
CHAPTER 7

Programming Shared
Address Space
Platforms

Explicit parallel programming requires specification of parallel tasks along with their in-
teractions. These interactions may be in the form of synchronization between concurrent
tasks or communication of intermediate results. In shared address space architectures,
communication is implicitly specified since some (or all) of the memory is accessible to all
the processors. Consequently, programming paradigms for shared address space machines
focus on constructs for expressing concurrency and synchronization along with techniques
for minimizing associated overheads. In this chapter, we discuss shared-address-space
programming paradigms along with their performance issues and related extensions to
directive-based paradigms.

Shared address space programming paradigms can vary on mechanisms for data shar-
ing, concurrency models, and support for synchronization. Process based models assume
that all data associated with a process is private, by default, unless otherwise specified (us-
ing UNIX system calls such as shmget and shmat). While this is important for ensuring
protection in multiuser systems, it is not necessary when multiple concurrent aggregates are
cooperating to solve the same problem. The overheads associated with enforcing protection
domains make processes less suitable for parallel programming. In contrast, lightweight
processes and threads assume that all memory is global. By relaxing the protection do-
main, lightweight processes and threads support much faster manipulation. As a result,
this is the preferred model for parallel programming and forms the focus of this chapter.
Directive based programming models extend the threaded model by facilitating creation
and synchronization of threads. In this chapter, we study various aspects of programming
using threads and parallel directives.

January 25, 2004 – 06 : 06 279

280 Programming Shared Address Space Platforms

7.1 Thread Basics

A thread is a single stream of control in the flow of a program. We initiate threads with a
simple example:

Example 7.1 What are threads?
Consider the following code segment that computes the product of two dense matri-
ces of size n × n.

1 for (row = 0; row < n; row++)
2 for (column = 0; column < n; column++)
3 c[row][column] =
4 dot_product(get_row(a, row),
5 get_col(b, col));

The for loop in this code fragment has n2 iterations, each of which can be
executed independently. Such an independent sequence of instructions is referred
to as a thread. In the example presented above, there are n2 threads, one for each
iteration of the for-loop. Since each of these threads can be executed independently
of the others, they can be scheduled concurrently on multiple processors. We can
transform the above code segment as follows:

1 for (row = 0; row < n; row++)
2 for (column = 0; column < n; column++)
3 c[row][column] =
4 create_thread(dot_product(get_row(a, row),
5 get_col(b, col)));

Here, we use a function, create thread, to provide a mechanism for spec-
ifying a C function as a thread. The underlying system can then schedule these
threads on multiple processors.

Logical Memory Model of a Thread To execute the code fragment in Example 7.1
on multiple processors, each processor must have access to matrices a, b, and c. This
is accomplished via a shared address space (described in Chapter 2). All memory in the
logical machine model of a thread is globally accessible to every thread as illustrated in
Figure 7.1(a). However, since threads are invoked as function calls, the stack corresponding
to the function call is generally treated as being local to the thread. This is due to the
liveness considerations of the stack. Since threads are scheduled at runtime (and no a
priori schedule of their execution can be safely assumed), it is not possible to determine
which stacks are live. Therefore, it is considered poor programming practice to treat stacks
(thread-local variables) as global data. This implies a logical machine model illustrated in
Figure 7.1(b), where memory modules M hold thread-local (stack allocated) data.

While this logical machine model gives the view of an equally accessible address space,

7.2 Why Threads? 281

P

P

P

Sh
ar

ed
 A

dd
re

ss
 S

pa
ce

P

P

P

M

M

M

Sh
ar

ed
 A

dd
re

ss
 S

pa
ce

Figure 7.1 The logical machine model of a thread-based programming paradigm.

physical realizations of this model deviate from this assumption. In distributed shared ad-
dress space machines such as the Origin 2000, the cost to access a physically local memory
may be an order of magnitude less than that of accessing remote memory. Even in archi-
tectures where the memory is truly equally accessible to all processors (such as shared bus
architectures with global shared memory), the presence of caches with processors skews
memory access time. Issues of locality of memory reference become important for extract-
ing performance from such architectures.

7.2 Why Threads?

Threaded programming models offer significant advantages over message-passing pro-
gramming models along with some disadvantages as well. Before we discuss threading
APIs, let us briefly look at some of these.

Software Portability Threaded applications can be developed on serial machines and
run on parallel machines without any changes. This ability to migrate programs between
diverse architectural platforms is a very significant advantage of threaded APIs. It has
implications not just for software utilization but also for application development since
supercomputer time is often scarce and expensive.

Latency Hiding One of the major overheads in programs (both serial and parallel) is the
access latency for memory access, I/O, and communication. By allowing multiple threads
to execute on the same processor, threaded APIs enable this latency to be hidden (as seen
in Chapter 2). In effect, while one thread is waiting for a communication operation, other
threads can utilize the CPU, thus masking associated overhead.

Scheduling and Load Balancing While writing shared address space parallel pro-
grams, a programmer must express concurrency in a way that minimizes overheads of
remote interaction and idling. While in many structured applications the task of allocating
equal work to processors is easily accomplished, in unstructured and dynamic applications

282 Programming Shared Address Space Platforms

(such as game playing and discrete optimization) this task is more difficult. Threaded APIs
allow the programmer to specify a large number of concurrent tasks and support system-
level dynamic mapping of tasks to processors with a view to minimizing idling overheads.
By providing this support at the system level, threaded APIs rid the programmer of the
burden of explicit scheduling and load balancing.

Ease of Programming, Widespread Use Due to the aforementioned advantages,
threaded programs are significantly easier to write than corresponding programs using
message passing APIs. Achieving identical levels of performance for the two programs
may require additional effort, however. With widespread acceptance of the POSIX thread
API, development tools for POSIX threads are more widely available and stable. These
issues are important from the program development and software engineering aspects.

7.3 The POSIX Thread API

A number of vendors provide vendor-specific thread APIs. The IEEE specifies a stan-
dard 1003.1c-1995, POSIX API. Also referred to as Pthreads, POSIX has emerged as the
standard threads API, supported by most vendors. We will use the Pthreads API for intro-
ducing multithreading concepts. The concepts themselves are largely independent of the
API and can be used for programming with other thread APIs (NT threads, Solaris threads,
Java threads, etc.) as well. All the illustrative programs presented in this chapter can be
executed on workstations as well as parallel computers that support Pthreads.

7.4 Thread Basics: Creation and Termination

Let us start our discussion with a simple threaded program for computing the value of π .

Example 7.2 Threaded program for computing π
The method we use here is based on generating random numbers in a unit length
square and counting the number of points that fall within the largest circle inscribed
in the square. Since the area of the circle (πr2) is equal to π/4, and the area of the
square is 1 × 1, the fraction of random points that fall in the circle should approach
π/4.

A simple threaded strategy for generating the value of π assigns a fixed num-
ber of points to each thread. Each thread generates these random points and keeps
track of the number of points that land in the circle locally. After all threads finish
execution, their counts are combined to compute the value of π (by calculating the
fraction over all threads and multiplying by 4).

To implement this threaded program, we need a function for creating threads
and waiting for all threads to finish execution (so we can accrue count). Threads

7.4 Thread Basics: Creation and Termination 283

can be created in the Pthreads API using the function pthread create. The
prototype of this function is:

1 #include <pthread.h>
2 int
3 pthread_create (
4 pthread_t *thread_handle,
5 const pthread_attr_t *attribute,
6 void * (*thread_function)(void *),
7 void *arg);

The pthread create function creates a single thread that corresponds
to the invocation of the function thread function (and any other functions
called by thread function). On successful creation of a thread, a unique
identifier is associated with the thread and assigned to the location pointed to by
thread handle. The thread has the attributes described by the attribute ar-
gument. When this argument is NULL, a thread with default attributes is created.
We will discuss the attribute parameter in detail in Section 7.6. The arg field
specifies a pointer to the argument to function thread function. This argument
is typically used to pass the workspace and other thread-specific data to a thread. In
the compute pi example, it is used to pass an integer id that is used as a seed for
randomization. The thread handle variable is written before the the function
pthread create returns; and the new thread is ready for execution as soon as it
is created. If the thread is scheduled on the same processor, the new thread may, in
fact, preempt its creator. This is important to note because all thread initialization
procedures must be completed before creating the thread. Otherwise, errors may re-
sult based on thread scheduling. This is a very common class of errors caused by
race conditions for data access that shows itself in some execution instances, but not
in others. On successful creation of a thread, pthread create returns 0; else
it returns an error code. The reader is referred to the Pthreads specification for a
detailed description of the error-codes.

In our program for computing the value of π , we first read in the desired
number of threads, num threads, and the desired number of sample points,
sample points. These points are divided equally among the threads. The pro-
gram uses an array, hits, for assigning an integer id to each thread (this id is used
as a seed for randomizing the random number generator). The same array is used
to keep track of the number of hits (points inside the circle) encountered by each
thread upon return. The program creates num threads threads, each invoking the
function compute pi, using the pthread create function.

Once the respective compute pi threads have generated assigned number
of random points and computed their hit ratios, the results must be combined to
determine π . The main program must wait for the threads to run to completion. This
is done using the function pthread join which suspends execution of the calling

George
Highlight

George
Highlight

George
Highlight

284 Programming Shared Address Space Platforms

thread until the specified thread terminates. The prototype of the pthread join

function is as follows:

1 int
2 pthread_join (
3 pthread_t thread,
4 void **ptr);

A call to this function waits for the termination of the thread whose id is
given by thread. On a successful call to pthread join, the value passed to
pthread exit is returned in the location pointed to by ptr. On successful com-
pletion, pthread join returns 0, else it returns an error-code.

Once all threads have joined, the value of π is computed by multiplying the
combined hit ratio by 4.0. The complete program is as follows:

1 #include <pthread.h>
2 #include <stdlib.h>
3
4 #define MAX_THREADS 512
5 void *compute_pi (void *);
6
7 int total_hits, total_misses, hits[MAX_THREADS],
8 sample_points, sample_points_per_thread, num_threads;
9
10 main() {
11 int i;
12 pthread_t p_threads[MAX_THREADS];
13 pthread_attr_t attr;
14 double computed_pi;
15 double time_start, time_end;
16 struct timeval tv;
17 struct timezone tz;
18
19 pthread_attr_init (&attr);
20 pthread_attr_setscope (&attr,PTHREAD_SCOPE_SYSTEM);
21 printf("Enter number of sample points: ");
22 scanf("%d", &sample_points);
23 printf("Enter number of threads: ");
24 scanf("%d", &num_threads);
25
26 gettimeofday(&tv, &tz);
27 time_start = (double)tv.tv_sec +
28 (double)tv.tv_usec / 1000000.0;
29
30 total_hits = 0;
31 sample_points_per_thread = sample_points / num_threads;
32 for (i=0; i< num_threads; i++) {
33 hits[i] = i;
34 pthread_create(&p_threads[i], &attr, compute_pi,
35 (void *) &hits[i]);
36 }
37 for (i=0; i< num_threads; i++) {
38 pthread_join(p_threads[i], NULL);

7.4 Thread Basics: Creation and Termination 285

39 total_hits += hits[i];
40 }
41 computed_pi = 4.0*(double) total_hits /
42 ((double)(sample_points));
43 gettimeofday(&tv, &tz);
44 time_end = (double)tv.tv_sec +
45 (double)tv.tv_usec / 1000000.0;
46
47 printf("Computed PI = %lf\n", computed_pi);
48 printf(" %lf\n", time_end - time_start);
49 }
50
51 void *compute_pi (void *s) {
52 int seed, i, *hit_pointer;
53 double rand_no_x, rand_no_y;
54 int local_hits;
55
56 hit_pointer = (int *) s;
57 seed = *hit_pointer;
58 local_hits = 0;
59 for (i = 0; i < sample_points_per_thread; i++) {
60 rand_no_x =(double)(rand_r(&seed))/(double)((2<<14)-1);
61 rand_no_y =(double)(rand_r(&seed))/(double)((2<<14)-1);
62 if (((rand_no_x - 0.5) * (rand_no_x - 0.5) +
63 (rand_no_y - 0.5) * (rand_no_y - 0.5)) < 0.25)
64 local_hits ++;
65 seed *= i;
66 }
67 *hit_pointer = local_hits;
68 pthread_exit(0);
69 }

Programming Notes The reader must note, in the above example, the use of the
function rand r (instead of superior random number generators such as drand48).
The reason for this is that many functions (including rand and drand48) are not
reentrant. Reentrant functions are those that can be safely called when another
instance has been suspended in the middle of its invocation. It is easy to see why all
thread functions must be reentrant because a thread can be preempted in the middle
of its execution. If another thread starts executing the same function at this point, a
non-reentrant function might not work as desired.

Performance Notes We execute this program on a four-processor SGI Origin
2000. The logarithm of the number of threads and execution time are illustrated in
Figure 7.2 (the curve labeled “local”). We can see that at 32 threads, the runtime of
the program is roughly 3.91 times less than the corresponding time for one thread.
On a four-processor machine, this corresponds to a parallel efficiency of 0.98.

The other curves in Figure 7.2 illustrate an important performance overhead
called false sharing. Consider the following change to the program: instead of in-
crementing a local variable, local hits, and assigning it to the array entry outside
the loop, we now directly increment the corresponding entry in the hits array. This

286 Programming Shared Address Space Platforms

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

"optimal"
"local"

"spaced_1"
"spaced_16"
"spaced_32"

logarithm of number of threads

T
im

e

Figure 7.2 Execution time of the compute pi program as a function of number of threads.

can be done by changing line 64 to *(hit pointer) ++;, and deleting line 67.
It is easy to verify that the program is semantically identical to the one before. How-
ever, on executing this modified program the observed performance is illustrated in
the curve labeled “spaced 1” in Figure 7.2. This represents a significant slowdown
instead of a speedup!

