
CHAPTER 8

Dense Matrix
Algorithms

Algorithms involving matrices and vectors are applied in several numerical and non-
numerical contexts. This chapter discusses some key algorithms for dense or full matrices
that have no or few known usable zero entries. We deal specifically with square matrices
for pedagogical reasons, but the algorithms in this chapter, wherever applicable, can easily
be adapted for rectangular matrices as well.

Due to their regular structure, parallel computations involving matrices and vectors
readily lend themselves to data-decomposition (Section 3.2.2). Depending on the com-
putation at hand, the decomposition may be induced by partitioning the input, the output,
or the intermediate data. Section 3.4.1 describes in detail the various schemes of parti-
tioning matrices for parallel computation. The algorithms discussed in this chapter use
one- and two-dimensional block, cyclic, and block-cyclic partitionings. For the sake of
brevity, we will henceforth refer to one- and two-dimensional partitionings as 1-D and 2-D
partitionings, respectively.

Another characteristic of most of the algorithms described in this chapter is that they
use one task per process. As a result of a one-to-one mapping of tasks to processes, we
do not usually refer to the tasks explicitly and decompose or partition the problem directly
into processes.

8.1 Matrix-Vector Multiplication

This section addresses the problem of multiplying a dense n × n matrix A with an n × 1
vector x to yield the n × 1 result vector y. Algorithm 8.1 shows a serial algorithm for this
problem. The sequential algorithm requires n2 multiplications and additions. Assuming
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1. procedure MAT VECT (A, x , y)
2. begin
3. for i := 0 to n − 1 do
4. begin
5. y[i] := 0;
6. for j := 0 to n − 1 do
7. y[i] := y[i] + A[i, j] × x[ j];
8. endfor;
9. end MAT VECT

Algorithm 8.1 A serial algorithm for multiplying an n × n matrix A with an n × 1 vector x to yield
an n × 1 product vector y.

that a multiplication and addition pair takes unit time, the sequential run time is

W = n2. (8.1)

At least three distinct parallel formulations of matrix-vector multiplication are possible,
depending on whether rowwise 1-D, columnwise 1-D, or a 2-D partitioning is used.

8.1.1 Rowwise 1-D Partitioning

This section details the parallel algorithm for matrix-vector multiplication using rowwise
block 1-D partitioning. The parallel algorithm for columnwise block 1-D partitioning is
similar (Problem 8.2) and has a similar expression for parallel run time. Figure 8.1 de-
scribes the distribution and movement of data for matrix-vector multiplication with block
1-D partitioning.

One Row Per Process

First, consider the case in which the n × n matrix is partitioned among n processes so that
each process stores one complete row of the matrix. The n × 1 vector x is distributed such
that each process owns one of its elements. The initial distribution of the matrix and the
vector for rowwise block 1-D partitioning is shown in Figure 8.1(a). Process Pi initially
owns x[i] and A[i, 0], A[i, 1], . . . , A[i, n−1] and is responsible for computing y[i]. Vector
x is multiplied with each row of the matrix (Algorithm 8.1); hence, every process needs the
entire vector. Since each process starts with only one element of x , an all-to-all broadcast
is required to distribute all the elements to all the processes. Figure 8.1(b) illustrates this
communication step. After the vector x is distributed among the processes (Figure 8.1(c)),
process Pi computes y[i] = �n−1

j=0(A[i, j] × x[ j]) (lines 6 and 7 of Algorithm 8.1). As
Figure 8.1(d) shows, the result vector y is stored exactly the way the starting vector x was
stored.
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Figure 8.1 Multiplication of an n × n matrix with an n × 1 vector using rowwise block 1-D parti-
tioning. For the one-row-per-process case, p = n.

Parallel Run Time Starting with one vector element per process, the all-to-all broad-
cast of the vector elements among n processes requires time �(n) on any architecture
(Table 4.1). The multiplication of a single row of A with x is also performed by each
process in time �(n). Thus, the entire procedure is completed by n processes in time
�(n), resulting in a process-time product of �(n2). The parallel algorithm is cost-optimal
because the complexity of the serial algorithm is �(n2).

Using Fewer than n Processes

Consider the case in which p processes are used such that p < n, and the matrix is parti-
tioned among the processes by using block 1-D partitioning. Each process initially stores
n/p complete rows of the matrix and a portion of the vector of size n/p. Since the vector
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x must be multiplied with each row of the matrix, every process needs the entire vector
(that is, all the portions belonging to separate processes). This again requires an all-to-all
broadcast as shown in Figure 8.1(b) and (c). The all-to-all broadcast takes place among p
processes and involves messages of size n/p. After this communication step, each process
multiplies its n/p rows with the vector x to produce n/p elements of the result vector.
Figure 8.1(d) shows that the result vector y is distributed in the same format as that of the
starting vector x .

Parallel Run Time According to Table 4.1, an all-to-all broadcast of messages of size
n/p among p processes takes time ts log p + tw(n/p)(p − 1). For large p, this can be
approximated by ts log p + twn. After the communication, each process spends time n2/p
multiplying its n/p rows with the vector. Thus, the parallel run time of this procedure is

TP = n2

p
+ ts log p + twn. (8.2)

The process-time product for this parallel formulation is n2 + ts p log p + twnp. The
algorithm is cost-optimal for p = O(n).

