
CHAPTER 5

Analytical Modeling of
Parallel Programs

A sequential algorithm is usually evaluated in terms of its execution time, expressed as a
function of the size of its input. The execution time of a parallel algorithm depends not
only on input size but also on the number of processing elements used, and their relative
computation and interprocess communication speeds. Hence, a parallel algorithm cannot
be evaluated in isolation from a parallel architecture without some loss in accuracy. A
parallel system is the combination of an algorithm and the parallel architecture on which
it is implemented. In this chapter, we study various metrics for evaluating the performance
of parallel systems.

A number of measures of performance are intuitive. Perhaps the simplest of these is the
wall-clock time taken to solve a given problem on a given parallel platform. However, as
we shall see, a single figure of merit of this nature cannot be extrapolated to other problem
instances or larger machine configurations. Other intuitive measures quantify the benefit
of parallelism, i.e., how much faster the parallel program runs with respect to the serial
program. However, this characterization suffers from other drawbacks, in addition to those
mentioned above. For instance, what is the impact of using a poorer serial algorithm that
is more amenable to parallel processing? For these reasons, more complex measures for
extrapolating performance to larger machine configurations or problems are often neces-
sary. With these objectives in mind, this chapter focuses on metrics for quantifying the
performance of parallel programs.

5.1 Sources of Overhead in Parallel Programs

Using twice as many hardware resources, one can reasonably expect a program to run
twice as fast. However, in typical parallel programs, this is rarely the case, due to a variety

January 25, 2004 – 06 : 06 195

196 Analytical Modeling of Parallel Programs

P6

Essential/Excess Computation

P7

Interprocessor Communication

P4

Idling

P5

P3

P2

P1

P0

Execution Time

Figure 5.1 The execution profile of a hypothetical parallel program executing on eight process-
ing elements. Profile indicates times spent performing computation (both essential and excess),
communication, and idling.

of overheads associated with parallelism. An accurate quantification of these overheads is
critical to the understanding of parallel program performance.

A typical execution profile of a parallel program is illustrated in Figure 5.1. In addi-
tion to performing essential computation (i.e., computation that would be performed by
the serial program for solving the same problem instance), a parallel program may also
spend time in interprocess communication, idling, and excess computation (computation
not performed by the serial formulation).

Interprocess Interaction Any nontrivial parallel system requires its processing ele-
ments to interact and communicate data (e.g., intermediate results). The time spent com-
municating data between processing elements is usually the most significant source of
parallel processing overhead.

Idling Processing elements in a parallel system may become idle due to many reasons
such as load imbalance, synchronization, and presence of serial components in a program.
In many parallel applications (for example, when task generation is dynamic), it is impos-
sible (or at least difficult) to predict the size of the subtasks assigned to various processing
elements. Hence, the problem cannot be subdivided statically among the processing ele-
ments while maintaining uniform workload. If different processing elements have different
workloads, some processing elements may be idle during part of the time that others are
working on the problem. In some parallel programs, processing elements must synchro-
nize at certain points during parallel program execution. If all processing elements are not
ready for synchronization at the same time, then the ones that are ready sooner will be idle
until all the rest are ready. Parts of an algorithm may be unparallelizable, allowing only a
single processing element to work on it. While one processing element works on the serial
part, all the other processing elements must wait.

5.2 Performance Metrics for Parallel Systems 197

Excess Computation The fastest known sequential algorithm for a problem may be
difficult or impossible to parallelize, forcing us to use a parallel algorithm based on a
poorer but easily parallelizable (that is, one with a higher degree of concurrency) sequential
algorithm. The difference in computation performed by the parallel program and the best
serial program is the excess computation overhead incurred by the parallel program.

A parallel algorithm based on the best serial algorithm may still perform more aggregate
computation than the serial algorithm. An example of such a computation is the Fast
Fourier Transform algorithm. In its serial version, the results of certain computations can
be reused. However, in the parallel version, these results cannot be reused because they are
generated by different processing elements. Therefore, some computations are performed
multiple times on different processing elements. Chapter 13 discusses these algorithms in
detail.

Since different parallel algorithms for solving the same problem incur varying over-
heads, it is important to quantify these overheads with a view to establishing a figure of
merit for each algorithm.

5.2 Performance Metrics for Parallel Systems

It is important to study the performance of parallel programs with a view to determining
the best algorithm, evaluating hardware platforms, and examining the benefits from paral-
lelism. A number of metrics have been used based on the desired outcome of performance
analysis.

5.2.1 Execution Time

The serial runtime of a program is the time elapsed between the beginning and the end
of its execution on a sequential computer. The parallel runtime is the time that elapses
from the moment a parallel computation starts to the moment the last processing element
finishes execution. We denote the serial runtime by TS and the parallel runtime by TP .

5.2.2 Total Parallel Overhead

The overheads incurred by a parallel program are encapsulated into a single expression
referred to as the overhead function. We define overhead function or total overhead of a
parallel system as the total time collectively spent by all the processing elements over and
above that required by the fastest known sequential algorithm for solving the same problem
on a single processing element. We denote the overhead function of a parallel system by
the symbol To.

The total time spent in solving a problem summed over all processing elements is pTP .
TS units of this time are spent performing useful work, and the remainder is overhead.
Therefore, the overhead function (To) is given by

To = pTP − TS . (5.1)

198 Analytical Modeling of Parallel Programs

5.2.3 Speedup

When evaluating a parallel system, we are often interested in knowing how much perfor-
mance gain is achieved by parallelizing a given application over a sequential implemen-
tation. Speedup is a measure that captures the relative benefit of solving a problem in
parallel. It is defined as the ratio of the time taken to solve a problem on a single process-
ing element to the time required to solve the same problem on a parallel computer with p
identical processing elements. We denote speedup by the symbol S.

Example 5.1 Adding n numbers using n processing elements
Consider the problem of adding n numbers by using n processing elements. Initially,
each processing element is assigned one of the numbers to be added and, at the end
of the computation, one of the processing elements stores the sum of all the numbers.
Assuming that n is a power of two, we can perform this operation in log n steps by
propagating partial sums up a logical binary tree of processing elements. Figure 5.2
illustrates the procedure for n = 16. The processing elements are labeled from 0 to
15. Similarly, the 16 numbers to be added are labeled from 0 to 15. The sum of the
numbers with consecutive labels from i to j is denoted by � j

i .
Each step shown in Figure 5.2 consists of one addition and the communication

of a single word. The addition can be performed in some constant time, say tc, and
the communication of a single word can be performed in time ts + tw. Therefore, the
addition and communication operations take a constant amount of time. Thus,

TP = �(log n). (5.2)

Since the problem can be solved in �(n) time on a single processing element, its
speedup is

S = �

(
n

log n

)
. (5.3)

For a given problem, more than one sequential algorithm may be available, but all of
these may not be equally suitable for parallelization. When a serial computer is used, it is
natural to use the sequential algorithm that solves the problem in the least amount of time.
Given a parallel algorithm, it is fair to judge its performance with respect to the fastest
sequential algorithm for solving the same problem on a single processing element. Some-
times, the asymptotically fastest sequential algorithm to solve a problem is not known, or
its runtime has a large constant that makes it impractical to implement. In such cases, we
take the fastest known algorithm that would be a practical choice for a serial computer
to be the best sequential algorithm. We compare the performance of a parallel algorithm
to solve a problem with that of the best sequential algorithm to solve the same problem.
We formally define the speedup S as the ratio of the serial runtime of the best sequential

5.2.3 Speedup 199

0 3 4 111 2 5 6 7 8 9 10 12 13 14 15

1510 11 12 13 140 1 2 3 4 5 6 7 8 9

1510 11 12 13 140 1 2 3 4 5 6 7 8 9

1510 11 12 13 140 1 2 3 4 5 6 7 8 9

1510 11 12 13 140 1 2 3 4 5 6 7 8 9

1510 11 12 13 140 1 2 3 4 5 6 7 8 9

Σ0
15

Σ0 Σ15

ΣΣΣΣ0
3

4
7

8
11

12
15

Σ0 Σ Σ Σ Σ Σ Σ Σ151
2
3

4
5

6
7

8
9

10
11

12
13

14

7
8

(d) Fourth communication step

(c) Third communication step

(b) Second communication step

(a) Initial data distribution and the first communication step

(e) Accumulation of the sum at processing element 0 after the final communication

Figure 5.2 Computing the globalsum of 16 partial sums using 16 processing elements. � j
i de-

notes the sum of numbers with consecutive labels from i to j .

algorithm for solving a problem to the time taken by the parallel algorithm to solve the
same problem on p processing elements. The p processing elements used by the parallel
algorithm are assumed to be identical to the one used by the sequential algorithm.

Example 5.2 Computing speedups of parallel programs
Consider the example of parallelizing bubble sort (Section 9.3.1). Assume that a
serial version of bubble sort of 105 records takes 150 seconds and a serial quicksort
can sort the same list in 30 seconds. If a parallel version of bubble sort, also called
odd-even sort, takes 40 seconds on four processing elements, it would appear that the
parallel odd-even sort algorithm results in a speedup of 150/40 or 3.75. However,
this conclusion is misleading, as in reality the parallel algorithm results in a speedup
of 30/40 or 0.75 with respect to the best serial algorithm.