The drastic impact of this seemingly innocuous change is explained by a phe-
nomenon called false sharing. In this example, two adjoining data items (which
likely reside on the same cache line) are being continually written to by threads that
might be scheduled on different processors. From our discussion in Chapter 2, we
know that a write to a shared cache line results in an invalidate and a subsequent read
must fetch the cache line from the most recent write location. With this in mind, we
can see that the cache lines corresponding to the hits array generate a large number
of invalidates and reads because of repeated increment operations. This situation, in
which two threads ‘falsely’ share data because it happens to be on the same cache
line, is called false sharing.

It is in fact possible to use this simple example to estimate the cache line size
of the system. We change hits to a two-dimensional array and use only the first

7.5 Synchronization Primitives in Pthreads 287

column of the array to store counts. By changing the size of the second dimension,
we can force entries in the first column of the hits array to lie on different cache
lines (since arrays in C are stored row-major). The results of this experiment are
illustrated in Figure 7.2 by curves labeled “spaced 16” and “spaced 32”, in which the
second dimension of the hits array is 16 and 32 integers, respectively. It is evident
from the figure that as the entries are spaced apart, the performance improves. This
is consistent with our understanding that spacing the entries out pushes them into
different cache lines, thereby reducing the false sharing overhead.

Having understood how to create and join threads, let us now explore mechanisms in
Pthreads for synchronizing threads.

7.5 Synchronization Primitives in Pthreads

While communication is implicit in shared-address-space programming, much of the effort
associated with writing correct threaded programs is spent on synchronizing concurrent
threads with respect to their data accesses or scheduling.

7.5.1 Mutual Exclusion for Shared Variables

Using pthread create and pthread join calls, we can create concurrent tasks.
These tasks work together to manipulate data and accomplish a given task. When multiple
threads attempt to manipulate the same data item, the results can often be incoherent if
proper care is not taken to synchronize them. Consider the following code fragment being
executed by multiple threads. The variable my cost is thread-local and best cost is a
global variable shared by all threads.

1 /* each thread tries to update variable best_cost as follows */
2 if (my_cost < best_cost)
3 best_cost = my_cost;

To understand the problem with shared data access, let us examine one execution in-
stance of the above code fragment. Assume that there are two threads, the initial value of
best cost is 100, and the values of my cost are 50 and 75 at threads t1 and t2, respec-
tively. If both threads execute the condition inside the if statement concurrently, then both
threads enter the then part of the statement. Depending on which thread executes first,
the value of best cost at the end could be either 50 or 75. There are two problems here:
the first is the non-deterministic nature of the result; second, and more importantly, the
value 75 of best cost is inconsistent in the sense that no serialization of the two threads
can possibly yield this result. This is an undesirable situation, sometimes also referred to
as a race condition (so called because the result of the computation depends on the race
between competing threads).

288 Programming Shared Address Space Platforms

The aforementioned situation occurred because the test-and-update operation illustrated
above is an atomic operation; i.e., the operation should not be broken into sub-operations.
Furthermore, the code corresponds to a critical segment; i.e., a segment that must be ex-
ecuted by only one thread at any time. Many statements that seem atomic in higher level
languages such as C may in fact be non-atomic; for example, a statement of the form
global count += 5 may comprise several assembler instructions and therefore must
be handled carefully.

Threaded APIs provide support for implementing critical sections and atomic operations
using mutex-locks (mutual exclusion locks). Mutex-locks have two states: locked and
unlocked. At any point of time, only one thread can lock a mutex lock. A lock is an
atomic operation generally associated with a piece of code that manipulates shared data.
To access the shared data, a thread must first try to acquire a mutex-lock. If the mutex-lock
is already locked, the process trying to acquire the lock is blocked. This is because a locked
mutex-lock implies that there is another thread currently in the critical section and that no
other thread must be allowed in. When a thread leaves a critical section, it must unlock
the mutex-lock so that other threads can enter the critical section. All mutex-locks must be
initialized to the unlocked state at the beginning of the program.

The Pthreads API provides a number of functions for handling mutex-locks. The func-
tion pthread mutex lock can be used to attempt a lock on a mutex-lock. The proto-
type of the function is:

1 int
2 pthread_mutex_lock (
3 pthread_mutex_t *mutex_lock);

A call to this function attempts a lock on the mutex-lock mutex lock. (The data type
of a mutex lock is predefined to be pthread mutex t.) If the mutex-lock is already
locked, the calling thread blocks; otherwise the mutex-lock is locked and the calling thread
returns. A successful return from the function returns a value 0. Other values indicate error
conditions such as deadlocks.

On leaving a critical section, a thread must unlock the mutex-lock associated with the
section. If it does not do so, no other thread will be able to enter this section, typically
resulting in a deadlock. The Pthreads function pthread mutex unlock is used to
unlock a mutex-lock. The prototype of this function is:

1 int
2 pthread_mutex_unlock (
3 pthread_mutex_t *mutex_lock);

On calling this function, in the case of a normal mutex-lock, the lock is relinquished
and one of the blocked threads is scheduled to enter the critical section. The spe-
cific thread is determined by the scheduling policy. There are other types of locks
(other than normal locks), which are discussed in Section 7.6 along with the associ-
ated semantics of the function pthread mutex unlock. If a programmer attempts

7.5.1 Mutual Exclusion for Shared Variables 289

a pthread mutex unlock on a previously unlocked mutex or one that is locked by
another thread, the effect is undefined.

We need one more function before we can start using mutex-locks, namely, a func-
tion to initialize a mutex-lock to its unlocked state. The Pthreads function for this is
pthread mutex init. The prototype of this function is as follows:

1 int
2 pthread_mutex_init (
3 pthread_mutex_t *mutex_lock,
4 const pthread_mutexattr_t *lock_attr);

This function initializes the mutex-lock mutex lock to an unlocked state. The at-
tributes of the mutex-lock are specified by lock attr. If this argument is set to NULL,
the default mutex-lock attributes are used (normal mutex-lock). Attributes objects for
threads are discussed in greater detail in Section 7.6.

Example 7.3 Computing the minimum entry in a list of integers
Armed with basic mutex-lock functions, let us write a simple threaded program
to compute the minimum of a list of integers. The list is partitioned equally
among the threads. The size of each thread’s partition is stored in the variable
partial list size and the pointer to the start of each thread’s partial list is
passed to it as the pointer list ptr. The threaded program for accomplishing this
is as follows:

1 #include <pthread.h>
2 void *find_min(void *list_ptr);
3 pthread_mutex_t minimum_value_lock;
4 int minimum_value, partial_list_size;
5
6 main() {
7 /* declare and initialize data structures and list */
8 minimum_value = MIN_INT;
9 pthread_init();
10 pthread_mutex_init(&minimum_value_lock, NULL);
11
12 /* initialize lists, list_ptr, and partial_list_size */
13 /* create and join threads here */
14 }
15
16 void *find_min(void *list_ptr) {
17 int *partial_list_pointer, my_min, i;
18 my_min = MIN_INT;
19 partial_list_pointer = (int *) list_ptr;
20 for (i = 0; i < partial_list_size; i++)
21 if (partial_list_pointer[i] < my_min)
22 my_min = partial_list_pointer[i];
23 /* lock the mutex associated with minimum_value and
24 update the variable as required */
25 pthread_mutex_lock(&minimum_value_lock);
26 if (my_min < minimum_value)
27 minimum_value = my_min;

290 Programming Shared Address Space Platforms

28 /* and unlock the mutex */
29 pthread_mutex_unlock(&minimum_value_lock);
30 pthread_exit(0);
31 }

Programming Notes In this example, the test-update operation for
minimum value is protected by the mutex-lock minimum value lock.
Threads execute pthread mutex lock to gain exclusive access to the variable
minimum value. Once this access is gained, the value is updated as required, and
the lock subsequently released. Since at any point of time, only one thread can hold
a lock, only one thread can test-update the variable.

Example 7.4 Producer-consumer work queues
A common use of mutex-locks is in establishing a producer-consumer relationship
between threads. The producer creates tasks and inserts them into a work-queue.
The consumer threads pick up tasks from the task queue and execute them. Let us
consider a simple instance of this paradigm in which the task queue can hold only
one task (in a general case, the task queue may be longer but is typically of bounded
size). Producer-consumer relations are ubiquitous. See Exercise 7.4 for an example
application in multimedia processing. A simple (and incorrect) threaded program
would associate a producer thread with creating a task and placing it in a shared
data structure and the consumer threads with picking up tasks from this shared data
structure and executing them. However, this simple version does not account for the
following possibilities:

• The producer thread must not overwrite the shared buffer when the previous
task has not been picked up by a consumer thread.

• The consumer threads must not pick up tasks until there is something present
in the shared data structure.

• Individual consumer threads should pick up tasks one at a time.

To implement this, we can use a variable called task available. If this variable
is 0, consumer threads must wait, but the producer thread can insert tasks into the
shared data structure task queue. If task available is equal to 1, the pro-
ducer thread must wait to insert the task into the shared data structure but one of
the consumer threads can pick up the task available. All of these operations on the
variable task available should be protected by mutex-locks to ensure that only
one thread is executing test-update on it. The threaded version of this program is as
follows:

1 pthread_mutex_t task_queue_lock;
2 int task_available;
3
4 /* other shared data structures here */

7.5.1 Mutual Exclusion for Shared Variables 291

5
6 main() {
7 /* declarations and initializations */
8 task_available = 0;
9 pthread_init();
10 pthread_mutex_init(&task_queue_lock, NULL);
11 /* create and join producer and consumer threads */
12 }
13
14 void *producer(void *producer_thread_data) {
15 int inserted;
16 struct task my_task;
17 while (!done()) {
18 inserted = 0;
19 create_task(&my_task);
20 while (inserted == 0) {
21 pthread_mutex_lock(&task_queue_lock);
22 if (task_available == 0) {
23 insert_into_queue(my_task);
24 task_available = 1;
25 inserted = 1;
26 }
27 pthread_mutex_unlock(&task_queue_lock);
28 }
29 }
30 }
31
32 void *consumer(void *consumer_thread_data) {
33 int extracted;
34 struct task my_task;
35 /* local data structure declarations */
36 while (!done()) {
37 extracted = 0;
38 while (extracted == 0) {
39 pthread_mutex_lock(&task_queue_lock);
40 if (task_available == 1) {
41 extract_from_queue(&my_task);
42 task_available = 0;
43 extracted = 1;
44 }
45 pthread_mutex_unlock(&task_queue_lock);
46 }
47 process_task(my_task);
48 }
49 }

Programming Notes In this example, the producer thread creates a task and
waits for space on the queue. This is indicated by the variable task available

being 0. The test and update of this variable as well as insertion and extraction
from the shared queue are protected by a mutex called task queue lock. Once
space is available on the task queue, the recently created task is inserted into the task
queue and the availability of the task is signaled by setting task available to 1.
Within the producer thread, the fact that the recently created task has been inserted
into the queue is signaled by the variable inserted being set to 1, which allows

292 Programming Shared Address Space Platforms

the producer to produce the next task. Irrespective of whether a recently created
task is successfully inserted into the queue or not, the lock is relinquished. This
allows consumer threads to pick up work from the queue in case there is work on the
queue to begin with. If the lock is not relinquished, threads would deadlock since
a consumer would not be able to get the lock to pick up the task and the producer
would not be able to insert its task into the task queue. The consumer thread waits for
a task to become available and executes it when available. As was the case with the
producer thread, the consumer relinquishes the lock in each iteration of the while
loop to allow the producer to insert work into the queue if there was none.

Overheads of Locking

Locks represent serialization points since critical sections must be executed by threads
one after the other. Encapsulating large segments of the program within locks can,
therefore, lead to significant performance degradation. It is important to minimize the
size of critical sections. For instance, in the above example, the create task and
process task functions are left outside the critical region, but insert into queue

and extract from queue functions are left inside the critical region. The former
is left out in the interest of making the critical section as small as possible. The
insert into queue and extract from queue functions are left inside because
if the lock is relinquished after updating task available but not inserting or extract-
ing the task, other threads may gain access to the shared data structure while the insertion
or extraction is in progress, resulting in errors. It is therefore important to handle critical
sections and shared data structures with extreme care.

Alleviating Locking Overheads

It is often possible to reduce the idling overhead associated with locks using an alternate
function, pthread mutex trylock. This function attempts a lock on mutex lock.
If the lock is successful, the function returns a zero. If it is already locked by another thread,
instead of blocking the thread execution, it returns a value EBUSY. This allows the thread to
do other work and to poll the mutex for a lock. Furthermore, pthread mutex trylock

is typically much faster than pthread mutex lock on typical systems since it does not
have to deal with queues associated with locks for multiple threads waiting on the lock.
The prototype of pthread mutex trylock is:

1 int
2 pthread_mutex_trylock (
3 pthread_mutex_t *mutex_lock);

We illustrate the use of this function using the following example:

Example 7.5 Finding k matches in a list
We consider the example of finding k matches to a query item in a given list. The

7.5.1 Mutual Exclusion for Shared Variables 293

list is partitioned equally among the threads. Assuming that the list has n entries,
each of the p threads is responsible for searching n/p entries of the list. The pro-
gram segment for computing this using the pthread mutex lock function is as
follows:

1 void *find_entries(void *start_pointer) {
2
3 /* This is the thread function */
4
5 struct database_record *next_record;
6 int count;
7 current_pointer = start_pointer;
8 do {
9 next_record = find_next_entry(current_pointer);
10 count = output_record(next_record);
11 } while (count < requested_number_of_records);
12 }
13
14 int output_record(struct database_record *record_ptr) {
15 int count;
16 pthread_mutex_lock(&output_count_lock);
17 output_count ++;
18 count = output_count;
19 pthread_mutex_unlock(&output_count_lock);
20
21 if (count <= requested_number_of_records)
22 print_record(record_ptr);
23 return (count);
24 }

This program segment finds an entry in its part of the database, updates the
global count and then finds the next entry. If the time for a lock-update count-unlock
cycle is t1 and the time to find an entry is t2, then the total time for satisfying the
query is (t1 + t2) × nmax , where nmax is the maximum number of entries found by
any thread. If t1 and t2 are comparable, then locking leads to considerable overhead.

