is optimal within a small (≤ 4) constant factor.

4.12 Modify the linear array and the mesh algorithms in Sections 4.1–4.5 to work with-
out the end-to-end wraparound connections. Compare the new communication
times with those of the unmodified procedures. What is the maximum factor by
which the time for any of the operations increases on either the linear array or the
mesh?

4.13 (3-D mesh) Give optimal (within a small constant) algorithms for one-to-all and
all-to-all broadcasts and personalized communications on a p1/3 × p1/3 × p1/3

three-dimensional mesh of p nodes with store-and-forward routing. Derive ex-
pressions for the total communication times of these procedures.

4.14 Assume that the cost of building a parallel computer with p nodes is proportional
to the total number of communication links within it. Let the cost effectiveness
of an architecture be inversely proportional to the product of the cost of a p-node
ensemble of this architecture and the communication time of a certain operation on
it. Assuming ts to be zero, which architecture is more cost effective for each of the
operations discussed in this chapter – a standard 3-D mesh or a sparse 3-D mesh?

4.15 Repeat Problem 4.14 when ts is a nonzero constant but tw = 0. Under this model of
communication, the message transfer time between two directly-connected nodes
is fixed, regardless of the size of the message. Also, if two packets are combined
and transmitted as one message, the communication latency is still ts .

4.16 (k-to-all broadcast) Let k-to-all broadcast be an operation in which k nodes si-
multaneously perform a one-to-all broadcast of m-word messages. Give an al-
gorithm for this operation that has a total communication time of ts log p +
twm(k log(p/k) + k − 1) on a p-node hypercube. Assume that the m-word mes-
sages cannot be split, k is a power of 2, and 1 ≤ k ≤ p.

4.17 Give a detailed description of an algorithm for performing all-to-one reduction in
time 2(ts log p + twm(p − 1)/p) on a p-node hypercube by splitting the original
messages of size m into p nearly equal parts of size m/p each.

4.18 If messages can be split and their parts can be routed independently, then derive an
algorithm for k-to-all broadcast such that its communication time is less than that
of the algorithm in Problem 4.16 for a p-node hypercube.

4.19 Show that, if m ≥ p, then all-to-one reduction with message size m can be per-
formed on a p-node hypercube spending time 2(ts log p+ twm) in communication.
Hint: Express all-to-one reduction as a combination of all-to-all reduction and
gather.

4.9 Problems 193

4.20 (k-to-all personalized communication) In k-to-all personalized communication,
k nodes simultaneously perform a one-to-all personalized communication (1 ≤
k ≤ p) in a p-node ensemble with individual packets of size m. Show that, if
k is a power of 2, then this operation can be performed on a hypercube in time
ts(log(p/k)+ k − 1)+ twm(p − 1).

4.21 Assuming that it takes time tr to perform a read and a write operation on a single
word of data in a node’s local memory, show that all-to-all personalized commu-
nication on a p-node mesh (Section 4.5.2) spends a total of time tr mp in internal
data movement on the nodes, where m is the size of an individual message.
Hint: The internal data movement is equivalent to transposing a

√
p × √

p array
of messages of size m.

4.22 Show that in a p-node hypercube, all the p data paths in a circular q-shift are
congestion-free if E-cube routing (Section 4.5) is used.
Hint: (1) If q > p/2, then a q-shift is isomorphic to a (p − q)-shift on a p-
node hypercube. (2) Prove by induction on hypercube dimension. If all paths are
congestion-free for a q-shift (1 ≤ q < p) on a p-node hypercube, then all these
paths are congestion-free on a 2p-node hypercube also.

4.23 Show that the length of the longest path of any message in a circular q-shift on a
p-node hypercube is log p − γ (q), where γ (q) is the highest integer j such that q
is divisible by 2 j .
Hint: (1) If q = p/2, then γ (q) = log p − 1 on a p-node hypercube. (2) Prove
by induction on hypercube dimension. For a given q, γ (q) increases by one each
time the number of nodes is doubled.

4.24 Derive an expression for the parallel run time of the hypercube algorithms for one-
to-all broadcast, all-to-all broadcast, one-to-all personalized communication, and
all-to-all personalized communication adapted unaltered for a mesh with identical
communication links (same channel width and channel rate). Compare the perfor-
mance of these adaptations with that of the best mesh algorithms.

4.25 As discussed in Section 2.4.4, two common measures of the cost of a network are
(1) the total number of wires in a parallel computer (which is a product of number
of communication links and channel width); and (2) the bisection bandwidth. Con-
sider a hypercube in which the channel width of each link is one, that is tw = 1.
The channel width of a mesh-connected computer with equal number of nodes and
identical cost is higher, and is determined by the cost metric used. Let s and s

′

represent the factors by which the channel width of the mesh is increased in accor-
dance with the two cost metrics. Derive the values of s and s

′
. Using these, derive

the communication time of the following operations on a mesh:

1. One-to-all broadcast

2. All-to-all broadcast

3. One-to-all personalized communication

194 Basic Communication Operations

4. All-to-all personalized communication

Compare these times with the time taken by the same operations on a hypercube
with equal cost.

4.26 Consider a completely-connected network of p nodes. For the four communi-
cation operations in Problem 4.25 derive an expression for the parallel run time
of the hypercube algorithms on the completely-connected network. Comment on
whether the added connectivity of the network yields improved performance for
these operations.