200 Analytical Modeling of Parallel Programs

Theoretically, speedup can never exceed the number of processing elements, p. If the
best sequential algorithm takes TS units of time to solve a given problem on a single pro-
cessing element, then a speedup of p can be obtained on p processing elements if none of
the processing elements spends more than time TS/p. A speedup greater than p is possi-
ble only if each processing element spends less than time TS/p solving the problem. In
this case, a single processing element could emulate the p processing elements and solve
the problem in fewer than TS units of time. This is a contradiction because speedup, by
definition, is computed with respect to the best sequential algorithm. If TS is the serial run-
time of the algorithm, then the problem cannot be solved in less than time TS on a single
processing element.

In practice, a speedup greater than p is sometimes observed (a phenomenon known as
superlinear speedup). This usually happens when the work performed by a serial algo-
rithm is greater than its parallel formulation or due to hardware features that put the serial
implementation at a disadvantage. For example, the data for a problem might be too large
to fit into the cache of a single processing element, thereby degrading its performance due
to the use of slower memory elements. But when partitioned among several processing
elements, the individual data-partitions would be small enough to fit into their respec-
tive processing elements’ caches. In the remainder of this book, we disregard superlinear
speedup due to hierarchical memory.

Example 5.3 Superlinearity effects from caches
Consider the execution of a parallel program on a two-processor parallel system.
The program attempts to solve a problem instance of size W . With this size and
available cache of 64 KB on one processor, the program has a cache hit rate of
80%. Assuming the latency to cache of 2 ns and latency to DRAM of 100 ns, the
effective memory access time is 2 × 0.8 + 100 × 0.2, or 21.6 ns. If the computation
is memory bound and performs one FLOP/memory access, this corresponds to a
processing rate of 46.3 MFLOPS. Now consider a situation when each of the two
processors is effectively executing half of the problem instance (i.e., size W/2). At
this problem size, the cache hit ratio is expected to be higher, since the effective
problem size is smaller. Let us assume that the cache hit ratio is 90%, 8% of the
remaining data comes from local DRAM, and the other 2% comes from the remote
DRAM (communication overhead). Assuming that remote data access takes 400 ns,
this corresponds to an overall access time of 2 × 0.9 + 100 × 0.08 + 400 × 0.02, or
17.8 ns. The corresponding execution rate at each processor is therefore 56.18, for
a total execution rate of 112.36 MFLOPS. The speedup in this case is given by the
increase in speed over serial formulation, i.e., 112.36/46.3 or 2.43! Here, because of
increased cache hit ratio resulting from lower problem size per processor, we notice
superlinear speedup.

5.2.3 Speedup 201

Example 5.4 Superlinearity effects due to exploratory decomposition
Consider an algorithm for exploring leaf nodes of an unstructured tree. Each leaf has
a label associated with it and the objective is to find a node with a specified label,
in this case ‘S’. Such computations are often used to solve combinatorial problems,
where the label ‘S’ could imply the solution to the problem (Section 11.6). In Fig-
ure 5.3, we illustrate such a tree. The solution node is the rightmost leaf in the tree.
A serial formulation of this problem based on depth-first tree traversal explores the
entire tree, i.e., all 14 nodes. If it takes time tc to visit a node, the time for this traver-
sal is 14tc. Now consider a parallel formulation in which the left subtree is explored
by processing element 0 and the right subtree by processing element 1. If both pro-
cessing elements explore the tree at the same speed, the parallel formulation explores
only the shaded nodes before the solution is found. Notice that the total work done
by the parallel algorithm is only nine node expansions, i.e., 9tc. The corresponding
parallel time, assuming the root node expansion is serial, is 5tc (one root node expan-
sion, followed by four node expansions by each processing element). The speedup
of this two-processor execution is therefore 14tc/5tc, or 2.8!

The cause for this superlinearity is that the work performed by parallel and
serial algorithms is different. Indeed, if the two-processor algorithm was imple-
mented as two processes on the same processing element, the algorithmic superlin-
earity would disappear for this problem instance. Note that when exploratory de-
composition is used, the relative amount of work performed by serial and parallel
algorithms is dependent upon the location of the solution, and it is often not possible
to find a serial algorithm that is optimal for all instances. Such effects are further
analyzed in greater detail in Chapter 11.

Processing element 1Processing element 0

S

Figure 5.3 Searching an unstructured tree for a node with a given label, ‘S’, on two processing
elements using depth-first traversal. The two-processor version with processor 0 searching the left
subtree and processor 1 searching the right subtree expands only the shaded nodes before the
solution is found. The corresponding serial formulation expands the entire tree. It is clear that the
serial algorithm does more work than the parallel algorithm.

202 Analytical Modeling of Parallel Programs

5.2.4 Efficiency

Only an ideal parallel system containing p processing elements can deliver a speedup
equal to p. In practice, ideal behavior is not achieved because while executing a parallel
algorithm, the processing elements cannot devote 100% of their time to the computations
of the algorithm. As we saw in Example 5.1, part of the time required by the processing
elements to compute the sum of n numbers is spent idling (and communicating in real
systems). Efficiency is a measure of the fraction of time for which a processing element
is usefully employed; it is defined as the ratio of speedup to the number of processing
elements. In an ideal parallel system, speedup is equal to p and efficiency is equal to one.
In practice, speedup is less than p and efficiency is between zero and one, depending on
the effectiveness with which the processing elements are utilized. We denote efficiency by
the symbol E . Mathematically, it is given by

E = S

p
. (5.4)

Example 5.5 Efficiency of adding n numbers on n processing elements
From Equation 5.3 and the preceding definition, the efficiency of the algorithm for
adding n numbers on n processing elements is

E =
�
(

n
log n

)
n

= �

(
1

log n

)

We also illustrate the process of deriving the parallel runtime, speedup, and efficiency
while preserving various constants associated with the parallel platform.

Example 5.6 Edge detection on images
Given an n × n pixel image, the problem of detecting edges corresponds to applying
a 3 × 3 template to each pixel. The process of applying the template corresponds to
multiplying pixel values with corresponding template values and summing across the
template (a convolution operation). This process is illustrated in Figure 5.4(a) along
with typical templates (Figure 5.4(b)). Since we have nine multiply-add operations
for each pixel, if each multiply-add takes time tc, the entire operation takes time
9tcn2 on a serial computer.

A simple parallel algorithm for this problem partitions the image equally across
the processing elements and each processing element applies the template to its own
subimage. Note that for applying the template to the boundary pixels, a processing
element must get data that is assigned to the adjoining processing element. Specifi-
cally, if a processing element is assigned a vertically sliced subimage of dimension

5.2.5 Cost 203

(b)(a)

3210

(c)

0

1

2

1

0

0

−1

−2

−1

−1

0

1

1

−2

0

2

0

−1

Figure 5.4 Example of edge detection: (a) an 8 × 8 image; (b) typical templates for detecting
edges; and (c) partitioning of the image across four processors with shaded regions indicating image
data that must be communicated from neighboring processors to processor 1.

n × (n/p), it must access a single layer of n pixels from the processing element to
the left and a single layer of n pixels from the processing element to the right (note
that one of these accesses is redundant for the two processing elements assigned the
subimages at the extremities). This is illustrated in Figure 5.4(c).

On a message passing machine, the algorithm executes in two steps: (i) ex-
change a layer of n pixels with each of the two adjoining processing elements; and
(ii) apply template on local subimage. The first step involves two n-word messages
(assuming each pixel takes a word to communicate RGB data). This takes time
2(ts + twn). The second step takes time 9tcn2/p. The total time for the algorithm is
therefore given by:

TP = 9tc
n2

p
+ 2(ts + twn)

The corresponding values of speedup and efficiency are given by:

S = 9tcn2

9tc
n2

p + 2(ts + twn)

and

E = 1

1 + 2p(ts+twn)
9tcn2

.

5.2.5 Cost

We define the cost of solving a problem on a parallel system as the product of parallel
runtime and the number of processing elements used. Cost reflects the sum of the time

204 Analytical Modeling of Parallel Programs

that each processing element spends solving the problem. Efficiency can also be expressed
as the ratio of the execution time of the fastest known sequential algorithm for solving a
problem to the cost of solving the same problem on p processing elements.

The cost of solving a problem on a single processing element is the execution time of
the fastest known sequential algorithm. A parallel system is said to be cost-optimal if
the cost of solving a problem on a parallel computer has the same asymptotic growth (in
� terms) as a function of the input size as the fastest-known sequential algorithm on a
single processing element. Since efficiency is the ratio of sequential cost to parallel cost, a
cost-optimal parallel system has an efficiency of �(1).

Cost is sometimes referred to as work or processor-time product, and a cost-optimal
system is also known as a pTP -optimal system.

Example 5.7 Cost of adding n numbers on n processing elements
The algorithm given in Example 5.1 for adding n numbers on n processing elements
has a processor-time product of�(n log n). Since the serial runtime of this operation
is �(n), the algorithm is not cost optimal.

Cost optimality is a very important practical concept although it is defined in terms of
asymptotics. We illustrate this using the following example.