This locking overhead can be alleviated by using the function
pthread mutex trylock. Each thread now finds the next entry and tries
to acquire the lock and update count. If another thread already has the lock, the
record is inserted into a local list and the thread proceeds to find other matches.
When it finally gets the lock, it inserts all entries found locally thus far into the
list (provided the number does not exceed the desired number of entries). The
corresponding output record function is as follows:

1 int output_record(struct database_record *record_ptr) {
2 int count;
3 int lock_status;
4 lock_status = pthread_mutex_trylock(&output_count_lock);
5 if (lock_status == EBUSY) {
6 insert_into_local_list(record_ptr);
7 return(0);

294 Programming Shared Address Space Platforms

8 }
9 else {
10 count = output_count;
11 output_count += number_on_local_list + 1;
12 pthread_mutex_unlock(&output_count_lock);
13 print_records(record_ptr, local_list,
14 requested_number_of_records - count);
15 return(count + number_on_local_list + 1);
16 }
17 }

Programming Notes Examining this function closely, we notice that if the lock
for updating the global count is not available, the function inserts the current record
into a local list and returns. If the lock is available, it increments the global count
by the number of records on the local list, and then by one (for the current record).
It then unlocks the associated lock and proceeds to print as many records as are
required using the function print records.

Performance Notes The time for execution of this version is less than the
time for the first one on two counts: first, as mentioned, the time for exe-
cuting a pthread mutex trylock is typically much smaller than that for a
pthread mutex lock. Second, since multiple records may be inserted on each
lock, the number of locking operations is also reduced. The number of records actu-
ally searched (across all threads) may be slightly larger than the number of records
actually desired (since there may be entries in the local lists that may never be
printed). However, since this time would otherwise have been spent idling for the
lock anyway, this overhead does not cause a slowdown.

The above example illustrates the use of the function pthread mutex trylock

instead of pthread mutex lock. The general use of the function is in reducing
idling overheads associated with mutex-locks. If the computation is such that the crit-
ical section can be delayed and other computations can be performed in the interim,
pthread mutex trylock is the function of choice. Another determining factor, as has
been mentioned, is the fact that for most implementations pthread mutex trylock

is a much cheaper function than pthread mutex lock. In fact, for highly optimized
codes, even when a pthread mutex lock is required, a pthread mutex trylock

inside a loop may often be desirable, since if the lock is acquired within the first few calls,
it would be cheaper than a pthread mutex lock.

7.5.2 Condition Variables for Synchronization

As we noted in the previous section, indiscriminate use of locks can result in idling over-
head from blocked threads. While the function pthread mutex trylock alleviates

7.5.2 Condition Variables for Synchronization 295

this overhead, it introduces the overhead of polling for availability of locks. For exam-
ple, if the producer-consumer example is rewritten using pthread mutex trylock

instead of pthread mutex lock, the producer and consumer threads would have to
periodically poll for availability of lock (and subsequently availability of buffer space or
tasks on queue). A natural solution to this problem is to suspend the execution of the pro-
ducer until space becomes available (an interrupt driven mechanism as opposed to a polled
mechanism). The availability of space is signaled by the consumer thread that consumes
the task. The functionality to accomplish this is provided by a condition variable.

A condition variable is a data object used for synchronizing threads. This variable al-
lows a thread to block itself until specified data reaches a predefined state. In the producer-
consumer case, the shared variable task available must become 1 before the con-
sumer threads can be signaled. The boolean condition task available == 1 is re-
ferred to as a predicate. A condition variable is associated with this predicate. When the
predicate becomes true, the condition variable is used to signal one or more threads wait-
ing on the condition. A single condition variable may be associated with more than one
predicate. However, this is strongly discouraged since it makes the program difficult to
debug.

A condition variable always has a mutex associated with it. A thread locks this mutex
and tests the predicate defined on the shared variable (in this case task available);
if the predicate is not true, the thread waits on the condition variable associated with the
predicate using the function pthread cond wait. The prototype of this function is:

1 int pthread_cond_wait(pthread_cond_t *cond,
2 pthread_mutex_t *mutex);

A call to this function blocks the execution of the thread until it receives a signal from
another thread or is interrupted by an OS signal. In addition to blocking the thread, the
pthread cond wait function releases the lock on mutex. This is important because
otherwise no other thread will be able to work on the shared variable task available

and the predicate would never be satisfied. When the thread is released on a signal, it waits
to reacquire the lock on mutex before resuming execution. It is convenient to think of each
condition variable as being associated with a queue. Threads performing a condition wait
on the variable relinquish their lock and enter the queue. When the condition is signaled
(using pthread cond signal), one of these threads in the queue is unblocked, and
when the mutex becomes available, it is handed to this thread (and the thread becomes
runnable).

In the context of our producer-consumer example, the producer thread produces the
task and, since the lock on mutex has been relinquished (by waiting consumers), it can
insert its task on the queue and set task available to 1 after locking mutex. Since
the predicate has now been satisfied, the producer must wake up one of the consumer
threads by signaling it. This is done using the function pthread cond signal, whose
prototype is as follows:

1 int pthread_cond_signal(pthread_cond_t *cond);

296 Programming Shared Address Space Platforms

The function unblocks at least one thread that is currently waiting on the condition
variable cond. The producer then relinquishes its lock on mutex by explicitly calling
pthread mutex unlock, allowing one of the blocked consumer threads to consume
the task.

Before we rewrite our producer-consumer example using condition variables, we need
to introduce two more function calls for initializing and destroying condition variables,
pthread cond init and pthread cond destroy respectively. The prototypes of
these calls are as follows:

1 int pthread_cond_init(pthread_cond_t *cond,
2 const pthread_condattr_t *attr);
3 int pthread_cond_destroy(pthread_cond_t *cond);

The function pthread cond init initializes a condition variable (pointed to by
cond) whose attributes are defined in the attribute object attr. Setting this pointer
to NULL assigns default attributes for condition variables. If at some point in a pro-
gram a condition variable is no longer required, it can be discarded using the function
pthread cond destroy. These functions for manipulating condition variables enable
us to rewrite our producer-consumer segment as follows:

Example 7.6 Producer-consumer using condition variables
Condition variables can be used to block execution of the producer thread when
the work queue is full and the consumer thread when the work queue is empty.
We use two condition variables cond queue empty and cond queue full

for specifying empty and full queues respectively. The predicate associated with
cond queue empty is task available == 0, and cond queue full is
asserted when task available == 1.

The producer queue locks the mutex task queue cond lock associated
with the shared variable task available. It checks to see if task available

is 0 (i.e., queue is empty). If this is the case, the producer inserts the task into
the work queue and signals any waiting consumer threads to wake up by signal-
ing the condition variable cond queue full. It subsequently proceeds to cre-
ate additional tasks. If task available is 1 (i.e., queue is full), the producer
performs a condition wait on the condition variable cond queue empty (i.e., it
waits for the queue to become empty). The reason for implicitly releasing the lock
on task queue cond lock becomes clear at this point. If the lock is not re-
leased, no consumer will be able to consume the task and the queue would never
be empty. At this point, the producer thread is blocked. Since the lock is available
to the consumer, the thread can consume the task and signal the condition variable
cond queue empty when the task has been taken off the work queue.

The consumer thread locks the mutex task queue cond lock to check if
the shared variable task available is 1. If not, it performs a condition wait on
cond queue full. (Note that this signal is generated from the producer when

7.5.2 Condition Variables for Synchronization 297

a task is inserted into the work queue.) If there is a task available, the consumer
takes it off the work queue and signals the producer. In this way, the producer and
consumer threads operate by signaling each other. It is easy to see that this mode of
operation is similar to an interrupt-based operation as opposed to a polling-based op-
eration of pthread mutex trylock. The program segment for accomplishing
this producer-consumer behavior is as follows:

1 pthread_cond_t cond_queue_empty, cond_queue_full;
2 pthread_mutex_t task_queue_cond_lock;
3 int task_available;
4
5 /* other data structures here */
6
7 main() {
8 /* declarations and initializations */
9 task_available = 0;
10 pthread_init();
11 pthread_cond_init(&cond_queue_empty, NULL);
12 pthread_cond_init(&cond_queue_full, NULL);
13 pthread_mutex_init(&task_queue_cond_lock, NULL);
14 /* create and join producer and consumer threads */
15 }
16
17 void *producer(void *producer_thread_data) {
18 int inserted;
19 while (!done()) {
20 create_task();
21 pthread_mutex_lock(&task_queue_cond_lock);
22 while (task_available == 1)
23 pthread_cond_wait(&cond_queue_empty,
24 &task_queue_cond_lock);
25 insert_into_queue();
26 task_available = 1;
27 pthread_cond_signal(&cond_queue_full);
28 pthread_mutex_unlock(&task_queue_cond_lock);
29 }
30 }
31
32 void *consumer(void *consumer_thread_data) {
33 while (!done()) {
34 pthread_mutex_lock(&task_queue_cond_lock);
35 while (task_available == 0)
36 pthread_cond_wait(&cond_queue_full,
37 &task_queue_cond_lock);
38 my_task = extract_from_queue();
39 task_available = 0;
40 pthread_cond_signal(&cond_queue_empty);
41 pthread_mutex_unlock(&task_queue_cond_lock);
42 process_task(my_task);
43 }
44 }

Programming Notes An important point to note about this program seg-
ment is that the predicate associated with a condition variable is checked in a

298 Programming Shared Address Space Platforms

loop. One might expect that when cond queue full is asserted, the value of
task available must be 1. However, it is a good practice to check for the con-
dition in a loop because the thread might be woken up due to other reasons (such as
an OS signal). In other cases, when the condition variable is signaled using a condi-
tion broadcast (signaling all waiting threads instead of just one), one of the threads
that got the lock earlier might invalidate the condition. In the example of multi-
ple producers and multiple consumers, a task available on the work queue might be
consumed by one of the other consumers.

Performance Notes When a thread performs a condition wait, it takes itself off
the runnable list – consequently, it does not use any CPU cycles until it is woken up.
This is in contrast to a mutex lock which consumes CPU cycles as it polls for the
lock.

In the above example, each task could be consumed by only one consumer thread.
Therefore, we choose to signal one blocked thread at a time. In some other computations, it
may be beneficial to wake all threads that are waiting on the condition variable as opposed
to a single thread. This can be done using the function pthread cond broadcast.

1 int pthread_cond_broadcast(pthread_cond_t *cond);

An example of this is in the producer-consumer scenario with large work queues
and multiple tasks being inserted into the work queue on each insertion cycle. This
is left as an exercise for the reader (Exercise 7.2). Another example of the use of
pthread cond broadcast is in the implementation of barriers illustrated in Sec-
tion 7.8.2.

It is often useful to build time-outs into condition waits. Using the function
pthread cond timedwait, a thread can perform a wait on a condition variable until
a specified time expires. At this point, the thread wakes up by itself if it does not receive a
signal or a broadcast. The prototype for this function is:

1 int pthread_cond_timedwait(pthread_cond_t *cond,
2 pthread_mutex_t *mutex,
3 const struct timespec *abstime);

If the absolute time abstime specified expires before a signal or broadcast is received,
the function returns an error message. It also reacquires the lock on mutex when it be-
comes available.

7.6 Controlling Thread and Synchronization
Attributes

In our discussion thus far, we have noted that entities such as threads and synchronization
variables can have several attributes associated with them. For example, different threads

7.6.1 Attributes Objects for Threads 299

may be scheduled differently (round-robin, prioritized, etc.), they may have different stack
sizes, and so on. Similarly, a synchronization variable such as a mutex-lock may be of
different types. The Pthreads API allows a programmer to change the default attributes of
entities using attributes objects.

An attributes object is a data-structure that describes entity (thread, mutex, condition
variable) properties. When creating a thread or a synchronization variable, we can specify
the attributes object that determines the properties of the entity. Once created, the thread or
synchronization variable’s properties are largely fixed (Pthreads allows the user to change
the priority of the thread). Subsequent changes to attributes objects do not change the
properties of entities created using the attributes object prior to the change. There are
several advantages of using attributes objects. First, it separates the issues of program
semantics and implementation. Thread properties are specified by the user. How these
are implemented at the system level is transparent to the user. This allows for greater
portability across operating systems. Second, using attributes objects improves modularity
and readability of the programs. Third, it allows the user to modify the program easily. For
instance, if the user wanted to change the scheduling from round robin to time-sliced for
all threads, they would only need to change the specific attribute in the attributes object.

To create an attributes object with the desired properties, we must first create an ob-
ject with default properties and then modify the object as required. We look at Pthreads
functions for accomplishing this for threads and synchronization variables.

7.6.1 Attributes Objects for Threads

The function pthread attr init lets us create an attributes object for threads. The
prototype of this function is

1 int
2 pthread_attr_init (
3 pthread_attr_t *attr);

This function initializes the attributes object attr to the default values. Upon success-
ful completion, the function returns a 0, otherwise it returns an error code. The attributes
object may be destroyed using the function pthread attr destroy. The prototype of
this function is:

1 int
2 pthread_attr_destroy (
3 pthread_attr_t *attr);

The call returns a 0 on successful removal of the attributes object attr. Individual
properties associated with the attributes object can be changed using the following func-
tions: pthread attr setdetachstate, pthread attr setguardsize np,
pthread attr setstacksize, pthread attr setinheritsched,
pthread attr setschedpolicy, and pthread attr setschedparam.
These functions can be used to set the detach state in a thread attributes object, the stack

300 Programming Shared Address Space Platforms

guard size, the stack size, whether scheduling policy is inherited from the creating thread,
the scheduling policy (in case it is not inherited), and scheduling parameters, respectively.
We refer the reader to the Pthreads manuals for a detailed description of these functions.
For most parallel programs, default thread properties are generally adequate.

7.6.2 Attributes Objects for Mutexes

The Pthreads API supports three different kinds of locks. All of these locks use the same
functions for locking and unlocking; however, the type of lock is determined by the lock
attribute. The mutex lock used in examples thus far is called a normal mutex. This is
the default type of lock. Only a single thread is allowed to lock a normal mutex once at
any point in time. If a thread with a lock attempts to lock it again, the second locking call
results in a deadlock.

Consider the following example of a thread searching for an element in a binary tree.
To ensure that other threads are not changing the tree during the search process, the thread
locks the tree with a single mutex tree lock. The search function is as follows:

1 search_tree(void *tree_ptr)
2 {
3 struct node *node_pointer;
4 node_pointer = (struct node *) tree_ptr;
5 pthread_mutex_lock(&tree_lock);
6 if (is_search_node(node_pointer) == 1) {
7 /* solution is found here */
8 print_node(node_pointer);
9 pthread_mutex_unlock(&tree_lock);
10 return(1);
11 }
12 else {
13 if (tree_ptr -> left != NULL)
14 search_tree((void *) tree_ptr -> left);
15 if (tree_ptr -> right != NULL)
16 search_tree((void *) tree_ptr -> right);
17 }
18 printf("Search unsuccessful\n");
19 pthread_mutex_unlock(&tree_lock);
20 }

If tree lock is a normal mutex, the first recursive call to the function search tree

ends in a deadlock since a thread attempts to lock a mutex that it holds a lock on. For
addressing such situations, the Pthreads API supports a recursive mutex. A recursive
mutex allows a single thread to lock a mutex multiple times. Each time a thread locks the
mutex, a lock counter is incremented. Each unlock decrements the counter. For any other
thread to be able to successfully lock a recursive mutex, the lock counter must be zero
(i.e., each lock by another thread must have a corresponding unlock). A recursive mutex is
useful when a thread function needs to call itself recursively.

In addition to normal and recursive mutexes, a third kind of mutex called an errorcheck
mutex is also supported. The operation of an errorcheck mutex is similar to a normal

7.7 Thread Cancellation 301

mutex in that a thread can lock a mutex only once. However, unlike a normal mutex, when
a thread attempts a lock on a mutex it has already locked, instead of deadlocking it returns
an error. Therefore, an errorcheck mutex is more useful for debugging purposes.

The type of mutex can be specified using a mutex attribute object. To create and
initialize a mutex attribute object to default values, Pthreads provides the function
pthread mutexattr init. The prototype of the function is:

1 int
2 pthread_mutexattr_init (
3 pthread_mutexattr_t *attr);

This creates and initializes a mutex attributes object attr. The default type of mutex
is a normal mutex. Pthreads provides the function pthread mutexattr settype np

for setting the type of mutex specified by the mutex attributes object. The prototype for
this function is:

1 int
2 pthread_mutexattr_settype_np (
3 pthread_mutexattr_t *attr,
4 int type);

Here, type specifies the type of the mutex and can take one of the following values
corresponding to the three mutex types – normal, recursive, or errorcheck:

• PTHREAD MUTEX NORMAL NP

• PTHREAD MUTEX RECURSIVE NP

• PTHREAD MUTEX ERRORCHECK NP

A mutex-attributes object can be destroyed using the pthread attr destroy that
takes the mutex attributes object attr as its only argument.

7.7 Thread Cancellation

Consider a simple program to evaluate a set of positions in a chess game. Assume that
there are k moves, each being evaluated by an independent thread. If at any point of time,
a position is established to be of a certain quality, the other positions that are known to
be of worse quality must stop being evaluated. In other words, the threads evaluating the
corresponding board positions must be canceled. Posix threads provide this cancellation
feature in the function pthread cancel. The prototype of this function is:

1 int
2 pthread_cancel (
3 pthread_t thread);

302 Programming Shared Address Space Platforms

Here, thread is the handle to the thread to be canceled. A thread may cancel itself
or cancel other threads. When a call to this function is made, a cancellation is sent to the
specified thread. It is not guaranteed that the specified thread will receive or act on the
cancellation. Threads can protect themselves against cancellation. When a cancellation is
actually performed, cleanup functions are invoked for reclaiming the thread data structures.
After this the thread is canceled. This process is similar to termination of a thread using the
pthread exit call. This is performed independently of the thread that made the original
request for cancellation. The pthread cancel function returns after a cancellation has
been sent. The cancellation may itself be performed later. The function returns a 0 on
successful completion. This does not imply that the requested thread has been canceled; it
implies that the specified thread is a valid thread for cancellation.

7.8 Composite Synchronization Constructs

While the Pthreads API provides a basic set of synchronization constructs, often, there is
a need for higher level constructs. These higher level constructs can be built using basic
synchronization constructs. In this section, we look at some of these constructs along with
their performance aspects and applications.

7.8.1 Read-Write Locks

In many applications, a data structure is read frequently but written infrequently. For
such scenarios, it is useful to note that multiple reads can proceed without any coher-
ence problems. However, writes must be serialized. This points to an alternate structure
called a read-write lock. A thread reading a shared data item acquires a read lock on
the variable. A read lock is granted when there are other threads that may already have
read locks. If there is a write lock on the data (or if there are queued write locks), the
thread performs a condition wait. Similarly, if there are multiple threads requesting a write
lock, they must perform a condition wait. Using this principle, we design functions for
read locks mylib rwlock rlock, write locks mylib rwlock wlock, and unlock-
ing mylib rwlock unlock.

The read-write locks illustrated are based on a data structure called mylib rwlock t.
This structure maintains a count of the number of readers, the writer (a 0/1 integer spec-
ifying whether a writer is present), a condition variable readers proceed that is sig-
naled when readers can proceed, a condition variable writer proceed that is signaled
when one of the writers can proceed, a count pending writers of pending writers,
and a mutex read write lock associated with the shared data structure. The function
mylib rwlock init is used to initialize various components of this data structure.

The function mylib rwlock rlock attempts a read lock on the data structure. It
checks to see if there is a write lock or pending writers. If so, it performs a condition
wait on the condition variable readers proceed, otherwise it increments the count of

7.8.1 Read-Write Locks 303

readers and proceeds to grant a read lock. The function mylib rwlock wlock attempts
a write lock on the data structure. It checks to see if there are readers or writers; if so, it
increments the count of pending writers and performs a condition wait on the condition
variable writer proceed. If there are no readers or writer, it grants a write lock and
proceeds.

The function mylib rwlock unlock unlocks a read or write lock. It checks to see if
there is a write lock, and if so, it unlocks the data structure by setting the writer field to 0.
If there are readers, it decrements the number of readers readers. If there are no readers
left and there are pending writers, it signals one of the writers to proceed (by signaling
writer proceed). If there are no pending writers but there are pending readers, it
signals all the reader threads to proceed. The code for initializing and locking/unlocking is
as follows:

1 typedef struct {
2 int readers;
3 int writer;
4 pthread_cond_t readers_proceed;
5 pthread_cond_t writer_proceed;
6 int pending_writers;
7 pthread_mutex_t read_write_lock;
8 } mylib_rwlock_t;
9
10
11 void mylib_rwlock_init (mylib_rwlock_t *l) {
12 l -> readers = l -> writer = l -> pending_writers = 0;
13 pthread_mutex_init(&(l -> read_write_lock), NULL);
14 pthread_cond_init(&(l -> readers_proceed), NULL);
15 pthread_cond_init(&(l -> writer_proceed), NULL);
16 }
17
18 void mylib_rwlock_rlock(mylib_rwlock_t *l) {
19 /* if there is a write lock or pending writers, perform condition
20 wait.. else increment count of readers and grant read lock */
21
22 pthread_mutex_lock(&(l -> read_write_lock));
23 while ((l -> pending_writers > 0) || (l -> writer > 0))
24 pthread_cond_wait(&(l -> readers_proceed),
25 &(l -> read_write_lock));
26 l -> readers ++;
27 pthread_mutex_unlock(&(l -> read_write_lock));
28 }
29
30
31 void mylib_rwlock_wlock(mylib_rwlock_t *l) {
32 /* if there are readers or writers, increment pending writers
33 count and wait. On being woken, decrement pending writers
34 count and increment writer count */
35
36 pthread_mutex_lock(&(l -> read_write_lock));
37 while ((l -> writer > 0) || (l -> readers > 0)) {
38 l -> pending_writers ++;
39 pthread_cond_wait(&(l -> writer_proceed),
40 &(l -> read_write_lock));
41 }

304 Programming Shared Address Space Platforms

42 l -> pending_writers --;
43 l -> writer ++
44 pthread_mutex_unlock(&(l -> read_write_lock));
45 }
46
47
48 void mylib_rwlock_unlock(mylib_rwlock_t *l) {
49 /* if there is a write lock then unlock, else if there are
50 read locks, decrement count of read locks. If the count
51 is 0 and there is a pending writer, let it through, else
52 if there are pending readers, let them all go through */
53
54 pthread_mutex_lock(&(l -> read_write_lock));
55 if (l -> writer > 0)
56 l -> writer = 0;
57 else if (l -> readers > 0)
58 l -> readers --;
59 pthread_mutex_unlock(&(l -> read_write_lock));
60 if ((l -> readers == 0) && (l -> pending_writers > 0))
61 pthread_cond_signal(&(l -> writer_proceed));
62 else if (l -> readers > 0)
63 pthread_cond_broadcast(&(l -> readers_proceed));
64 }

We now illustrate the use of read-write locks with some examples.

Example 7.7 Using read-write locks for computing the minimum of a list of
numbers
A simple use of read-write locks is in computing the minimum of a list of numbers.
In our earlier implementation, we associated a lock with the minimum value. Each
thread locked this object and updated the minimum value, if necessary. In general,
the number of times the value is examined is greater than the number of times it is
updated. Therefore, it is beneficial to allow multiple reads using a read lock and
write after a write lock only if needed. The corresponding program segment is as
follows:

1 void *find_min_rw(void *list_ptr) {
2 int *partial_list_pointer, my_min, i;
3 my_min = MIN_INT;
4 partial_list_pointer = (int *) list_ptr;
5 for (i = 0; i < partial_list_size; i++)
6 if (partial_list_pointer[i] < my_min)
7 my_min = partial_list_pointer[i];
8 /* lock the mutex associated with minimum_value and
9 update the variable as required */
10 mylib_rwlock_rlock(&read_write_lock);
11 if (my_min < minimum_value) {
12 mylib_rwlock_unlock(&read_write_lock);
13 mylib_rwlock_wlock(&read_write_lock);
14 minimum_value = my_min;
15 }
16 /* and unlock the mutex */
17 mylib_rwlock_unlock(&read_write_lock);

7.8.1 Read-Write Locks 305

18 pthread_exit(0);
19 }

Programming Notes In this example, each thread computes the minimum el-
ement in its partial list. It then attempts a read lock on the lock associated with
the global minimum value. If the global minimum value is greater than the locally
minimum value (thus requiring an update), the read lock is relinquished and a write
lock is sought. Once the write lock has been obtained, the global minimum can be
updated. The performance gain obtained from read-write locks is influenced by the
number of threads and the number of updates (write locks) required. In the extreme
case when the first value of the global minimum is also the true minimum value, no
write locks are subsequently sought. In this case, the version using read-write locks
performs better. In contrast, if each thread must update the global minimum, the read
locks are superfluous and add overhead to the program.

Example 7.8 Using read-write locks for implementing hash tables
A commonly used operation in applications ranging from database query to state
space search is the search of a key in a database. The database is organized as a hash
table. In our example, we assume that collisions are handled by chaining colliding
entries into linked lists. Each list has a lock associated with it. This lock ensures that
lists are not being updated and searched at the same time. We consider two versions
of this program: one using mutex locks and one using read-write locks developed in
this section.

The mutex lock version of the program hashes the key into the table, locks
the mutex associated with the table index, and proceeds to search/update within the
linked list. The thread function for doing this is as follows:

1 manipulate_hash_table(int entry) {
2 int table_index, found;
3 struct list_entry *node, *new_node;
4
5 table_index = hash(entry);
6 pthread_mutex_lock(&hash_table[table_index].list_lock);
7 found = 0;
8 node = hash_table[table_index].next;
9 while ((node != NULL) && (!found)) {
10 if (node -> value == entry)
11 found = 1;
12 else
13 node = node -> next;
14 }
15 pthread_mutex_unlock(&hash_table[table_index].list_lock);
16 if (found)
17 return(1);
18 else
19 insert_into_hash_table(entry);
20 }

306 Programming Shared Address Space Platforms

Here, the function insert into hash table must lock
hash table[table index].list lock before performing the actual
insertion. When a large fraction of the queries are found in the hash table (i.e.,
they do not need to be inserted), these searches are serialized. It is easy to see that
multiple threads can be safely allowed to search the hash table and only updates to
the table must be serialized. This can be accomplished using read-write locks. We
can rewrite the manipulate hash table function as follows:

1 manipulate_hash_table(int entry)
2 {
3 int table_index, found;
4 struct list_entry *node, *new_node;
5
6 table_index = hash(entry);
7 mylib_rwlock_rlock(&hash_table[table_index].list_lock);
8 found = 0;
9 node = hash_table[table_index].next;
10 while ((node != NULL) && (!found)) {
11 if (node -> value == entry)
12 found = 1;
13 else
14 node = node -> next;
15 }
16 mylib_rwlock_rlock(&hash_table[table_index].list_lock);
17 if (found)
18 return(1);
19 else
20 insert_into_hash_table(entry);
21 }

Here, the function insert into hash tablemust first get a write lock on
hash table[table index].list lock before performing actual insertion.

Programming Notes In this example, we assume that the list lock field has
been defined to be of type mylib rwlock t and all read-write locks associated
with the hash tables have been initialized using the function mylib rwlock init.
Using mylib rwlock rlock instead of a mutex lock allows multiple threads to
search respective entries concurrently. Thus, if the number of successful searches
outnumber insertions, this formulation is likely to yield better performance. Note
that the insert into hash table function must be suitably modified to use
write locks (instead of mutex locks as before).

It is important to identify situations where read-write locks offer advantages over normal
locks. Since read-write locks offer no advantage over normal mutexes for writes, they are
beneficial only when there are a significant number of read operations. Furthermore, as the
critical section becomes larger, read-write locks offer more advantages. This is because
the serialization overhead paid by normal mutexes is higher. Finally, since read-write locks
rely on condition variables, the underlying thread system must provide fast condition wait,

7.8.2 Barriers 307

signal, and broadcast functions. It is possible to do a simple analysis to understand the
relative merits of read-write locks (Exercise 7.7).