Example 5.8 Performance of non-cost optimal algorithms
Consider a sorting algorithm that uses n processing elements to sort the list in time
(log n)2. Since the serial runtime of a (comparison-based) sort is n log n, the speedup
and efficiency of this algorithm are given by n/ log n and 1/ log n, respectively. The
pTP product of this algorithm is n(log n)2. Therefore, this algorithm is not cost op-
timal but only by a factor of log n. Let us consider a realistic scenario in which the
number of processing elements p is much less than n. An assignment of these n tasks
to p < n processing elements gives us a parallel time less than n(log n)2/p. This
follows from the fact that if n processing elements take time (log n)2, then one pro-
cessing element would take time n(log n)2; and p processing elements would take
time n(log n)2/p. The corresponding speedup of this formulation is p/ log n. Con-
sider the problem of sorting 1024 numbers (n = 1024, log n = 10) on 32 processing
elements. The speedup expected is only p/ log n or 3.2. This number gets worse as
n increases. For n = 106, log n = 20 and the speedup is only 1.6. Clearly, there is
a significant cost associated with not being cost-optimal even by a very small factor
(note that a factor of log p is smaller than even

√
p). This emphasizes the practical

importance of cost-optimality.

5.3 The Effect of Granularity on Performance 205

5.3 The Effect of Granularity on Performance

Example 5.7 illustrated an instance of an algorithm that is not cost-optimal. The algorithm
discussed in this example uses as many processing elements as the number of inputs, which
is excessive in terms of the number of processing elements. In practice, we assign larger
pieces of input data to processing elements. This corresponds to increasing the granular-
ity of computation on the processing elements. Using fewer than the maximum possible
number of processing elements to execute a parallel algorithm is called scaling down a
parallel system in terms of the number of processing elements. A naive way to scale down
a parallel system is to design a parallel algorithm for one input element per processing
element, and then use fewer processing elements to simulate a large number of process-
ing elements. If there are n inputs and only p processing elements (p < n), we can use
the parallel algorithm designed for n processing elements by assuming n virtual process-
ing elements and having each of the p physical processing elements simulate n/p virtual
processing elements.

As the number of processing elements decreases by a factor of n/p, the computation at
each processing element increases by a factor of n/p because each processing element now
performs the work of n/p processing elements. If virtual processing elements are mapped
appropriately onto physical processing elements, the overall communication time does not
grow by more than a factor of n/p. The total parallel runtime increases, at most, by a factor
of n/p, and the processor-time product does not increase. Therefore, if a parallel system
with n processing elements is cost-optimal, using p processing elements (where p < n) to
simulate n processing elements preserves cost-optimality.

A drawback of this naive method of increasing computational granularity is that if a
parallel system is not cost-optimal to begin with, it may still not be cost-optimal after the
granularity of computation increases. This is illustrated by the following example for the
problem of adding n numbers.

Example 5.9 Adding n numbers on p processing elements
Consider the problem of adding n numbers on p processing elements such that p < n
and both n and p are powers of 2. We use the same algorithm as in Example 5.1 and
simulate n processing elements on p processing elements. The steps leading to the
solution are shown in Figure 5.5 for n = 16 and p = 4. Virtual processing element i
is simulated by the physical processing element labeled i mod p; the numbers to be
added are distributed similarly. The first log p of the log n steps of the original algo-
rithm are simulated in (n/p) log p steps on p processing elements. In the remaining
steps, no communication is required because the processing elements that communi-
cate in the original algorithm are simulated by the same processing element; hence,
the remaining numbers are added locally. The algorithm takes �((n/p) log p) time
in the steps that require communication, after which a single processing element
is left with n/p numbers to add, taking time �(n/p). Thus, the overall parallel
execution time of this parallel system is �((n/p) log p). Consequently, its cost is

206 Analytical Modeling of Parallel Programs

0 31 2

12 13 14 15

118 9 10

4 5 6 7

Σ0 Σ1
2
3

12 13 14 15

118 9 10

Σ0 Σ1
2
3

Σ Σ4
5

6
7

12 13 14 15

Σ Σ4
5

6
7

Σ Σ8
9

10
11

12 13 14 15

Σ0 Σ1
2
3

Σ Σ4
5

6
7

Σ Σ8
9

10
11

Σ Σ15
12
13

14 Σ Σ15
12
13

14

Σ Σ8
9

10
11

Σ0

Σ Σ4
5

6
7

3

0 1 2 310 2 3

10 2 3 0 1 2 3

4 5 6 7

Substep 2Substep 1

118 9 10

10 2 3 0 1 2 3

Σ0 Σ1
2
3

Substep 3 Substep 4

Substep 1 Substep 2

Σ0

Σ4

Σ8

Σ Σ15
12
13

14

3

7

11

0 1 2 3

Σ0

Σ Σ15
12
13

14

Σ4

Σ9

3

Σ
7
8 10

11

10 2 3

Substep 4Substep 3

(b) Four processors simulating the second communication step of 16 processors

(a) Four processors simulating the first communication step of 16 processors

Figure 5.5 Four processing elements simulating 16 processing elements to compute the sum of
16 numbers (first two steps). � j

i denotes the sum of numbers with consecutive labels from i to j .

5.3 The Effect of Granularity on Performance 207

Σ0
15

0 1 2 3

Σ0
7

10 2 3 0 1 2 3

Substep 1 Substep 2

(c) Simulation of the third step in two substeps

(d) Simulation of the fourth step (e) Final result

Σ4

Σ0
3 Σ0

7

Σ12

Σ8

15

11
Σ12

Σ8

15

11

7

10 2 3

Σ15
8

Figure 5.5 (continued) Four processing elements simulating 16 processing elements to compute
the sum of 16 numbers (last three steps).

�(n log p), which is asymptotically higher than the �(n) cost of adding n numbers
sequentially. Therefore, the parallel system is not cost-optimal.

Example 5.1 showed that n numbers can be added on an n-processor machine in time
�(log n). When using p processing elements to simulate n virtual processing elements
(p < n), the expected parallel runtime is �((n/p) log n). However, in Example 5.9 this
task was performed in time �((n/p) log p) instead. The reason is that every communica-
tion step of the original algorithm does not have to be simulated; at times, communication
takes place between virtual processing elements that are simulated by the same physical
processing element. For these operations, there is no associated overhead. For example,
the simulation of the third and fourth steps (Figure 5.5(c) and (d)) did not require any
communication. However, this reduction in communication was not enough to make the
algorithm cost-optimal. Example 5.10 illustrates that the same problem (adding n numbers
on p processing elements) can be performed cost-optimally with a smarter assignment of
data to processing elements.

Example 5.10 Adding n numbers cost-optimally
An alternate method for adding n numbers using p processing elements is illustrated
in Figure 5.6 for n = 16 and p = 4. In the first step of this algorithm, each processing
element locally adds its n/p numbers in time �(n/p). Now the problem is reduced

208 Analytical Modeling of Parallel Programs

12

13

14

15

840

1 5 9

10

11 7

62

 3

Σ ΣΣ Σ15
0
3

4
7

8
11

12

0 1 2 3 0 1 2 3

(a) (b)

Σ Σ0 8
7 15

0 1 2 3

Σ0
15

0 1 32

(d)(c)

Figure 5.6 A cost-optimal way of computing the sum of 16 numbers using four processing ele-
ments.

to adding the p partial sums on p processing elements, which can be done in time
�(log p) by the method described in Example 5.1. The parallel runtime of this
algorithm is

TP = �(n/p + log p), (5.5)

and its cost is �(n + p log p). As long as n = �(p log p), the cost is �(n), which
is the same as the serial runtime. Hence, this parallel system is cost-optimal.

These simple examples demonstrate that the manner in which the computation is
mapped onto processing elements may determine whether a parallel system is cost-optimal.
Note, however, that we cannot make all non-cost-optimal systems cost-optimal by scaling
down the number of processing elements.

5.4 Scalability of Parallel Systems

Very often, programs are designed and tested for smaller problems on fewer processing
elements. However, the real problems these programs are intended to solve are much
larger, and the machines contain larger number of processing elements. Whereas code
development is simplified by using scaled-down versions of the machine and the problem,
their performance and correctness (of programs) is much more difficult to establish based
on scaled-down systems. In this section, we will investigate techniques for evaluating the
scalability of parallel programs using analytical tools.

Example 5.11 Why is performance extrapolation so difficult?
Consider three parallel algorithms for computing an n-point Fast Fourier Transform

5.4.1 Scaling Characteristics of Parallel Programs 209

180001600014000120001000080006000400020000
0

5

10

15

20

25

30

35

40

45

Binary exchange
2-D transpose
3-D transpose

n

S

Figure 5.7 A comparison of the speedups obtained by the binary-exchange, 2-D transpose and
3-D transpose algorithms on 64 processing elements with tc = 2, tw = 4, ts = 25, and th = 2
(see Chapter 13 for details).

(FFT) on 64 processing elements. Figure 5.7 illustrates speedup as the value of n is
increased to 18 K. Keeping the number of processing elements constant, at smaller
values of n, one would infer from observed speedups that binary exchange and 3-D
transpose algorithms are the best. However, as the problem is scaled up to 18 K
points or more, it is evident from Figure 5.7 that the 2-D transpose algorithm yields
best speedup. (These algorithms are discussed in greater detail in Chapter 13.)