7.8.2 Barriers

An important and often used construct in threaded (as well as other parallel) programs is
a barrier. A barrier call is used to hold a thread until all other threads participating in
the barrier have reached the barrier. Barriers can be implemented using a counter, a mutex
and a condition variable. (They can also be implemented simply using mutexes; however,
such implementations suffer from the overhead of busy-wait.) A single integer is used to
keep track of the number of threads that have reached the barrier. If the count is less than
the total number of threads, the threads execute a condition wait. The last thread entering
(and setting the count to the number of threads) wakes up all the threads using a condition
broadcast. The code for accomplishing this is as follows:

1 typedef struct {
2 pthread_mutex_t count_lock;
3 pthread_cond_t ok_to_proceed;
4 int count;
5 } mylib_barrier_t;
6
7 void mylib_init_barrier(mylib_barrier_t *b) {
8 b -> count = 0;
9 pthread_mutex_init(&(b -> count_lock), NULL);
10 pthread_cond_init(&(b -> ok_to_proceed), NULL);
11 }
12
13 void mylib_barrier (mylib_barrier_t *b, int num_threads) {
14 pthread_mutex_lock(&(b -> count_lock));
15 b -> count ++;
16 if (b -> count == num_threads) {
17 b -> count = 0;
18 pthread_cond_broadcast(&(b -> ok_to_proceed));
19 }
20 else
21 while (pthread_cond_wait(&(b -> ok_to_proceed),
22 &(b -> count_lock)) != 0);
23 pthread_mutex_unlock(&(b -> count_lock));
24 }

In the above implementation of a barrier, threads enter the barrier and stay until the
broadcast signal releases them. The threads are released one by one since the mutex
count lock is passed among them one after the other. The trivial lower bound on execu-
tion time of this function is therefore O(n) for n threads. This implementation of a barrier
can be speeded up using multiple barrier variables.

Let us consider an alternate barrier implementation in which there are n/2 condition
variable-mutex pairs for implementing a barrier for n threads. The barrier works as follows:
at the first level, threads are paired up and each pair of threads shares a single condition
variable-mutex pair. A designated member of the pair waits for both threads to arrive at the

308 Programming Shared Address Space Platforms

pairwise barrier. Once this happens, all the designated members are organized into pairs,
and this process continues until there is only one thread. At this point, we know that all
threads have reached the barrier point. We must release all threads at this point. However,
releasing them requires signaling all n/2 condition variables. We use the same hierarchical
strategy for doing this. The designated thread in a pair signals the respective condition
variables.

1 typedef struct barrier_node {
2 pthread_mutex_t count_lock;
3 pthread_cond_t ok_to_proceed_up;
4 pthread_cond_t ok_to_proceed_down;
5 int count;
6 } mylib_barrier_t_internal;
7
8 typedef struct barrier_node mylog_logbarrier_t[MAX_THREADS];
9 pthread_t p_threads[MAX_THREADS];
10 pthread_attr_t attr;
11
12 void mylib_init_barrier(mylog_logbarrier_t b) {
13 int i;
14 for (i = 0; i < MAX_THREADS; i++) {
15 b[i].count = 0;
16 pthread_mutex_init(&(b[i].count_lock), NULL);
17 pthread_cond_init(&(b[i].ok_to_proceed_up), NULL);
18 pthread_cond_init(&(b[i].ok_to_proceed_down), NULL);
19 }
20 }
21
22 void mylib_logbarrier (mylog_logbarrier_t b, int num_threads,
23 int thread_id) {
24 int i, base, index;
25 i = 2;
26 base = 0;
27
28 do {
29 index = base + thread_id / i;
30 if (thread_id % i == 0) {
31 pthread_mutex_lock(&(b[index].count_lock));
32 b[index].count ++;
33 while (b[index].count < 2)
34 pthread_cond_wait(&(b[index].ok_to_proceed_up),
35 &(b[index].count_lock));
36 pthread_mutex_unlock(&(b[index].count_lock));
37 }
38 else {
39 pthread_mutex_lock(&(b[index].count_lock));
40 b[index].count ++;
41 if (b[index].count == 2)
42 pthread_cond_signal(&(b[index].ok_to_proceed_up));
43 while (pthread_cond_wait(&(b[index].ok_to_proceed_down),
44 &(b[index].count_lock)) != 0);
45 pthread_mutex_unlock(&(b[index].count_lock));
46 break;
47 }
48 base = base + num_threads/i;
49 i = i * 2;

7.8.2 Barriers 309

50 } while (i <= num_threads);
51 i = i / 2;
52 for (; i > 1; i = i / 2) {
53 base = base - num_threads/i;
54 index = base + thread_id / i;
55 pthread_mutex_lock(&(b[index].count_lock));
56 b[index].count = 0;
57 pthread_cond_signal(&(b[index].ok_to_proceed_down));
58 pthread_mutex_unlock(&(b[index].count_lock));
59 }
60 }

In this implementation of a barrier, we visualize the barrier as a binary tree. Threads
arrive at the leaf nodes of this tree. Consider an instance of a barrier with eight threads.
Threads 0 and 1 are paired up on a single leaf node. One of these threads is designated as
the representative of the pair at the next level in the tree. In the above example, thread 0 is
considered the representative and it waits on the condition variable ok to proceed up

for thread 1 to catch up. All even numbered threads proceed to the next level in the tree.
Now thread 0 is paired up with thread 2 and thread 4 with thread 6. Finally thread 0 and 4
are paired. At this point, thread 0 realizes that all threads have reached the desired barrier
point and releases threads by signaling the condition ok to proceed down. When all
threads are released, the barrier is complete.

It is easy to see that there are n − 1 nodes in the tree for an n thread barrier. Each
node corresponds to two condition variables, one for releasing the thread up and one for
releasing it down, one lock, and a count of number of threads reaching the node. The tree
nodes are linearly laid out in the array mylog logbarrier t with the n/2 leaf nodes
taking the first n/2 elements, the n/4 tree nodes at the next higher level taking the next n/4
nodes and so on.

It is interesting to study the performance of this program. Since threads in the linear
barrier are released one after the other, it is reasonable to expect runtime to be linear in
the number of threads even on multiple processors. In Figure 7.3, we plot the runtime of
1000 barriers in a sequence on a 32 processor SGI Origin 2000. The linear runtime of the
sequential barrier is clearly reflected in the runtime. The logarithmic barrier executing on
a single processor does just as much work asymptotically as a sequential barrier (albeit
with a higher constant). However, on a parallel machine, in an ideal case when threads
are assigned so that subtrees of the binary barrier tree are assigned to different processors,
the time grows as O(n/p + log p). While this is difficult to achieve without being able
to examine or assign blocks of threads corresponding to subtrees to individual processors,
the logarithmic barrier displays significantly better performance than the serial barrier. Its
performance tends to be linear in n as n becomes large for a given number of processors.
This is because the n/p term starts to dominate the log p term in the execution time. This
is observed both from observations as well as from analytical intuition.

310 Programming Shared Address Space Platforms

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120 140

T
im

e
(s

ec
on

ds
)

Number of threads

Log Barrier (1000, 32 procs)
Linear Barrier (1000, 32 procs)

Figure 7.3 Execution time of 1000 sequential and logarithmic barriers as a function of number of
threads on a 32 processor SGI Origin 2000.

7.9 Tips for Designing Asynchronous Programs

When designing multithreaded applications, it is important to remember that one cannot
assume any order of execution with respect to other threads. Any such order must be
explicitly established using the synchronization mechanisms discussed above: mutexes,
condition variables, and joins. In addition, the system may provide other means of syn-
chronization. However, for portability reasons, we discourage the use of these mechanisms.

In many thread libraries, threads are switched at semi-deterministic intervals. Such li-
braries are more forgiving of synchronization errors in programs. These libraries are called
slightly asynchronous libraries. On the other hand, kernel threads (threads supported by
the kernel) and threads scheduled on multiple processors are less forgiving. The program-
mer must therefore not make any assumptions regarding the level of asynchrony in the
threads library.

Let us look at some common errors that arise from incorrect assumptions on relative
execution times of threads:

• Say, a thread T1 creates another thread T2. T2 requires some data from thread T1.
This data is transferred using a global memory location. However, thread T1 places
the data in the location after creating thread T2. The implicit assumption here is that
T1 will not be switched until it blocks; or that T2 will get to the point at which it

7.10 OpenMP: a Standard for Directive Based Parallel Programming 311

uses the data only after T1 has stored it there. Such assumptions may lead to errors
since it is possible that T1 gets switched as soon as it creates T2. In such a situation,
T1 will receive uninitialized data.

• Assume, as before, that thread T1 creates T2 and that it needs to pass data to thread
T2 which resides on its stack. It passes this data by passing a pointer to the stack
location to thread T2. Consider the scenario in which T1 runs to completion before
T2 gets scheduled. In this case, the stack frame is released and some other thread
may overwrite the space pointed to formerly by the stack frame. In this case, what
thread T2 reads from the location may be invalid data. Similar problems may exist
with global variables.

• We strongly discourage the use of scheduling techniques as means of synchroniza-
tion. It is especially difficult to keep track of scheduling decisions on parallel ma-
chines. Further, as the number of processors change, these issues may change de-
pending on the thread scheduling policy. It may happen that higher priority threads
are actually waiting while lower priority threads are running.

We recommend the following rules of thumb which help minimize the errors in threaded
programs.

• Set up all the requirements for a thread before actually creating the thread. This
includes initializing the data, setting thread attributes, thread priorities, mutex-
attributes, etc. Once you create a thread, it is possible that the newly created thread
actually runs to completion before the creating thread gets scheduled again.

• When there is a producer-consumer relation between two threads for certain data
items, make sure the producer thread places the data before it is consumed and that
intermediate buffers are guaranteed to not overflow.

• At the consumer end, make sure that the data lasts at least until all potential con-
sumers have consumed the data. This is particularly relevant for stack variables.

• Where possible, define and use group synchronizations and data replication. This
can improve program performance significantly.

While these simple tips provide guidelines for writing error-free threaded programs,
extreme caution must be taken to avoid race conditions and parallel overheads associated
with synchronization.

7.10 OpenMP: a Standard for Directive Based Parallel
Programming

In the first part of this chapter, we studied the use of threaded APIs for programming shared
address space machines. While standardization and support for these APIs has come a

312 Programming Shared Address Space Platforms

long way, their use is still predominantly restricted to system programmers as opposed to
application programmers. One of the reasons for this is that APIs such as Pthreads are
considered to be low-level primitives. Conventional wisdom indicates that a large class of
applications can be efficiently supported by higher level constructs (or directives) which rid
the programmer of the mechanics of manipulating threads. Such directive-based languages
have existed for a long time, but only recently have standardization efforts succeeded in
the form of OpenMP. OpenMP is an API that can be used with FORTRAN, C, and C++
for programming shared address space machines. OpenMP directives provide support for
concurrency, synchronization, and data handling while obviating the need for explicitly
setting up mutexes, condition variables, data scope, and initialization. We use the OpenMP
C API in the rest of this chapter.

7.10.1 The OpenMP Programming Model

We initiate the OpenMP programming model with the aid of a simple program. OpenMP
directives in C and C++ are based on the #pragma compiler directives. The directive
itself consists of a directive name followed by clauses.

1 #pragma omp directive [clause list]

OpenMP programs execute serially until they encounter the parallel directive. This
directive is responsible for creating a group of threads. The exact number of threads can be
specified in the directive, set using an environment variable, or at runtime using OpenMP
functions. The main thread that encounters the parallel directive becomes the master
of this group of threads and is assigned the thread id 0 within the group. The parallel
directive has the following prototype:

1 #pragma omp parallel [clause list]
2 /* structured block */
3

Each thread created by this directive executes the structured block specified by
the parallel directive. The clause list is used to specify conditional parallelization, number
of threads, and data handling.

• Conditional Parallelization: The clause if (scalar expression) deter-
mines whether the parallel construct results in creation of threads. Only one if
clause can be used with a parallel directive.

• Degree of Concurrency: The clause num threads (integer

expression) specifies the number of threads that are created by the parallel
directive.

• Data Handling: The clause private (variable list) indicates that the set
of variables specified is local to each thread – i.e., each thread has its own copy
of each variable in the list. The clause firstprivate (variable list)

7.10.1 The OpenMP Programming Model 313

is similar to the private clause, except the values of variables on entering the
threads are initialized to corresponding values before the parallel directive. The
clause shared (variable list) indicates that all variables in the list are
shared across all the threads, i.e., there is only one copy. Special care must be taken
while handling these variables by threads to ensure serializability.

 pthread_create (......., internal_thread_fn_name, ...);

 // serial segment

 for (i = 0; i < 8; i++)

 for (i = 0; i < 8; i++)
 pthread_join (.......);

 // rest of serial segment

}

void *internal_thread_fn_name (void *packaged_argument) [
 int a;

 // parallel segment

}

main() {

int a, b;

Code
inserted by

the OpenMP
compiler

Sample OpenMP program

Corresponding Pthreads translation

 {
 // parallel segment
 }

 // serial segment
 #pragma omp parallel num_threads (8) private (a) shared (b)

 // rest of serial segment
}

main() {

int a, b;

Figure 7.4 A sample OpenMP program along with its Pthreads translation that might be performed
by an OpenMP compiler.

It is easy to understand the concurrency model of OpenMP when viewed in the context
of the corresponding Pthreads translation. In Figure 7.4, we show one possible translation
of an OpenMP program to a Pthreads program. The interested reader may note that such a
translation can easily be automated through a Yacc or CUP script.

Example 7.9 Using the parallel directive

1 #pragma omp parallel if (is_parallel == 1) num_threads(8) \
2 private (a) shared (b) firstprivate(c)
3 {
4 /* structured block */
5 }

314 Programming Shared Address Space Platforms

Here, if the value of the variable is parallel equals one, eight threads are cre-
ated. Each of these threads gets private copies of variables a and c, and shares a
single value of variable b. Furthermore, the value of each copy of c is initialized to
the value of c before the parallel directive.

The default state of a variable is specified by the clause default (shared) or
default (none). The clause default (shared) implies that, by default, a vari-
able is shared by all the threads. The clause default (none) implies that the state of
each variable used in a thread must be explicitly specified. This is generally recommended,
to guard against errors arising from unintentional concurrent access to shared data.

Just as firstprivate specifies how multiple local copies of a variable are initialized
inside a thread, the reduction clause specifies how multiple local copies of a variable
at different threads are combined into a single copy at the master when threads exit. The
usage of the reduction clause is reduction (operator: variable list).
This clause performs a reduction on the scalar variables specified in the list using the
operator. The variables in the list are implicitly specified as being private to threads.
The operator can be one of +, *, -, &, |, ˆ, &&, and ||.

Example 7.10 Using the reduction clause

1 #pragma omp parallel reduction(+: sum) num_threads(8)
2 {
3 /* compute local sums here */
4 }
5 /* sum here contains sum of all local instances of sums */

In this example, each of the eight threads gets a copy of the variable sum. When the
threads exit, the sum of all of these local copies is stored in the single copy of the
variable (at the master thread).

In addition to these data handling clauses, there is one other clause, copyin. We will
describe this clause in Section 7.10.4 after we discuss data scope in greater detail.

We can now use the parallel directive along with the clauses to write
our first OpenMP program. We introduce two functions to facilitate this. The
omp get num threads() function returns the number of threads in the parallel region
and the omp get thread num() function returns the integer i.d. of each thread (recall
that the master thread has an i.d. 0).

Example 7.11 Computing PI using OpenMP directives
Our first OpenMP example follows from Example 7.2, which presented a Pthreads
program for the same problem. The parallel directive specifies that all variables

George
Highlight

George
Highlight

7.10.2 Specifying Concurrent Tasks in OpenMP 315

except npoints, the total number of random points in two dimensions across all
threads, are local. Furthermore, the directive specifies that there are eight threads,
and the value of sum after all threads complete execution is the sum of local values
at each thread. The function omp get num threads is used to determine the total
number of threads. As in Example 7.2, a for loop generates the required number of
random points (in two dimensions) and determines how many of them are within the
prescribed circle of unit diameter.

1 /* **
2 An OpenMP version of a threaded program to compute PI.
3 ** */
4
5 #pragma omp parallel default(private) shared (npoints) \
6 reduction(+: sum) num_threads(8)
7 {
8 num_threads = omp_get_num_threads();
9 sample_points_per_thread = npoints / num_threads;
10 sum = 0;
11 for (i = 0; i < sample_points_per_thread; i++) {
12 rand_no_x =(double)(rand_r(&seed))/(double)((2<<14)-1);
13 rand_no_y =(double)(rand_r(&seed))/(double)((2<<14)-1);
14 if (((rand_no_x - 0.5) * (rand_no_x - 0.5) +
15 (rand_no_y - 0.5) * (rand_no_y - 0.5)) < 0.25)
16 sum ++;
17 }
18 }

Note that this program is much easier to write in terms of specifying creation and ter-
mination of threads compared to the corresponding POSIX threaded program.

7.10.2 Specifying Concurrent Tasks in OpenMP

The parallel directive can be used in conjunction with other directives to specify
concurrency across iterations and tasks. OpenMP provides two directives – for and
sections – to specify concurrent iterations and tasks.

The for Directive

The for directive is used to split parallel iteration spaces across threads. The general form
of a for directive is as follows:

1 #pragma omp for [clause list]
2 /* for loop */
3

The clauses that can be used in this context are: private, firstprivate,
lastprivate, reduction, schedule, nowait, and ordered. The first four

George
Highlight

George
Highlight

316 Programming Shared Address Space Platforms

clauses deal with data handling and have identical semantics as in the case of the
parallel directive. The lastprivate clause deals with how multiple local copies
of a variable are written back into a single copy at the end of the parallel for loop. When
using a for loop (or sections directive as we shall see) for farming work to threads, it
is sometimes desired that the last iteration (as defined by serial execution) of the for loop
update the value of a variable. This is accomplished using the lastprivate directive.

Example 7.12 Using the for directive for computing π
Recall from Example 7.11 that each iteration of the for loop is independent, and
can be executed concurrently. In such situations, we can simplify the program using
the for directive. The modified code segment is as follows:

1 #pragma omp parallel default(private) shared (npoints) \
2 reduction(+: sum) num_threads(8)
3 {
4 sum = 0;
5 #pragma omp for
6 for (i = 0; i < npoints; i++) {
7 rand_no_x =(double)(rand_r(&seed))/(double)((2<<14)-1);
8 rand_no_y =(double)(rand_r(&seed))/(double)((2<<14)-1);
9 if (((rand_no_x - 0.5) * (rand_no_x - 0.5) +
10 (rand_no_y - 0.5) * (rand_no_y - 0.5)) < 0.25)
11 sum ++;
12 }
13 }

The for directive in this example specifies that the for loop immediately
following the directive must be executed in parallel, i.e., split across various threads.
Notice that the loop index goes from 0 to npoints in this case, as opposed to
sample points per thread in Example 7.11. The loop index for the for di-
rective is assumed to be private, by default. It is interesting to note that the only
difference between this OpenMP segment and the corresponding serial code is the
two directives. This example illustrates how simple it is to convert many serial pro-
grams into OpenMP-based threaded programs.

Assigning Iterations to Threads

The schedule clause of the for directive deals with the assignment
of iterations to threads. The general form of the schedule directive is
schedule(scheduling class[, parameter]). OpenMP supports four
scheduling classes: static, dynamic, guided, and runtime.

Example 7.13 Scheduling classes in OpenMP – matrix multiplication.
We explore various scheduling classes in the context of dense matrix multiplication.
The code for multiplying two matrices a and b to yield matrix c is as follows:

George
Highlight

George
Highlight

7.10.2 Specifying Concurrent Tasks in OpenMP 317

1 for (i = 0; i < dim; i++) {
2 for (j = 0; j < dim; j++) {
3 c(i,j) = 0;
4 for (k = 0; k < dim; k++) {
5 c(i,j) += a(i, k) * b(k, j);
6 }
7 }
8 }

The code segment above specifies a three-dimensional iteration space provid-
ing us with an ideal example for studying various scheduling classes in OpenMP.

Static The general form of the static scheduling class is schedule(static[,
chunk-size]). This technique splits the iteration space into equal chunks of
size chunk-size and assigns them to threads in a round-robin fashion. When no
chunk-size is specified, the iteration space is split into as many chunks as there are
threads and one chunk is assigned to each thread.

Example 7.14 Static scheduling of loops in matrix multiplication
The following modification of the matrix-multiplication program causes the outer-
most iteration to be split statically across threads as illustrated in Figure 7.5(a).

1 #pragma omp parallel default(private) shared (a, b, c, dim) \
2 num_threads(4)
3 #pragma omp for schedule(static)
4 for (i = 0; i < dim; i++) {
5 for (j = 0; j < dim; j++) {
6 c(i,j) = 0;
7 for (k = 0; k < dim; k++) {
8 c(i,j) += a(i, k) * b(k, j);
9 }
10 }
11 }

Since there are four threads in all, if dim = 128, the size of each
partition is 32 columns, since we have not specified the chunk size. Using
schedule(static, 16) results in the partitioning of the iteration space illus-
trated in Figure 7.5(b). Another example of the split illustrated in Figure 7.5(c)
results when each for loop in the program in Example 7.13 is parallelized across
threads with a schedule(static) and nested parallelism is enabled (see Sec-
tion 7.10.6).

Dynamic Often, because of a number of reasons, ranging from heterogeneous comput-
ing resources to non-uniform processor loads, equally partitioned workloads take widely
varying execution times. For this reason, OpenMP has a dynamic scheduling class. The

318 Programming Shared Address Space Platforms

32

C C
16 cols

A

B

C

32

AA

(c)(b)

128

B

(a)

128128

32

32

B

Figure 7.5 Three different schedules using the static scheduling class of OpenMP.

general form of this class is schedule(dynamic[, chunk-size]). The iteration
space is partitioned into chunks given by chunk-size. However, these are assigned to
threads as they become idle. This takes care of the temporal imbalances resulting from
static scheduling. If no chunk-size is specified, it defaults to a single iteration per
chunk.

Guided Consider the partitioning of an iteration space of 100 iterations with a chunk
size of 5. This corresponds to 20 chunks. If there are 16 threads, in the best case, 12
threads get one chunk each and the remaining four threads get two chunks. Consequently,
if there are as many processors as threads, this assignment results in considerable idling.
The solution to this problem (also referred to as an edge effect) is to reduce the chunk size
as we proceed through the computation. This is the principle of the guided scheduling
class. The general form of this class is schedule(guided[, chunk-size]). In
this class, the chunk size is reduced exponentially as each chunk is dispatched to a thread.
The chunk-size refers to the smallest chunk that should be dispatched. Therefore,
when the number of iterations left is less than chunk-size, the entire set of iterations is
dispatched at once. The value of chunk-size defaults to one if none is specified.

Runtime Often it is desirable to delay scheduling decisions until runtime. For example,
if one would like to see the impact of various scheduling strategies to select the best one, the
scheduling can be set to runtime. In this case the environment variable OMP SCHEDULE

determines the scheduling class and the chunk size.
When no scheduling class is specified with the omp for directive, the actual schedul-

ing technique is not specified and is implementation dependent. The for directive places
additional restrictions on the for loop that follows. For example, it must not have a break
statement, the loop control variable must be an integer, the initialization expression of the
for loop must be an integer assignment, the logical expression must be one of <, ≤, >,

7.10.2 Specifying Concurrent Tasks in OpenMP 319

or ≥, and the increment expression must have integer increments or decrements only. For
more details on these restrictions, we refer the reader to the OpenMP manuals.

Synchronization Across Multiple for Directives

Often, it is desirable to have a sequence of for-directives within a parallel construct that
do not execute an implicit barrier at the end of each for directive. OpenMP provides a
clause – nowait, which can be used with a for directive to indicate that the threads can
proceed to the next statement without waiting for all other threads to complete the for
loop execution. This is illustrated in the following example:

Example 7.15 Using the nowait clause
Consider the following example in which variable name needs to be looked up in
two lists – current list and past list. If the name exists in a list, it must be
processed accordingly. The name might exist in both lists. In this case, there is no
need to wait for all threads to complete execution of the first loop before proceeding
to the second loop. Consequently, we can use the nowait clause to save idling and
synchronization overheads as follows:

1 #pragma omp parallel
2 {
3 #pragma omp for nowait
4 for (i = 0; i < nmax; i++)
5 if (isEqual(name, current_list[i])
6 processCurrentName(name);
7 #pragma omp for
8 for (i = 0; i < mmax; i++)
9 if (isEqual(name, past_list[i])
10 processPastName(name);
11 }

The sections Directive

The for directive is suited to partitioning iteration spaces across threads. Consider now
a scenario in which there are three tasks (taskA, taskB, and taskC) that need to be
executed. Assume that these tasks are independent of each other and therefore can be
assigned to different threads. OpenMP supports such non-iterative parallel task assignment
using the sections directive. The general form of the sections directive is as follows:

1 #pragma omp sections [clause list]
2 {
3 [#pragma omp section
4 /* structured block */
5]
6 [#pragma omp section

320 Programming Shared Address Space Platforms

7 /* structured block */
8]
9 ...
10 }

This sections directive assigns the structured block corresponding to each sec-
tion to one thread (indeed more than one section can be assigned to a single thread).
The clause list may include the following clauses – private, firstprivate,
lastprivate, reduction, and nowait. The syntax and semantics of these clauses
are identical to those in the case of the for directive. The lastprivate clause, in
this case, specifies that the last section (lexically) of the sections directive updates the
value of the variable. The nowait clause specifies that there is no implicit synchroniza-
tion among all threads at the end of the sections directive.

For executing the three concurrent tasks taskA, taskB, and taskC, the correspond-
ing sections directive is as follows:

1 #pragma omp parallel
2 {
3 #pragma omp sections
4 {
5 #pragma omp section
6 {
7 taskA();
8 }
9 #pragma omp section
10 {
11 taskB();
12 }
13 #pragma omp section
14 {
15 taskC();
16 }
17 }
18 }

If there are three threads, each section (in this case, the associated task) is assigned to
one thread. At the end of execution of the assigned section, the threads synchronize (unless
the nowait clause is used). Note that it is illegal to branch in and out of section blocks.