Similar results can be shown relating to the variation in number of processing elements
as the problem size is held constant. Unfortunately, such parallel performance traces are
the norm as opposed to the exception, making performance prediction based on limited
observed data very difficult.

5.4.1 Scaling Characteristics of Parallel Programs

The efficiency of a parallel program can be written as:

E = S

p
= TS

pTP

Using the expression for parallel overhead (Equation 5.1), we can rewrite this expression
as

E = 1

1 + To
TS

. (5.6)

210 Analytical Modeling of Parallel Programs

The total overhead function To is an increasing function of p. This is because every pro-
gram must contain some serial component. If this serial component of the program takes
time tserial , then during this time all the other processing elements must be idle. This
corresponds to a total overhead function of (p − 1) × tserial . Therefore, the total over-
head function To grows at least linearly with p. In addition, due to communication, idling,
and excess computation, this function may grow superlinearly in the number of process-
ing elements. Equation 5.6 gives us several interesting insights into the scaling of parallel
programs. First, for a given problem size (i.e. the value of TS remains constant), as we in-
crease the number of processing elements, To increases. In such a scenario, it is clear from
Equation 5.6 that the overall efficiency of the parallel program goes down. This charac-
teristic of decreasing efficiency with increasing number of processing elements for a given
problem size is common to all parallel programs.

Example 5.12 Speedup and efficiency as functions of the number of
processing elements
Consider the problem of adding n numbers on p processing elements. We use the
same algorithm as in Example 5.10. However, to illustrate actual speedups, we work
with constants here instead of asymptotics. Assuming unit time for adding two num-
bers, the first phase (local summations) of the algorithm takes roughly n/p time.
The second phase involves log p steps with a communication and an addition at each
step. If a single communication takes unit time as well, the time for this phase is
2 log p. Therefore, we can derive parallel time, speedup, and efficiency as:

TP = n

p
+ 2 log p (5.7)

S = n
n
p + 2 log p

(5.8)

E = 1

1 + 2p log p
n

(5.9)

These expressions can be used to calculate the speedup and efficiency for any pair of
n and p. Figure 5.8 shows the S versus p curves for a few different values of n and
p. Table 5.1 shows the corresponding efficiencies.

Figure 5.8 and Table 5.1 illustrate that the speedup tends to saturate and effi-
ciency drops as a consequence of Amdahl’s law (Problem 5.1). Furthermore, a larger
instance of the same problem yields higher speedup and efficiency for the same num-
ber of processing elements, although both speedup and efficiency continue to drop
with increasing p.

Let us investigate the effect of increasing the problem size keeping the number of pro-
cessing elements constant. We know that the total overhead function To is a function of
both problem size TS and the number of processing elements p. In many cases, To grows
sublinearly with respect to TS . In such cases, we can see that efficiency increases if the

5.4.1 Scaling Characteristics of Parallel Programs 211

 = 64

 = 192

 = 320

 = 512

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40

Linear

p

S

n

n

n

n

Figure 5.8 Speedup versus the number of processing elements for adding a list of numbers.

problem size is increased keeping the number of processing elements constant. For such
algorithms, it should be possible to keep the efficiency fixed by increasing both the size of
the problem and the number of processing elements simultaneously. For instance, in Ta-
ble 5.1, the efficiency of adding 64 numbers using four processing elements is 0.80. If the
number of processing elements is increased to 8 and the size of the problem is scaled up to
add 192 numbers, the efficiency remains 0.80. Increasing p to 16 and n to 512 results in
the same efficiency. This ability to maintain efficiency at a fixed value by simultaneously
increasing the number of processing elements and the size of the problem is exhibited by
many parallel systems. We call such systems scalable parallel systems. The scalability
of a parallel system is a measure of its capacity to increase speedup in proportion to the
number of processing elements. It reflects a parallel system’s ability to utilize increasing
processing resources effectively.

Table 5.1 Efficiency as a function of n and p for adding n numbers on p processing elements.

n p = 1 p = 4 p = 8 p = 16 p = 32

64 1.0 0.80 0.57 0.33 0.17
192 1.0 0.92 0.80 0.60 0.38
320 1.0 0.95 0.87 0.71 0.50
512 1.0 0.97 0.91 0.80 0.62

212 Analytical Modeling of Parallel Programs

Recall from Section 5.2.5 that a cost-optimal parallel system has an efficiency of �(1).
Therefore, scalability and cost-optimality of parallel systems are related. A scalable par-
allel system can always be made cost-optimal if the number of processing elements and
the size of the computation are chosen appropriately. For instance, Example 5.10 shows
that the parallel system for adding n numbers on p processing elements is cost-optimal
when n = �(p log p). Example 5.13 shows that the same parallel system is scalable if n
is increased in proportion to �(p log p) as p is increased.

Example 5.13 Scalability of adding n numbers
For the cost-optimal addition of n numbers on p processing elements n =
�(p log p). As shown in Table 5.1, the efficiency is 0.80 for n = 64 and p = 4.
At this point, the relation between n and p is n = 8p log p. If the number of pro-
cessing elements is increased to eight, then 8p log p = 192. Table 5.1 shows that the
efficiency is indeed 0.80 with n = 192 for eight processing elements. Similarly, for
p = 16, the efficiency is 0.80 for n = 8p log p = 512. Thus, this parallel system
remains cost-optimal at an efficiency of 0.80 if n is increased as 8p log p.

5.4.2 The Isoefficiency Metric of Scalability

(a) (b)

E

W

Fixed number of processors (p)Fixed problem size (W)

p

E

Figure 5.9 Variation of efficiency: (a) as the number of processing elements is increased for a
given problem size; and (b) as the problem size is increased for a given number of processing
elements. The phenomenon illustrated in graph (b) is not common to all parallel systems.

We summarize the discussion in the section above with the following two observations:

1. For a given problem size, as we increase the number of processing elements, the
overall efficiency of the parallel system goes down. This phenomenon is common to
all parallel systems.

2. In many cases, the efficiency of a parallel system increases if the problem size is
increased while keeping the number of processing elements constant.

5.4.2 The Isoefficiency Metric of Scalability 213

These two phenomena are illustrated in Figure 5.9(a) and (b), respectively. Follow-
ing from these two observations, we define a scalable parallel system as one in which the
efficiency can be kept constant as the number of processing elements is increased, pro-
vided that the problem size is also increased. It is useful to determine the rate at which
the problem size must increase with respect to the number of processing elements to keep
the efficiency fixed. For different parallel systems, the problem size must increase at dif-
ferent rates in order to maintain a fixed efficiency as the number of processing elements
is increased. This rate determines the degree of scalability of the parallel system. As we
shall show, a lower rate is more desirable than a higher growth rate in problem size. Let us
now investigate metrics for quantitatively determining the degree of scalability of a parallel
system. However, before we do that, we must define the notion of problem size precisely.

Problem Size When analyzing parallel systems, we frequently encounter the notion of
the size of the problem being solved. Thus far, we have used the term problem size in-
formally, without giving a precise definition. A naive way to express problem size is as a
parameter of the input size; for instance, n in case of a matrix operation involving n × n
matrices. A drawback of this definition is that the interpretation of problem size changes
from one problem to another. For example, doubling the input size results in an eight-
fold increase in the execution time for matrix multiplication and a four-fold increase for
matrix addition (assuming that the conventional �(n3) algorithm is the best matrix multi-
plication algorithm, and disregarding more complicated algorithms with better asymptotic
complexities).

A consistent definition of the size or the magnitude of the problem should be such that,
regardless of the problem, doubling the problem size always means performing twice the
amount of computation. Therefore, we choose to express problem size in terms of the total
number of basic operations required to solve the problem. By this definition, the problem
size is �(n3) for n × n matrix multiplication (assuming the conventional algorithm) and
�(n2) for n × n matrix addition. In order to keep it unique for a given problem, we define
problem size as the number of basic computation steps in the best sequential algorithm to
solve the problem on a single processing element, where the best sequential algorithm is
defined as in Section 5.2.3. Because it is defined in terms of sequential time complexity, the
problem size is a function of the size of the input. The symbol we use to denote problem
size is W .

In the remainder of this chapter, we assume that it takes unit time to perform one basic
computation step of an algorithm. This assumption does not impact the analysis of any
parallel system because the other hardware-related constants, such as message startup time,
per-word transfer time, and per-hop time, can be normalized with respect to the time taken
by a basic computation step. With this assumption, the problem size W is equal to the serial
runtime TS of the fastest known algorithm to solve the problem on a sequential computer.

214 Analytical Modeling of Parallel Programs

The Isoefficiency Function

Parallel execution time can be expressed as a function of problem size, overhead function,
and the number of processing elements. We can write parallel runtime as:

TP = W + To(W, p)

p
(5.10)

The resulting expression for speedup is

S = W

TP

= W p

W + To(W, p)
. (5.11)

Finally, we write the expression for efficiency as

E = S

p

= W

W + To(W, p)

= 1

1 + To(W, p)/W
. (5.12)

In Equation 5.12, if the problem size is kept constant and p is increased, the efficiency
decreases because the total overhead To increases with p. If W is increased keeping the
number of processing elements fixed, then for scalable parallel systems, the efficiency
increases. This is because To grows slower than �(W) for a fixed p. For these parallel
systems, efficiency can be maintained at a desired value (between 0 and 1) for increasing
p, provided W is also increased.