Merging Directives

In our discussion thus far, we use the directive parallel to create concurrent threads,
and for and sections to farm out work to threads. If there was no parallel di-
rective specified, the for and sections directives would execute serially (all work is
farmed to a single thread, the master thread). Consequently, for and sections direc-
tives are generally preceded by the parallel directive. OpenMP allows the programmer
to merge the parallel directives to parallel for and parallel sections, re-
spectively. The clause list for the merged directive can be from the clause lists of either the
parallel or for / sections directives.
For example:

George
Highlight

7.10.2 Specifying Concurrent Tasks in OpenMP 321

1 #pragma omp parallel default (private) shared (n)
2 {
3 #pragma omp for
4 for (i = 0 < i < n; i++) {
5 /* body of parallel for loop */
6 }
7 }

is identical to:

1 #pragma omp parallel for default (private) shared (n)
2 {
3 for (i = 0 < i < n; i++) {
4 /* body of parallel for loop */
5 }
6 }
7

and:

1 #pragma omp parallel
2 {
3 #pragma omp sections
4 {
5 #pragma omp section
6 {
7 taskA();
8 }
9 #pragma omp section
10 {
11 taskB();
12 }
13 /* other sections here */
14 }
15 }

is identical to:

1 #pragma omp parallel sections
2 {
3 #pragma omp section
4 {
5 taskA();
6 }
7 #pragma omp section
8 {
9 taskB();
10 }
11 /* other sections here */
12 }

Nesting parallel Directives

Let us revisit Program 7.13. To split each of the for loops across various threads, we
would modify the program as follows:

322 Programming Shared Address Space Platforms

1 #pragma omp parallel for default(private) shared (a, b, c, dim) \
2 num_threads(2)
3 for (i = 0; i < dim; i++) {
4 #pragma omp parallel for default(private) shared (a, b, c, dim) \
5 num_threads(2)
6 for (j = 0; j < dim; j++) {
7 c(i,j) = 0;
8 #pragma omp parallel for default(private) \
9 shared (a, b, c, dim) num_threads(2)
10 for (k = 0; k < dim; k++) {
11 c(i,j) += a(i, k) * b(k, j);
12 }
13 }
14 }

We start by making a few observations about how this segment is written. Instead
of nesting three for directives inside a single parallel directive, we have used three
parallel for directives. This is because OpenMP does not allow for, sections,
and single directives that bind to the same parallel directive to be nested. Further-
more, the code as written only generates a logical team of threads on encountering a nested
parallel directive. The newly generated logical team is still executed by the same
thread corresponding to the outer parallel directive. To generate a new set of threads,
nested parallelism must be enabled using the OMP NESTED environment variable. If the
OMP NESTED environment variable is set to FALSE, then the inner parallel region is
serialized and executed by a single thread. If the OMP NESTED environment variable is set
to TRUE, nested parallelism is enabled. The default state of this environment variable is
FALSE, i.e., nested parallelism is disabled. OpenMP environment variables are discussed
in greater detail in Section 7.10.6.

There are a number of other restrictions associated with the use of synchronization con-
structs in nested parallelism. We refer the reader to the OpenMP manual for a discussion
of these restrictions.

7.10.3 Synchronization Constructs in OpenMP

In Section 7.5, we described the need for coordinating the execution of multiple threads.
This may be the result of a desired execution order, the atomicity of a set of instructions,
or the need for serial execution of code segments. The Pthreads API supports mutexes
and condition variables. Using these we implemented a range of higher level functionality
in the form of read-write locks, barriers, monitors, etc. The OpenMP standard provides
this high-level functionality in an easy-to-use API. In this section, we will explore these
directives and their use.

Synchronization Point: The barrier Directive

A barrier is one of the most frequently used synchronization primitives. OpenMP provides
a barrier directive, whose syntax is as follows:

7.10.3 Synchronization Constructs in OpenMP 323

1 #pragma omp barrier

On encountering this directive, all threads in a team wait until others have caught up,
and then release. When used with nested parallel directives, the barrier directive
binds to the closest parallel directive. For executing barriers conditionally, it is impor-
tant to note that a barrier directive must be enclosed in a compound statement that is
conditionally executed. This is because pragmas are compiler directives and not a part of
the language. Barriers can also be effected by ending and restarting parallel regions.
However, there is usually a higher overhead associated with this. Consequently, it is not
the method of choice for implementing barriers.

Single Thread Executions: The single and master Directives

Often, a computation within a parallel section needs to be performed by just one thread. A
simple example of this is the computation of the mean of a list of numbers. Each thread
can compute a local sum of partial lists, add these local sums to a shared global sum, and
have one thread compute the mean by dividing this global sum by the number of entries in
the list. The last step can be accomplished using a single directive.

A single directive specifies a structured block that is executed by a single (arbitrary)
thread. The syntax of the single directive is as follows:

1 #pragma omp single [clause list]
2 structured block

The clause list can take clauses private, firstprivate, and nowait. These
clauses have the same semantics as before. On encountering the single block, the first
thread enters the block. All the other threads proceed to the end of the block. If the
nowait clause has been specified at the end of the block, then the other threads proceed;
otherwise they wait at the end of the single block for the thread to finish executing the
block. This directive is useful for computing global data as well as performing I/O.

The master directive is a specialization of the single directive in which only the
master thread executes the structured block. The syntax of the master directive is as
follows:

1 #pragma omp master
2 structured block

In contrast to the single directive, there is no implicit barrier associated with the
master directive.

Critical Sections: The critical and atomic Directives

In our discussion of Pthreads, we had examined the use of locks to protect critical regions
– regions that must be executed serially, one thread at a time. In addition to explicit lock
management (Section 7.10.5), OpenMP provides a critical directive for implementing
critical regions. The syntax of a critical directive is:

324 Programming Shared Address Space Platforms

1 #pragma omp critical [(name)]
2 structured block

Here, the optional identifier name can be used to identify a critical region. The use of
name allows different threads to execute different code while being protected from each
other.

Example 7.16 Using the critical directive for producer-consumer
threads
Consider a producer-consumer scenario in which a producer thread generates a task
and inserts it into a task-queue. The consumer thread extracts tasks from the queue
and executes them one at a time. Since there is concurrent access to the task-queue,
these accesses must be serialized using critical blocks. Specifically, the tasks of
inserting and extracting from the task-queue must be serialized. This can be imple-
mented as follows:

1 #pragma omp parallel sections
2 {
3 #pragma parallel section
4 {
5 /* producer thread */
6 task = produce_task();
7 #pragma omp critical (task_queue)
8 {
9 insert_into_queue(task);
10 }
11 }
12 #pragma parallel section
13 {
14 /* consumer thread */
15 #pragma omp critical (task_queue)
16 {
17 task = extract_from_queue(task);
18 }
19 consume_task(task);
20 }
21 }

Note that queue full and queue empty conditions must be explicitly handled
here in functions insert into queue and extract from queue.

The critical directive ensures that at any point in the execution of the program,
only one thread is within a critical section specified by a certain name. If a thread is
already inside a critical section (with a name), all others must wait until it is done before
entering the named critical section. The name field is optional. If no name is specified, the
critical section maps to a default name that is the same for all unnamed critical sections.
The names of critical sections are global across the program.

7.10.3 Synchronization Constructs in OpenMP 325

It is easy to see that the critical directive is a direct application of the corresponding
mutex function in Pthreads. The name field maps to the name of the mutex on which
the lock is performed. As is the case with Pthreads, it is important to remember that
critical sections represent serialization points in the program and therefore we must
reduce the size of the critical sections as much as possible (in terms of execution time) to
get good performance.

There are some obvious safeguards that must be noted while using the critical

directive. The block of instructions must represent a structured block, i.e., no jumps are
permitted into or out of the block. It is easy to see that the former would result in non-
critical access and the latter in an unreleased lock, which could cause the threads to wait
indefinitely.

Often, a critical section consists simply of an update to a single memory location,
for example, incrementing or adding to an integer. OpenMP provides another directive,
atomic, for such atomic updates to memory locations. The atomic directive specifies
that the memory location update in the following instruction should be performed as an
atomic operation. The update instruction can be one of the following forms:

1 x binary_operation = expr
2 x++
3 ++x
4 x--
5 --x

Here, expr is a scalar expression that does not include a reference to x, x itself is an
lvalue of scalar type, and binary operation is one of {+, ∗,−, /,&,, ‖,�,�}. It is
important to note that the atomic directive only atomizes the load and store of the scalar
variable. The evaluation of the expression is not atomic. Care must be taken to ensure that
there are no race conditions hidden therein. This also explains why the expr term in the
atomic directive cannot contain the updated variable itself. All atomic directives can
be replaced by critical directives provided they have the same name. However, the
availability of atomic hardware instructions may optimize the performance of the program,
compared to translation to critical directives.

In-Order Execution: The ordered Directive

In many circumstances, it is necessary to execute a segment of a parallel loop in the order
in which the serial version would execute it. For example, consider a for loop in which, at
some point, we compute the cumulative sum in array cumul sum of a list stored in array
list. The array cumul sum can be computed using a for loop over index i serially by
executing cumul sum[i] = cumul sum[i-1] + list[i]. When executing this
for loop across threads, it is important to note that cumul sum[i] can be computed
only after cumul sum[i-1] has been computed. Therefore, the statement would have
to executed within an ordered block.

The syntax of the ordered directive is as follows:

326 Programming Shared Address Space Platforms

1 #pragma omp ordered
2 structured block

Since the ordered directive refers to the in-order execution of a for loop, it must
be within the scope of a for or parallel for directive. Furthermore, the for or
parallel for directive must have the ordered clause specified to indicate that the
loop contains an ordered block.

Example 7.17 Computing the cumulative sum of a list using the ordered

directive
As we have just seen, to compute the cumulative sum of i numbers of a list, we
can add the current number to the cumulative sum of i-1 numbers of the list. This
loop must, however, be executed in order. Furthermore, the cumulative sum of the
first element is simply the element itself. We can therefore write the following code
segment using the ordered directive.

1 cumul_sum[0] = list[0];
2 #pragma omp parallel for private (i) \
3 shared (cumul_sum, list, n) ordered
4 for (i = 1; i < n; i++)
5 {
6 /* other processing on list[i] if needed */
7
8 #pragma omp ordered
9 {
10 cumul_sum[i] = cumul_sum[i-1] + list[i];
11 }
12 }

It is important to note that the ordered directive represents an ordered serialization
point in the program. Only a single thread can enter an ordered block when all prior
threads (as determined by loop indices) have exited. Therefore, if large portions of a loop
are enclosed in ordered directives, corresponding speedups suffer. In the above example,
the parallel formulation is expected to be no faster than the serial formulation unless there
is significant processing associated with list[i] outside the ordered directive. A
single for directive is constrained to have only one ordered block in it.

Memory Consistency: The flush Directive

The flush directive provides a mechanism for making memory consistent across threads.
While it would appear that such a directive is superfluous for shared address space ma-
chines, it is important to note that variables may often be assigned to registers and register-
allocated variables may be inconsistent. In such cases, the flush directive provides a

7.10.4 Data Handling in OpenMP 327

memory fence by forcing a variable to be written to or read from the memory system. All
write operations to shared variables must be committed to memory at a flush and all ref-
erences to shared variables after a fence must be satisfied from the memory. Since private
variables are relevant only to a single thread, the flush directive applies only to shared
variables.

The syntax of the flush directive is as follows:

1 #pragma omp flush[(list)]

The optional list specifies the variables that need to be flushed. The default is that all
shared variables are flushed.

Several OpenMP directives have an implicit flush. Specifically, a flush is implied
at a barrier, at the entry and exit of critical, ordered, parallel, parallel
for, and parallel sections blocks and at the exit of for, sections, and
single blocks. A flush is not implied if a nowait clause is present. It is also not
implied at the entry of for, sections, and single blocks and at entry or exit of a
master block.

7.10.4 Data Handling in OpenMP

One of the critical factors influencing program performance is the manipulation of data
by threads. We have briefly discussed OpenMP support for various data classes such as
private, shared, firstprivate, and lastprivate. We now examine these in
greater detail, with a view to understanding how these classes should be used. We identify
the following heuristics to guide the process:

• If a thread initializes and uses a variable (such as loop indices) and no other thread
accesses the data, then a local copy of the variable should be made for the thread.
Such data should be specified as private.

• If a thread repeatedly reads a variable that has been initialized earlier in the program,
it is beneficial to make a copy of the variable and inherit the value at the time of
thread creation. This way, when a thread is scheduled on the processor, the data can
reside at the same processor (in its cache if possible) and accesses will not result in
interprocessor communication. Such data should be specified as firstprivate.

• If multiple threads manipulate a single piece of data, one must explore ways of
breaking these manipulations into local operations followed by a single global oper-
ation. For example, if multiple threads keep a count of a certain event, it is beneficial
to keep local counts and to subsequently accrue it using a single summation at the
end of the parallel block. Such operations are supported by the reduction clause.

• If multiple threads manipulate different parts of a large data structure, the program-
mer should explore ways of breaking it into smaller data structures and making them
private to the thread manipulating them.

328 Programming Shared Address Space Platforms

• After all the above techniques have been explored and exhausted, remaining data
items may be shared among various threads using the clause shared.

In addition to private, shared, firstprivate, and lastprivate, OpenMP
supports one additional data class called threadprivate.

The threadprivate and copyin Directives Often, it is useful to make a set
of objects locally available to a thread in such a way that these objects persist through
parallel and serial blocks provided the number of threads remains the same. In contrast
to private variables, these variables are useful for maintaining persistent objects across
parallel regions, which would otherwise have to be copied into the master thread’s data
space and reinitialized at the next parallel block. This class of variables is supported in
OpenMP using the threadprivate directive. The syntax of the directive is as follows:

1 #pragma omp threadprivate(variable_list)

This directive implies that all variables in variable list are local to each thread
and are initialized once before they are accessed in a parallel region. Furthermore, these
variables persist across different parallel regions provided dynamic adjustment of the num-
ber of threads is disabled and the number of threads is the same.

Similar to firstprivate, OpenMP provides a mechanism for assigning the
same value to threadprivate variables across all threads in a parallel re-
gion. The syntax of the clause, which can be used with parallel directives, is
copyin(variable list).

7.10.5 OpenMP Library Functions

In addition to directives, OpenMP also supports a number of functions that allow a pro-
grammer to control the execution of threaded programs. As we shall notice, these functions
are similar to corresponding Pthreads functions; however, they are generally at a higher
level of abstraction, making them easier to use.

Controlling Number of Threads and Processors

The following OpenMP functions relate to the concurrency and number of processors used
by a threaded program:

1 #include <omp.h>
2
3 void omp_set_num_threads (int num_threads);
4 int omp_get_num_threads ();
5 int omp_get_max_threads ();
6 int omp_get_thread_num ();
7 int omp_get_num_procs ();
8 int omp_in_parallel();

7.10.5 OpenMP Library Functions 329

The function omp set num threads sets the default number of threads that will
be created on encountering the next parallel directive provided the num threads

clause is not used in the parallel directive. This function must be called outside
the scope of a parallel region and dynamic adjustment of threads must be enabled (us-
ing either the OMP DYNAMIC environment variable discussed in Section 7.10.6 or the
omp set dynamic library function).

The omp get num threads function returns the number of threads participating in a
team. It binds to the closest parallel directive and in the absence of a parallel directive, re-
turns 1 (for master thread). The omp get max threads function returns the maximum
number of threads that could possibly be created by a parallel directive encountered,
which does not have a num threads clause. The omp get thread num returns a
unique thread i.d. for each thread in a team. This integer lies between 0 (for the master
thread) and omp get num threads() -1. The omp get num procs function re-
turns the number of processors that are available to execute the threaded program at that
point. Finally, the function omp in parallel returns a non-zero value if called from
within the scope of a parallel region, and zero otherwise.

Controlling and Monitoring Thread Creation

The following OpenMP functions allow a programmer to set and monitor thread creation:

1 #include <omp.h>
2
3 void omp_set_dynamic (int dynamic_threads);
4 int omp_get_dynamic ();
5 void omp_set_nested (int nested);
6 int omp_get_nested ();

The omp set dynamic function allows the programmer to dynamically alter the
number of threads created on encountering a parallel region. If the value
dynamic threads evaluates to zero, dynamic adjustment is disabled, otherwise it is
enabled. The function must be called outside the scope of a parallel region. The corre-
sponding state, i.e., whether dynamic adjustment is enabled or disabled, can be queried
using the function omp get dynamic, which returns a non-zero value if dynamic ad-
justment is enabled, and zero otherwise.

The omp set nested enables nested parallelism if the value of its argument,
nested, is non-zero, and disables it otherwise. When nested parallelism is disabled, any
nested parallel regions subsequently encountered are serialized. The state of nested par-
allelism can be queried using the omp get nested function, which returns a non-zero
value if nested parallelism is enabled, and zero otherwise.

Mutual Exclusion

While OpenMP provides support for critical sections and atomic updates, there are situ-
ations where it is more convenient to use an explicit lock. For such programs, OpenMP

330 Programming Shared Address Space Platforms

provides functions for initializing, locking, unlocking, and discarding locks. The lock data
structure in OpenMP is of type omp lock t. The following functions are defined:

1 #include <omp.h>
2
3 void omp_init_lock (omp_lock_t *lock);
4 void omp_destroy_lock (omp_lock_t *lock);
5 void omp_set_lock (omp_lock_t *lock);
6 void omp_unset_lock (omp_lock_t *lock);
7 int omp_test_lock (omp_lock_t *lock);

Before a lock can be used, it must be initialized. This is done using the
omp init lock function. When a lock is no longer needed, it must be discarded us-
ing the function omp destroy lock. It is illegal to initialize a previously initialized
lock and destroy an uninitialized lock. Once a lock has been initialized, it can be locked
and unlocked using the functions omp set lock and omp unset lock. On locking
a previously unlocked lock, a thread gets exclusive access to the lock. All other threads
must wait on this lock when they attempt an omp set lock. Only a thread owning a
lock can unlock it. The result of a thread attempting to unlock a lock owned by another
thread is undefined. Both of these operations are illegal prior to initialization or after the
destruction of a lock. The function omp test lock can be used to attempt to set a lock.
If the function returns a non-zero value, the lock has been successfully set, otherwise the
lock is currently owned by another thread.

Similar to recursive mutexes in Pthreads, OpenMP also supports nestable locks that
can be locked multiple times by the same thread. The lock object in this case is
omp nest lock t and the corresponding functions for handling a nested lock are:

1 #include <omp.h>
2
3 void omp_init_nest_lock (omp_nest_lock_t *lock);
4 void omp_destroy_nest_lock (omp_nest_lock_t *lock);
5 void omp_set_nest_lock (omp_nest_lock_t *lock);
6 void omp_unset_nest_lock (omp_nest_lock_t *lock);
7 int omp_test_nest_lock (omp_nest_lock_t *lock);

The semantics of these functions are similar to corresponding functions for simple
locks. Notice that all of these functions have directly corresponding mutex calls in
Pthreads.

7.10.6 Environment Variables in OpenMP

OpenMP provides additional environment variables that help control execution of parallel
programs. These environment variables include the following.

OMP NUM THREADS This environment variable specifies the default number of threads
created upon entering a parallel region. The number of threads can be changed us-
ing either the omp set num threads function or the num threads clause in the

7.10.7 Explicit Threads versus OpenMP Based Programming 331

parallel directive. Note that the number of threads can be changed dynamically only
if the variable OMP SET DYNAMIC is set to TRUE or if the function omp set dynamic

has been called with a non-zero argument. For example, the following command, when
typed into csh prior to execution of the program, sets the default number of threads to 8.

1 setenv OMP_NUM_THREADS 8

OMP DYNAMIC This variable, when set to TRUE, allows the number of threads to be
controlled at runtime using the omp set num threads function or the num threads

clause. Dynamic control of number of threads can be disabled by calling the
omp set dynamic function with a zero argument.

OMP NESTED This variable, when set to TRUE, enables nested parallelism, unless it is
disabled by calling the omp set nested function with a zero argument.

OMP SCHEDULE This environment variable controls the assignment of iteration spaces
associated with for directives that use the runtime scheduling class. The variable can
take values static, dynamic, and guided along with optional chunk size. For exam-
ple, the following assignment:

1 setenv OMP_SCHEDULE "static,4"

specifies that by default, all for directives use static scheduling with a chunk size of 4.
Other examples of assignments include:

1 setenv OMP_SCHEDULE "dynamic"
2 setenv OMP_SCHEDULE "guided"

In each of these cases, a default chunk size of 1 is used.

7.10.7 Explicit Threads versus OpenMP Based Programming

OpenMP provides a layer on top of native threads to facilitate a variety of thread-related
tasks. Using directives provided by OpenMP, a programmer is rid of the tasks of initializing
attributes objects, setting up arguments to threads, partitioning iteration spaces, etc. This
convenience is especially useful when the underlying problem has a static and/or regular
task graph. The overheads associated with automated generation of threaded code from
directives have been shown to be minimal in the context of a variety of applications.

However, there are some drawbacks to using directives as well. An artifact of explicit
threading is that data exchange is more apparent. This helps in alleviating some of the
overheads from data movement, false sharing, and contention. Explicit threading also
provides a richer API in the form of condition waits, locks of different types, and increased
flexibility for building composite synchronization operations as illustrated in Section 7.8.
Finally, since explicit threading is used more widely than OpenMP, tools and support for
Pthreads programs is easier to find.

A programmer must weigh all these considerations before deciding on an API for pro-
gramming.

332 Programming Shared Address Space Platforms

7.11 Bibliographic Remarks

A number of excellent references exist for both explicit thread-based and OpenMP-based
programming. Lewis and Berg [LB97, LB95a] provide a detailed guide to programming
with Pthreads. Kleiman, Shah, and Smaalders [KSS95] provide an excellent description
of thread systems as well as programming using threads. Several other books have also
addressed programming and system software issues related to multithreaded program-
ming [NBF96, But97, Gal95, Lew91, RRRR96, ND96].

Many other thread APIs and systems have also been developed and are commonly used
in a variety of applications. These include Java threads [Dra96, MK99, Hyd99, Lea99], Mi-
crosoft thread APIs [PG98, CWP98, Wil00, BW97], and the Solaris threads API [KSS95,
Sun95]. Thread systems have a long and rich history of research dating back to the days
of the HEP Denelcor [HLM84] from both the software as well as the hardware viewpoints.
More recently, software systems such as Cilk [BJK+95, LRZ95], OxfordBSP [HDM97],
Active Threads [Wei97], and Earth Manna [HMT+96] have been developed. Hardware
support for multithreading has been explored in the Tera computer system [RS90a], MIT
Alewife [ADJ+91], Horizon [KS88], simultaneous multithreading [TEL95, Tul96], multi-
scalar architecture [Fra93], and superthreaded architecture [TY96], among others.

The performance aspects of threads have also been explored. Early work on the per-
formance tradeoffs of multithreaded processors was reported in [Aga89, SBCV90, Aga91,
CGL92, LB95b]. Consistency models for shared memory have been extensively studied.
Other areas of active research include runtime systems, compiler support, object-based ex-
tensions, performance evaluation, and software development tools. There have also been
efforts aimed at supporting software shared memory across networks of workstations. All
of these are only tangentially related to the issue of programming using threads.

Due to its relative youth, relatively few texts exist for programming in
OpenMP [CDK+00]. The OpenMP standard and an extensive set of resources is avail-
able at http://www.openmp.org. A number of other articles (and special issues)
have addressed issues relating to OpenMP performance, compilation, and interoperabil-
ity [Bra97, CM98, DM98, LHZ98, Thr99].

Problems

7.1 Estimate the time taken for each of the following in Pthreads:

• Thread creation.

• Thread join.

• Successful lock.

• Successful unlock.

• Successful trylock.

• Unsuccessful trylock.

7.11 Problems 333

• Condition wait.

• Condition signal.

• Condition broadcast.

In each case, carefully document the method used to compute the time for each
of these function calls. Also document the machine on which these observations
were made.

7.2 Implement a multi-access threaded queue with multiple threads inserting and mul-
tiple threads extracting from the queue. Use mutex-locks to synchronize access to
the queue. Document the time for 1000 insertions and 1000 extractions each by 64
insertion threads (producers) and 64 extraction threads (consumers).

7.3 Repeat Problem 7.2 using condition variables (in addition to mutex locks). Docu-
ment the time for the same test case as above. Comment on the difference in the
times.

7.4 A simple streaming media player consists of a thread monitoring a network port
for arriving data, a decompressor thread for decompressing packets and generating
frames in a video sequence, and a rendering thread that displays frames at pro-
grammed intervals. The three threads must communicate via shared buffers – an
in-buffer between the network and decompressor, and an out-buffer between the
decompressor and renderer. Implement this simple threaded framework. The net-
work thread calls a dummy function listen to port to gather data from the
network. For the sake of this program, this function generates a random string of
bytes of desired length. The decompressor thread calls function decompress,
which takes in data from the in-buffer and returns a frame of predetermined size.
For this exercise, generate a frame with random bytes. Finally the render thread
picks frames from the out buffer and calls the display function. This function takes
a frame as an argument, and for this exercise, it does nothing. Implement this
threaded framework using condition variables. Note that you can easily change the
three dummy functions to make a meaningful streaming media decompressor.

7.5 Illustrate the use of recursive locks using a binary tree search algorithm. The pro-
gram takes in a large list of numbers. The list is divided across multiple threads.
Each thread tries to insert its elements into the tree by using a single lock asso-
ciated with the tree. Show that the single lock becomes a bottleneck even for a
moderate number of threads.

7.6 Improve the binary tree search program by associating a lock with each node in the
tree (as opposed to a single lock with the entire tree). A thread locks a node when
it reads or writes it. Examine the performance properties of this implementation.

7.7 Improve the binary tree search program further by using read-write locks. A thread
read-locks a node before reading. It write-locks a node only when it needs to write
into the tree node. Implement the program and document the range of program
parameters where read-write locks actually yield performance improvements over

334 Programming Shared Address Space Platforms

regular locks.

7.8 Implement a threaded hash table in which collisions are resolved by chaining. Im-
plement the hash table so that there is a single lock associated with a block of k
hash-table entries. Threads attempting to read/write an element in a block must
first lock the corresponding block. Examine the performance of your implementa-
tion as a function of k.

7.9 Change the locks to read-write locks in the hash table and use write locks only
when inserting an entry into the linked list. Examine the performance of this pro-
gram as a function of k. Compare the performance to that obtained using regular
locks.

7.10 Write a threaded program for computing the Sieve of Eratosthenes. Think through
the threading strategy carefully before implementing it. It is important to realize,
for instance, that you cannot eliminate multiples of 6 from the sieve until you have
eliminated multiples of 3 (at which point you would realize that you did not need
to eliminate multiples of 6 in the first place). A pipelined (assembly line) strategy
with the current smallest element forming the next station in the assembly line is
one way to think about the problem.

7.11 Write a threaded program for solving a 15-puzzle. The program takes an initial
position and keeps an open list of outstanding positions. This list is sorted on the
“goodness” measure of the boards. A simple goodness measure is the Manhattan
distance (i.e., the sum of x-displacement and y-displacement of every tile from
where it needs to be). This open list is a work queue implemented as a heap. Each
thread extracts work (a board) from the work queue, expands it to all possible
successors, and inserts the successors into the work queue if it has not already
been encountered. Use a hash table (from Problem 7.9) to keep track of entries
that have been previously encountered. Plot the speedup of your program with the
number of threads. You can compute the speedups for some reference board that
is the same for various thread counts.

7.12 Modify the above program so that you now have multiple open lists (say k). Now
each thread picks a random open list and tries to pick a board from the random
list and expands and inserts it back into another, randomly selected list. Plot the
speedup of your program with the number of threads. Compare your performance
with the previous case. Make sure you use your locks and trylocks carefully to
minimize serialization overheads.

7.13 Implement and test the OpenMP program for computing a matrix-matrix product
in Example 7.14. Use the OMP NUM THREADS environment variable to control
the number of threads and plot the performance with varying numbers of threads.
Consider three cases in which (i) only the outermost loop is parallelized; (ii) the
outer two loops are parallelized; and (iii) all three loops are parallelized. What is
the observed result from these three cases?

7.11 Problems 335

7.14 Consider a simple loop that calls a function dummy containing a programmable
delay. All invocations of the function are independent of the others. Partition this
loop across four threads using static, dynamic, and guided scheduling. Use
different parameters for static and guided scheduling. Document the result of this
experiment as the delay within the dummy function becomes large.

7.15 Consider a sparse matrix stored in the compressed row format (you may find
a description of this format on the web or any suitable text on sparse lin-
ear algebra). Write an OpenMP program for computing the product of this
matrix with a vector. Download sample matrices from the Matrix Market
(http://math.nist.gov/MatrixMarket/) and test the performance of
your implementation as a function of matrix size and number of threads.

7.16 Implement a producer-consumer framework in OpenMP using sections to cre-
ate a single producer task and a single consumer task. Ensure appropriate
synchronization using locks. Test your program for a varying number of producers
and consumers.

336 Programming Shared Address Space Platforms