For different parallel systems, W must be increased at different rates with respect to
p in order to maintain a fixed efficiency. For instance, in some cases, W might need to
grow as an exponential function of p to keep the efficiency from dropping as p increases.
Such parallel systems are poorly scalable. The reason is that on these parallel systems
it is difficult to obtain good speedups for a large number of processing elements unless
the problem size is enormous. On the other hand, if W needs to grow only linearly with
respect to p, then the parallel system is highly scalable. That is because it can easily deliver
speedups proportional to the number of processing elements for reasonable problem sizes.

For scalable parallel systems, efficiency can be maintained at a fixed value (between 0
and 1) if the ratio To/W in Equation 5.12 is maintained at a constant value. For a desired
value E of efficiency,

E = 1

1 + To(W, p)/W
,

To(W, p)

W
= 1 − E

E
,

W = E

1 − E
To(W, p). (5.13)

5.4.2 The Isoefficiency Metric of Scalability 215

Let K = E/(1 − E) be a constant depending on the efficiency to be maintained. Since To

is a function of W and p, Equation 5.13 can be rewritten as

W = K To(W, p). (5.14)

From Equation 5.14, the problem size W can usually be obtained as a function of p by
algebraic manipulations. This function dictates the growth rate of W required to keep the
efficiency fixed as p increases. We call this function the isoefficiency function of the par-
allel system. The isoefficiency function determines the ease with which a parallel system
can maintain a constant efficiency and hence achieve speedups increasing in proportion to
the number of processing elements. A small isoefficiency function means that small incre-
ments in the problem size are sufficient for the efficient utilization of an increasing number
of processing elements, indicating that the parallel system is highly scalable. However, a
large isoefficiency function indicates a poorly scalable parallel system. The isoefficiency
function does not exist for unscalable parallel systems, because in such systems the effi-
ciency cannot be kept at any constant value as p increases, no matter how fast the problem
size is increased.

Example 5.14 Isoefficiency function of adding numbers
The overhead function for the problem of adding n numbers on p processing ele-
ments is approximately 2p log p, as given by Equations 5.9 and 5.1. Substituting To

by 2p log p in Equation 5.14, we get

W = K 2p log p. (5.15)

Thus, the asymptotic isoefficiency function for this parallel system is �(p log p).
This means that, if the number of processing elements is increased from p to p′, the
problem size (in this case, n) must be increased by a factor of (p′ log p′)/(p log p)
to get the same efficiency as on p processing elements. In other words, increasing
the number of processing elements by a factor of p′/p requires that n be increased
by a factor of (p′ log p′)/(p log p) to increase the speedup by a factor of p′/p.

In the simple example of adding n numbers, the overhead due to communication (here-
after referred to as the communication overhead) is a function of p only. In general,
communication overhead can depend on both the problem size and the number of pro-
cessing elements. A typical overhead function can have several distinct terms of different
orders of magnitude with respect to p and W . In such a case, it can be cumbersome (or
even impossible) to obtain the isoefficiency function as a closed function of p. For exam-
ple, consider a hypothetical parallel system for which To = p3/2 + p3/4W 3/4. For this
overhead function, Equation 5.14 can be rewritten as W = K p3/2 + K p3/4W 3/4. It is hard
to solve this equation for W in terms of p.

Recall that the condition for constant efficiency is that the ratio To/W remains fixed.
As p and W increase, the efficiency is nondecreasing as long as none of the terms of To

216 Analytical Modeling of Parallel Programs

grow faster than W . If To has multiple terms, we balance W against each term of To and
compute the respective isoefficiency functions for individual terms. The component of
To that requires the problem size to grow at the highest rate with respect to p determines
the overall asymptotic isoefficiency function of the parallel system. Example 5.15 further
illustrates this technique of isoefficiency analysis.

Example 5.15 Isoefficiency function of a parallel system with a complex
overhead function
Consider a parallel system for which To = p3/2 + p3/4W 3/4. Using only the first
term of To in Equation 5.14, we get

W = K p3/2. (5.16)

Using only the second term, Equation 5.14 yields the following relation between W
and p:

W = K p3/4W 3/4

W 1/4 = K p3/4

W = K 4 p3 (5.17)

To ensure that the efficiency does not decrease as the number of processing elements
increases, the first and second terms of the overhead function require the problem
size to grow as �(p3/2) and �(p3), respectively. The asymptotically higher of the
two rates, �(p3), gives the overall asymptotic isoefficiency function of this parallel
system, since it subsumes the rate dictated by the other term. The reader may indeed
verify that if the problem size is increased at this rate, the efficiency is �(1) and that
any rate lower than this causes the efficiency to fall with increasing p.

In a single expression, the isoefficiency function captures the characteristics of a parallel
algorithm as well as the parallel architecture on which it is implemented. After performing
isoefficiency analysis, we can test the performance of a parallel program on a few process-
ing elements and then predict its performance on a larger number of processing elements.
However, the utility of isoefficiency analysis is not limited to predicting the impact on per-
formance of an increasing number of processing elements. Section 5.4.5 shows how the
isoefficiency function characterizes the amount of parallelism inherent in a parallel algo-
rithm. We will see in Chapter 13 that isoefficiency analysis can also be used to study the
behavior of a parallel system with respect to changes in hardware parameters such as the
speed of processing elements and communication channels. Chapter 11 illustrates how
isoefficiency analysis can be used even for parallel algorithms for which we cannot derive
a value of parallel runtime.

5.4.3 Cost-Optimality and the Isoefficiency Function 217

5.4.3 Cost-Optimality and the Isoefficiency Function

In Section 5.2.5, we stated that a parallel system is cost-optimal if the product of the num-
ber of processing elements and the parallel execution time is proportional to the execution
time of the fastest known sequential algorithm on a single processing element. In other
words, a parallel system is cost-optimal if and only if

pTP = �(W). (5.18)

Substituting the expression for TP from the right-hand side of Equation 5.10, we get the
following:

W + To(W, p) = �(W)

To(W, p) = O(W) (5.19)

W = �(To(W, p)) (5.20)

Equations 5.19 and 5.20 suggest that a parallel system is cost-optimal if and only if its
overhead function does not asymptotically exceed the problem size. This is very similar to
the condition given by Equation 5.14 for maintaining a fixed efficiency while increasing the
number of processing elements in a parallel system. If Equation 5.14 yields an isoefficiency
function f (p), then it follows from Equation 5.20 that the relation W = �(f (p)) must be
satisfied to ensure the cost-optimality of a parallel system as it is scaled up. The following
example further illustrates the relationship between cost-optimality and the isoefficiency
function.

Example 5.16 Relationship between cost-optimality and isoefficiency
Consider the cost-optimal solution to the problem of adding n numbers on p pro-
cessing elements, presented in Example 5.10. For this parallel system, W ≈ n, and
To = �(p log p). From Equation 5.14, its isoefficiency function is �(p log p); that
is, the problem size must increase as�(p log p) to maintain a constant efficiency. In
Example 5.10 we also derived the condition for cost-optimality as W = �(p log p).

5.4.4 A Lower Bound on the Isoefficiency Function

We discussed earlier that a smaller isoefficiency function indicates higher scalability. Ac-
cordingly, an ideally-scalable parallel system must have the lowest possible isoefficiency
function. For a problem consisting of W units of work, no more than W processing ele-
ments can be used cost-optimally; additional processing elements will be idle. If the prob-
lem size grows at a rate slower than�(p) as the number of processing elements increases,
then the number of processing elements will eventually exceed W . Even for an ideal par-
allel system with no communication, or other overhead, the efficiency will drop because
processing elements added beyond p = W will be idle. Thus, asymptotically, the problem

218 Analytical Modeling of Parallel Programs

size must increase at least as fast as �(p) to maintain fixed efficiency; hence, �(p) is
the asymptotic lower bound on the isoefficiency function. It follows that the isoefficiency
function of an ideally scalable parallel system is �(p).

5.4.5 The Degree of Concurrency and the Isoefficiency
Function

A lower bound of�(p) is imposed on the isoefficiency function of a parallel system by the
number of operations that can be performed concurrently. The maximum number of tasks
that can be executed simultaneously at any time in a parallel algorithm is called its degree
of concurrency. The degree of concurrency is a measure of the number of operations that
an algorithm can perform in parallel for a problem of size W ; it is independent of the
parallel architecture. If C(W) is the degree of concurrency of a parallel algorithm, then for
a problem of size W , no more than C(W) processing elements can be employed effectively.

Example 5.17 Effect of concurrency on isoefficiency function
Consider solving a system of n equations in n variables by using Gaussian elimi-
nation (Section 8.3.1). The total amount of computation is �(n3). But the n vari-
ables must be eliminated one after the other, and eliminating each variable requires
�(n2) computations. Thus, at most �(n2) processing elements can be kept busy
at any time. Since W = �(n3) for this problem, the degree of concurrency C(W)

is �(W 2/3) and at most �(W 2/3) processing elements can be used efficiently. On
the other hand, given p processing elements, the problem size should be at least
�(p3/2) to use them all. Thus, the isoefficiency function of this computation due to
concurrency is �(p3/2).

The isoefficiency function due to concurrency is optimal (that is, �(p)) only if the
degree of concurrency of the parallel algorithm is �(W). If the degree of concurrency
of an algorithm is less than �(W), then the isoefficiency function due to concurrency is
worse (that is, greater) than �(p). In such cases, the overall isoefficiency function of a
parallel system is given by the maximum of the isoefficiency functions due to concurrency,
communication, and other overheads.

5.5 Minimum Execution Time and Minimum
Cost-Optimal Execution Time

We are often interested in knowing how fast a problem can be solved, or what the mini-
mum possible execution time of a parallel algorithm is, provided that the number of pro-
cessing elements is not a constraint. As we increase the number of processing elements

5.5 Minimum Execution Time and Minimum Cost-Optimal Execution Time 219

for a given problem size, either the parallel runtime continues to decrease and asymptot-
ically approaches a minimum value, or it starts rising after attaining a minimum value
(Problem 5.12). We can determine the minimum parallel runtime T min

P for a given W by
differentiating the expression for TP with respect to p and equating the derivative to zero
(assuming that the function TP (W, p) is differentiable with respect to p). The number of
processing elements for which TP is minimum is determined by the following equation:

d

dp
TP = 0 (5.21)

Let p0 be the value of the number of processing elements that satisfies Equation 5.21. The
value of T min

P can be determined by substituting p0 for p in the expression for TP . In
the following example, we derive the expression for T min

P for the problem of adding n
numbers.

Example 5.18 Minimum execution time for adding n numbers
Under the assumptions of Example 5.12, the parallel run time for the problem of
adding n numbers on p processing elements can be approximated by

TP = n

p
+ 2 log p. (5.22)

Equating the derivative with respect to p of the right-hand side of Equation 5.22 to
zero we get the solutions for p as follows:

− n

p2
+ 2

p
= 0

−n + 2p = 0

p = n

2
(5.23)

Substituting p = n/2 in Equation 5.22, we get

T min
P = 2 log n. (5.24)

In Example 5.18, the processor-time product for p = p0 is �(n log n), which is higher
than the �(n) serial complexity of the problem. Hence, the parallel system is not cost-
optimal for the value of p that yields minimum parallel runtime. We now derive an im-
portant result that gives a lower bound on parallel runtime if the problem is solved cost-
optimally.

Let T cost opt
P be the minimum time in which a problem can be solved by a cost-optimal

parallel system. From the discussion regarding the equivalence of cost-optimality and the
isoefficiency function in Section 5.4.3, we conclude that if the isoefficiency function of a
parallel system is �(f (p)), then a problem of size W can be solved cost-optimally if and

220 Analytical Modeling of Parallel Programs

only if W = �(f (p)). In other words, given a problem of size W , a cost-optimal solution
requires that p = O(f −1(W)). Since the parallel runtime is �(W/p) for a cost-optimal
parallel system (Equation 5.18), the lower bound on the parallel runtime for solving a
problem of size W cost-optimally is

T cost opt
P = �

(
W

f −1(W)

)
. (5.25)

Example 5.19 Minimum cost-optimal execution time for adding n numbers
As derived in Example 5.14, the isoefficiency function f (p) of this parallel system
is �(p log p). If W = n = f (p) = p log p, then log n = log p + log log p.
Ignoring the double logarithmic term, log n ≈ log p. If n = f (p) = p log p,
then p = f −1(n) = n/ log p ≈ n/log n. Hence, f −1(W) = �(n/ log n). As a
consequence of the relation between cost-optimality and the isoefficiency function,
the maximum number of processing elements that can be used to solve this problem
cost-optimally is �(n/log n). Using p = n/ log n in Equation 5.2, we get

T cost opt
P = log n + log

(
n

log n

)
= 2 log n − log log n. (5.26)

It is interesting to observe that both T min
P and T cost opt

P for adding n numbers are
�(log n) (Equations 5.24 and 5.26). Thus, for this problem, a cost-optimal solution is also
the asymptotically fastest solution. The parallel execution time cannot be reduced asymp-
totically by using a value of p greater than that suggested by the isoefficiency function for
a given problem size (due to the equivalence between cost-optimality and the isoefficiency
function). This is not true for parallel systems in general, however, and it is quite possible
that T cost opt

P > �(T min
P). The following example illustrates such a parallel system.

Example 5.20 A parallel system with T cost opt
P > �(T min

P)

Consider the hypothetical parallel system of Example 5.15, for which

To = p3/2 + p3/4W 3/4. (5.27)

From Equation 5.10, the parallel runtime for this system is

TP = W

p
+ p1/2 + W 3/4

p1/4
. (5.28)

Using the methodology of Example 5.18,

d

dp
TP = − W

p2
+ 1

2p1/2
− W 3/4

4p5/4
= 0,

5.6 Asymptotic Analysis of Parallel Programs 221

−W + 1

2
p3/2 − 1

4
W 3/4 p3/4 = 0,

p3/4 = 1

4
W 3/4 ± (

1

16
W 3/2 + 2W)1/2

= �(W 3/4),

p = �(W).

From the preceding analysis, p0 = �(W). Substituting p by the value of p0 in
Equation 5.28, we get

T min
P = �(W 1/2). (5.29)

According to Example 5.15, the overall isoefficiency function for this parallel system
is �(p3), which implies that the maximum number of processing elements that can
be used cost-optimally is�(W 1/3). Substituting p = �(W 1/3) in Equation 5.28, we
get

T cost opt
P = �(W 2/3). (5.30)

A comparison of Equations 5.29 and 5.30 shows that T cost opt
P is asymptotically

greater than T min
P .

In this section, we have seen examples of both types of parallel systems: those for which
T cost opt

P is asymptotically equal to T min
P , and those for which T cost opt

P is asymptotically
greater than T min

P . Most parallel systems presented in this book are of the first type. Par-
allel systems for which the runtime can be reduced by an order of magnitude by using an
asymptotically higher number of processing elements than indicated by the isoefficiency
function are rare.

While deriving the minimum execution time for any parallel system, it is important to
be aware that the maximum number of processing elements that can be utilized is bounded
by the degree of concurrency C(W) of the parallel algorithm. It is quite possible that p0 is
greater than C(W) for a parallel system (Problems 5.13 and 5.14). In such cases, the value
of p0 is meaningless, and T min

P is given by

T min
P = W + To(W,C(W))

C(W)
. (5.31)

5.6 Asymptotic Analysis of Parallel Programs

At this point, we have accumulated an arsenal of powerful tools for quantifying the perfor-
mance and scalability of an algorithm. Let us illustrate the use of these tools for evaluating
a set of parallel programs for solving a given problem. Often, we ignore constants and
concern ourselves with the asymptotic behavior of quantities. In many cases, this can yield
a clearer picture of relative merits and demerits of various parallel programs.

222 Analytical Modeling of Parallel Programs

Table 5.2 Comparison of four different algorithms for sorting a given list of numbers. The table
shows number of processing elements, parallel runtime, speedup, efficiency and the pTP product.

Algorithm A1 A2 A3 A4

p n2 log n n
√

n

TP 1 n
√

n
√

n log n

S n log n log n
√

n log n
√

n

E log n
n 1 log n√

n
1

pTP n2 n log n n1.5 n log n

Consider the problem of sorting a list of n numbers. The fastest serial programs for
this problem run in time O(n log n). Let us look at four different parallel algorithms A1,
A2, A3, and A4, for sorting a given list. The parallel runtime of the four algorithms along
with the number of processing elements they can use is given in Table 5.2. The objective
of this exercise is to determine which of these four algorithms is the best. Perhaps the
simplest metric is one of speed; the algorithm with the lowest TP is the best. By this
metric, algorithm A1 is the best, followed by A3, A4, and A2. This is also reflected in the
fact that the speedups of the set of algorithms are also in this order.

However, in practical situations, we will rarely have n2 processing elements as are re-
quired by algorithm A1. Furthermore, resource utilization is an important aspect of prac-
tical program design. So let us look at how efficient each of these algorithms are. This
metric of evaluating the algorithm presents a starkly different image. Algorithms A2 and
A4 are the best, followed by A3 and A1. The last row of Table 5.2 presents the cost of the
four algorithms. From this row, it is evident that the costs of algorithms A1 and A3 are
higher than the serial runtime of n log n and therefore neither of these algorithms is cost
optimal. However, algorithms A2 and A4 are cost optimal.

This set of algorithms illustrate that it is important to first understand the objectives of
parallel algorithm analysis and to use appropriate metrics. This is because use of different
metrics may often result in contradictory outcomes.

5.7 Other Scalability Metrics

A number of other metrics of scalability of parallel systems have been proposed. These
metrics are specifically suited to different system requirements. For example, in real time
applications, the objective is to scale up a system to accomplish a task in a specified time

5.7 Other Scalability Metrics 223

bound. One such application is multimedia decompression, where MPEG streams must
be decompressed at the rate of 25 frames/second. Consequently, a parallel system must
decode a single frame in 40 ms (or with buffering, at an average of 1 frame in 40 ms over
the buffered frames). Other such applications arise in real-time control, where a control
vector must be generated in real-time. Several scalability metrics consider constraints on
physical architectures. In many applications, the maximum size of a problem is constrained
not by time, efficiency, or underlying models, but by the memory available on the machine.
In such cases, metrics make assumptions on the growth function of available memory (with
number of processing elements) and estimate how the performance of the parallel system
changes with such scaling. In this section, we examine some of the related metrics and
how they can be used in various parallel applications.

Scaled Speedup This metric is defined as the speedup obtained when the problem
size is increased linearly with the number of processing elements. If the scaled-speedup
curve is close to linear with respect to the number of processing elements, then the parallel
system is considered scalable. This metric is related to isoefficiency if the parallel algo-
rithm under consideration has linear or near-linear isoefficiency function. In this case the
scaled-speedup metric provides results very close to those of isoefficiency analysis, and the
scaled-speedup is linear or near-linear with respect to the number of processing elements.
For parallel systems with much worse isoefficiencies, the results provided by the two met-
rics may be quite different. In this case, the scaled-speedup versus number of processing
elements curve is sublinear.

Two generalized notions of scaled speedup have been examined. They differ in the
methods by which the problem size is scaled up with the number of processing elements.
In one method, the size of the problem is increased to fill the available memory on the
parallel computer. The assumption here is that aggregate memory of the system increases
with the number of processing elements. In the other method, the size of the problem
grows with p subject to an upper-bound on execution time.

Example 5.21 Memory and time-constrained scaled speedup for matrix-
vector products
The serial runtime of multiplying a matrix of dimension n × n with a vector is tcn2,
where tc is the time for a single multiply-add operation. The corresponding parallel
runtime using a simple parallel algorithm is given by:

TP = tc
n2

p
+ ts log p + twn

and the speedup S is given by:

S = tcn2

tc
n2

p + ts log p + twn
(5.32)

224 Analytical Modeling of Parallel Programs

The total memory requirement of the algorithm is �(n2). Let us consider the two
cases of problem scaling. In the case of memory constrained scaling, we assume
that the memory of the parallel system grows linearly with the number of processing
elements, i.e., m = �(p). This is a reasonable assumption for most current parallel
platforms. Since m = �(n2), we have n2 = c × p, for some constant c. Therefore,
the scaled speedup S′ is given by:

S′ = tcc × p

tc
c×p

p + ts log p + tw
√

c × p

or
S′ = c1 p

c2 + c3 log p + c4
√

p
.

In the limiting case, S′ = O(
√

p).
In the case of time constrained scaling, we have TP = O(n2/p). Since this is

constrained to be constant, n2 = O(p). We notice that this case is identical to the
memory constrained case. This happened because the memory and runtime of the
algorithm are asymptotically identical.

Example 5.22 Memory and time-constrained scaled speedup for matrix-
matrix products
The serial runtime of multiplying two matrices of dimension n × n is tcn3, where tc,
as before, is the time for a single multiply-add operation. The corresponding parallel
runtime using a simple parallel algorithm is given by:

TP = tc
n3

p
+ ts log p + 2tw

n2

√
p

and the speedup S is given by:

S = tcn3

tc
n3

p + ts log p + 2tw
n2√

p

(5.33)

The total memory requirement of the algorithm is �(n2). Let us consider the two
cases of problem scaling. In the case of memory constrained scaling, as before, we
assume that the memory of the parallel system grows linearly with the number of
processing elements, i.e., m = �(p). Since m = �(n2), we have n2 = c × p, for
some constant c. Therefore, the scaled speedup S ′ is given by:

S′ = tc(c × p)1.5

tc
(c×p)1.5

p + ts log p + 2tw
c×p√

p

= O(p)

In the case of time constrained scaling, we have TP = O(n3/p). Since this
is constrained to be constant, n3 = O(p), or n3 = c × p (for some constant c).

5.7 Other Scalability Metrics 225

Therefore, the time-constrained speedup S′′ is given by:

S′′ = tcc × p

tc
c×p

p + ts log p + 2tw
(c×p)2/3√

p

= O(p5/6)

This example illustrates that memory-constrained scaling yields linear speedup,
whereas time-constrained speedup yields sublinear speedup in the case of matrix
multiplication.

Serial Fraction f The experimentally determined serial fraction f can be used to quan-
tify the performance of a parallel system on a fixed-size problem. Consider a case when
the serial runtime of a computation can be divided into a totally parallel and a totally serial
component, i.e.,

W = Tser + Tpar .

Here, Tser and Tpar correspond to totally serial and totally parallel components. From this,
we can write:

TP = Tser + Tpar

p
.

Here, we have assumed that all of the other parallel overheads such as excess computation
and communication are captured in the serial component Tser . From these equations, it
follows that:

TP = Tser + W − Tser

p
(5.34)

The serial fraction f of a parallel program is defined as:

f = Tser

W
.

Therefore, from Equation 5.34, we have:

TP = f × W + W − f × W

p
TP

W
= f + 1 − f

p

Since S = W/TP , we have
1

S
= f + 1 − f

p
.

Solving for f , we get:

f = 1/S − 1/p

1 − 1/p
. (5.35)

It is easy to see that smaller values of f are better since they result in higher efficiencies.
If f increases with the number of processing elements, then it is considered as an indicator
of rising communication overhead, and thus an indicator of poor scalability.

226 Analytical Modeling of Parallel Programs

Example 5.23 Serial component of the matrix-vector product
From Equations 5.35 and 5.32, we have

f =
tc

n2
p +ts log p+twn

tcn2

1 − 1/p
(5.36)

Simplifying the above expression, we get

f = ts p log p + twnp

tcn2
× 1

p − 1

f ≈ ts log p + twn

tcn2

It is useful to note that the denominator of this equation is the serial runtime of the
algorithm and the numerator corresponds to the overhead in parallel execution.

In addition to these metrics, a number of other metrics of performance have been pro-
posed in the literature. We refer interested readers to the bibliography for references to
these.

5.8 Bibliographic Remarks

To use today’s massively parallel computers effectively, larger problems must be solved
as more processing elements are added. However, when the problem size is fixed, the
objective is to attain the best compromise between efficiency and parallel runtime. Perfor-
mance issues for fixed-size problems have been addressed by several researchers [FK89,
GK93a, KF90, NW88, TL90, Wor90]. In most situations, additional computing power
derived from increasing the number of processing elements can be used to solve bigger
problems. In some situations, however, different ways of increasing the problem size may
apply, and a variety of constraints may guide the scaling up of the workload with respect
to the number of processing elements [SHG93]. Time-constrained scaling and memory-
constrained scaling have been explored by Gustafson et al. [GMB88, Gus88, Gus92], Sun
and Ni [SN90, SN93], and Worley [Wor90, Wor88, Wor91] (Problem 5.9).

An important scenario is one in which we want to make the most efficient use of the
parallel system; in other words, we want the overall performance of the parallel system
to increase linearly with p. This is possible only for scalable parallel systems, which are
exactly those for which a fixed efficiency can be maintained for arbitrarily large p by sim-
ply increasing the problem size. For such systems, it is natural to use the isoefficiency
function or related metrics [GGK93, CD87, KR87b, KRS88]. Isoefficiency analysis has
been found to be very useful in characterizing the scalability of a variety of parallel algo-
rithms [GK91, GK93b, GKS92, HX98, KN91, KR87b, KR89, KS91b, RS90b, SKAT91b,
TL90, WS89, WS91]. Gupta and Kumar [GK93a, KG94] have demonstrated the relevance

5.8 Bibliographic Remarks 227

of the isoefficiency function in the fixed time case as well. They have shown that if the iso-
efficiency function is greater than �(p), then the problem size cannot be increased indefi-
nitely while maintaining a fixed execution time, no matter how many processing elements
are used. A number of other researchers have analyzed the performance of parallel systems
with concern for overall efficiency [EZL89, FK89, MS88, NW88, TL90, Zho89, ZRV89].

Kruskal, Rudolph, and Snir [KRS88] define the concept of parallel efficient (PE) prob-
lems. Their definition is related to the concept of isoefficiency function. Problems in the
class PE have algorithms with a polynomial isoefficiency function at some efficiency. The
class PE makes an important distinction between algorithms with polynomial isoefficiency
functions and those with worse isoefficiency functions. Kruskal et al. proved the invari-
ance of the class PE over a variety of parallel computational models and interconnection
schemes. An important consequence of this result is that an algorithm with a polynomial
isoefficiency on one architecture will have a polynomial isoefficiency on many other ar-
chitectures as well. There can be exceptions, however; for instance, Gupta and Kumar
[GK93b] show that the fast Fourier transform algorithm has a polynomial isoefficiency on
a hypercube but an exponential isoefficiency on a mesh.

Vitter and Simons [VS86] define a class of problems called PC*. PC* includes prob-
lems with efficient parallel algorithms on a PRAM. A problem in class P (the polynomial-
time class) is in PC* if it has a parallel algorithm on a PRAM that can use a polynomial
(in terms of input size) number of processing elements and achieve a minimal efficiency
ε. Any problem in PC* has at least one parallel algorithm such that, for an efficiency ε, its
isoefficiency function exists and is a polynomial.

A discussion of various scalability and performance measures can be found in the survey
by Kumar and Gupta [KG94]. Besides the ones cited so far, a number of other metrics of
performance and scalability of parallel systems have been proposed [BW89, CR89, CR91,
Fla90, Hil90, Kun86, Mol87, MR, NA91, SG91, SR91, SZ96, VC89].

Flatt and Kennedy [FK89, Fla90] show that if the overhead function satisfies certain
mathematical properties, then there exists a unique value p0 of the number of process-
ing elements for which TP is minimum for a given W . A property of To on which their
analysis depends heavily is that To > �(p). Gupta and Kumar [GK93a] show that there
exist parallel systems that do not obey this condition, and in such cases the point of peak
performance is determined by the degree of concurrency of the algorithm being used.

Marinescu and Rice [MR] develop a model to describe and analyze a parallel computa-
tion on an MIMD computer in terms of the number of threads of control p into which the
computation is divided and the number of events g(p) as a function of p. They consider
the case where each event is of a fixed duration θ and hence To = θg(p). Under these
assumptions on To, they conclude that with increasing number of processing elements, the
speedup saturates at some value if To = �(p), and it asymptotically approaches zero if
To = �(pm), where m ≥ 2. Gupta and Kumar [GK93a] generalize these results for a wider
class of overhead functions. They show that the speedup saturates at some maximum value
if To ≤ �(p), and the speedup attains a maximum value and then drops monotonically
with p if To > �(p).

228 Analytical Modeling of Parallel Programs

Eager et al. [EZL89] and Tang and Li [TL90] have proposed a criterion of optimality of
a parallel system so that a balance is struck between efficiency and speedup. They propose
that a good choice of operating point on the execution time versus efficiency curve is that
where the incremental benefit of adding processing elements is roughly 1

2 per processing
element or, in other words, efficiency is 0.5. They conclude that for To = �(p), this is
also equivalent to operating at a point where the E S product is maximum or p(TP)

2 is
minimum. This conclusion is a special case of the more general case presented by Gupta
and Kumar [GK93a].

Belkhale and Banerjee [BB90], Leuze et al. [LDP89], Ma and Shea [MS88], and Park
and Dowdy [PD89] address the important problem of optimal partitioning of the process-
ing elements of a parallel computer among several applications of different scalabilities
executing simultaneously.

Problems

5.1 (Amdahl’s law [Amd67]) If a problem of size W has a serial component WS ,
prove that W/WS is an upper bound on its speedup, no matter how many processing
elements are used.

5.2 (Superlinear speedup) Consider the search tree shown in Figure 5.10(a), in which
the dark node represents the solution.
(a) If a sequential search of the tree is performed using the standard depth-first
search (DFS) algorithm (Section 11.2.1), how much time does it take to find the
solution if traversing each arc of the tree takes one unit of time?
(b) Assume that the tree is partitioned between two processing elements that are
assigned to do the search job, as shown in Figure 5.10(b). If both processing
elements perform a DFS on their respective halves of the tree, how much time
does it take for the solution to be found? What is the speedup? Is there a speedup
anomaly? If so, can you explain the anomaly?

P
0 P

0 1P

Solution Solution

(a) DFS with one processing element (b) DFS with two processing elements

Figure 5.10 Superlinear(?) speedup in parallel depth first search.

5.8 Problems 229

(d)(c)

(b) (a)

Figure 5.11 Dependency graphs for Problem 5.3.

5.3 (The DAG model of parallel computation) Parallel algorithms can often be rep-
resented by dependency graphs. Four such dependency graphs are shown in Fig-
ure 5.11. If a program can be broken into several tasks, then each node of the graph
represents one task. The directed edges of the graph represent the dependencies
between the tasks or the order in which they must be performed to yield correct
results. A node of the dependency graph can be scheduled for execution as soon as
the tasks at all the nodes that have incoming edges to that node have finished exe-
cution. For example, in Figure 5.11(b), the nodes on the second level from the root
can begin execution only after the task at the root is finished. Any deadlock-free
dependency graph must be a directed acyclic graph (DAG); that is, it is devoid of
any cycles. All the nodes that are scheduled for execution can be worked on in
parallel provided enough processing elements are available. If N is the number
of nodes in a graph, and n is an integer, then N = 2n − 1 for graphs (a) and (b),
N = n2 for graph (c), and N = n(n + 1)/2 for graph (d) (graphs (a) and (b) are
drawn for n = 4 and graphs (c) and (d) are drawn for n = 8). Assuming that each
task takes one unit of time and that interprocessor communication time is zero, for
the algorithms represented by each of these graphs:

1. Compute the degree of concurrency.

230 Analytical Modeling of Parallel Programs

2. Compute the maximum possible speedup if an unlimited number of process-
ing elements is available.

3. Compute the values of speedup, efficiency, and the overhead function if the
number of processing elements is (i) the same as the degree of concurrency
and (ii) equal to half of the degree of concurrency.

5.4 Consider a parallel system containing p processing elements solving a problem
consisting of W units of work. Prove that if the isoefficiency function of the sys-
tem is worse (greater) than�(p), then the problem cannot be solved cost-optimally
with p = �(W). Also prove the converse that if the problem can be solved cost-
optimally only for p < �(W), then the isoefficiency function of the parallel sys-
tem is worse than linear.

5.5 (Scaled speedup) Scaled speedup is defined as the speedup obtained when the
problem size is increased linearly with the number of processing elements; that is,
if W is chosen as a base problem size for a single processing element, then

Scaled speedup = pW

TP (pW, p)
. (5.37)

For the problem of adding n numbers on p processing elements (Example 5.1), plot
the speedup curves, assuming that the base problem for p = 1 is that of adding
256 numbers. Use p = 1, 4, 16, 64, and 256. Assume that it takes 10 time units
to communicate a number between two processing elements, and that it takes one
unit of time to add two numbers. Now plot the standard speedup curve for the base
problem size and compare it with the scaled speedup curve.
Hint: The parallel runtime is (n/p − 1)+ 11 log p.

5.6 Plot a third speedup curve for Problem 5.5, in which the problem size is scaled
up according to the isoefficiency function, which is �(p log p). Use the same
expression for TP .
Hint: The scaled speedup under this method of scaling is given by the following
equation:

Isoefficient scaled speedup = pW log p

TP (pW log p, p)

5.7 Plot the efficiency curves for the problem of adding n numbers on p processing
elements corresponding to the standard speedup curve (Problem 5.5), the scaled
speedup curve (Problem 5.5), and the speedup curve when the problem size is
increased according to the isoefficiency function (Problem 5.6).

5.8 A drawback of increasing the number of processing elements without increasing
the total workload is that the speedup does not increase linearly with the number of
processing elements, and the efficiency drops monotonically. Based on your expe-
rience with Problems 5.5 and 5.7, discuss whether or not scaled speedup increases
linearly with the number of processing elements in general. What can you say
about the isoefficiency function of a parallel system whose scaled speedup curve

5.8 Problems 231

matches the speedup curve determined by increasing the problem size according
to the isoefficiency function?

5.9 (Time-constrained scaling) Using the expression for TP from Problem 5.5 for p
= 1, 4, 16, 64, 256, 1024, and 4096, what is the largest problem that can be solved
if the total execution time is not to exceed 512 time units? In general, is it possible
to solve an arbitrarily large problem in a fixed amount of time, provided that an
unlimited number of processing elements is available? Why?

5.10 (Prefix sums) Consider the problem of computing the prefix sums (Example 5.1)
of n numbers on n processing elements. What is the parallel runtime, speedup, and
efficiency of this algorithm? Assume that adding two numbers takes one unit of
time and that communicating one number between two processing elements takes
10 units of time. Is the algorithm cost-optimal?

5.11 Design a cost-optimal version of the prefix sums algorithm (Problem 5.10) for
computing all prefix-sums of n numbers on p processing elements where p < n.
Assuming that adding two numbers takes one unit of time and that communicat-
ing one number between two processing elements takes 10 units of time, derive
expressions for TP , S, E , cost, and the isoefficiency function.

5.12 [GK93a] Prove that if To ≤ �(p) for a given problem size, then the parallel
execution time will continue to decrease as p is increased and will asymptotically
approach a constant value. Also prove that if To > �(p), then TP first decreases
and then increases with p; hence, it has a distinct minimum.

5.13 The parallel runtime of a parallel implementation of the FFT algorithm with p
processing elements is given by TP = (n/p) log n + tw(n/p) log p for an input
sequence of length n (Equation 13.4 with ts = 0). The maximum number of
processing elements that the algorithm can use for an n-point FFT is n. What are
the values of p0 (the value of p that satisfies Equation 5.21) and T min

P for tw = 10?

5.14 [GK93a] Consider two parallel systems with the same overhead function, but with
different degrees of concurrency. Let the overhead function of both parallel sys-
tems be W 1/3 p3/2 + 0.1W 2/3 p. Plot the TP versus p curve for W = 106, and
1 ≤ p ≤ 2048. If the degree of concurrency is W 1/3 for the first algorithm and
W 2/3 for the second algorithm, compute the values of T min

P for both parallel sys-
tems. Also compute the cost and efficiency for both the parallel systems at the point
on the TP versus p curve where their respective minimum runtimes are achieved.

232 Analytical Modeling of Parallel Programs