Scalability Analysis We now derive the isoefficiency function for matrix-vector mul-
tiplication along the lines of the analysis in Section 5.4.2 by considering the terms of the
overhead function one at a time. Consider the parallel run time given by Equation 8.2 for
the hypercube architecture. The relation To = pTP − W gives the following expression
for the overhead function of matrix-vector multiplication on a hypercube with block 1-D
partitioning:

To = ts p log p + twnp. (8.3)

Recall from Chapter 5 that the central relation that determines the isoefficiency function
of a parallel algorithm is W = K To (Equation 5.14), where K = E/(1 − E) and E is the
desired efficiency. Rewriting this relation for matrix-vector multiplication, first with only
the ts term of To,

W = K ts p log p. (8.4)

Equation 8.4 gives the isoefficiency term with respect to message startup time. Simi-
larly, for the tw term of the overhead function,

W = K twnp.

Since W = n2 (Equation 8.1), we derive an expression for W in terms of p, K , and tw
(that is, the isoefficiency function due to tw) as follows:

n2 = K twnp,

n = K tw p,

n2 = K 2t2
w p2,

W = K 2t2
w p2. (8.5)
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Now consider the degree of concurrency of this parallel algorithm. Using 1-D partition-
ing, a maximum of n processes can be used to multiply an n × n matrix with an n × 1
vector. In other words, p is O(n), which yields the following condition:

n = �(p),

n2 = �(p2),

W = �(p2). (8.6)

The overall asymptotic isoefficiency function can be determined by comparing Equa-
tions 8.4, 8.5, and 8.6. Among the three, Equations 8.5 and 8.6 give the highest asymptotic
rate at which the problem size must increase with the number of processes to maintain a
fixed efficiency. This rate of �(p2) is the asymptotic isoefficiency function of the parallel
matrix-vector multiplication algorithm with 1-D partitioning.

8.1.2 2-D Partitioning

This section discusses parallel matrix-vector multiplication for the case in which the ma-
trix is distributed among the processes using a block 2-D partitioning. Figure 8.2 shows
the distribution of the matrix and the distribution and movement of vectors among the
processes.

One Element Per Process

We start with the simple case in which an n × n matrix is partitioned among n2 processes
such that each process owns a single element. The n × 1 vector x is distributed only in
the last column of n processes, each of which owns one element of the vector. Since the
algorithm multiplies the elements of the vector x with the corresponding elements in each
row of the matrix, the vector must be distributed such that the i th element of the vector is
available to the i th element of each row of the matrix. The communication steps for this
are shown in Figure 8.2(a) and (b). Notice the similarity of Figure 8.2 to Figure 8.1. Before
the multiplication, the elements of the matrix and the vector must be in the same relative
locations as in Figure 8.1(c). However, the vector communication steps differ between
various partitioning strategies. With 1-D partitioning, the elements of the vector cross
only the horizontal partition-boundaries (Figure 8.1), but for 2-D partitioning, the vector
elements cross both horizontal and vertical partition-boundaries (Figure 8.2).

As Figure 8.2(a) shows, the first communication step for the 2-D partitioning aligns the
vector x along the principal diagonal of the matrix. Often, the vector is stored along the
diagonal instead of the last column, in which case this step is not required. The second
step copies the vector elements from each diagonal process to all the processes in the
corresponding column. As Figure 8.2(b) shows, this step consists of n simultaneous one-to-
all broadcast operations, one in each column of processes. After these two communication
steps, each process multiplies its matrix element with the corresponding element of x . To
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Figure 8.2 Matrix-vector multiplication with block 2-D partitioning. For the one-element-per-
process case, p = n2 if the matrix size is n × n.

obtain the result vector y, the products computed for each row must be added, leaving
the sums in the last column of processes. Figure 8.2(c) shows this step, which requires
an all-to-one reduction (Section 4.1) in each row with the last process of the row as the
destination. The parallel matrix-vector multiplication is complete after the reduction step.

Parallel Run Time Three basic communication operations are used in this algorithm:
one-to-one communication to align the vector along the main diagonal, one-to-all broadcast
of each vector element among the n processes of each column, and all-to-one reduction in
each row. Each of these operations takes time �(log n). Since each process performs
a single multiplication in constant time, the overall parallel run time of this algorithm is
�(n). The cost (process-time product) is �(n2 log n); hence, the algorithm is not cost-
optimal.
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Using Fewer than n 2 Processes

A cost-optimal parallel implementation of matrix-vector multiplication with block 2-D
partitioning of the matrix can be obtained if the granularity of computation at each process
is increased by using fewer than n2 processes.

Consider a logical two-dimensional mesh of p processes in which each process owns an
(n/

√
p) × (n/

√
p) block of the matrix. The vector is distributed in portions of n/

√
p el-

ements in the last process-column only. Figure 8.2 also illustrates the initial data-mapping
and the various communication steps for this case. The entire vector must be distributed
on each row of processes before the multiplication can be performed. First, the vector is
aligned along the main diagonal. For this, each process in the rightmost column sends its
n/

√
p vector elements to the diagonal process in its row. Then a columnwise one-to-all

broadcast of these n/
√

p elements takes place. Each process then performs n2/p multi-
plications and locally adds the n/

√
p sets of products. At the end of this step, as shown

in Figure 8.2(c), each process has n/
√

p partial sums that must be accumulated along
each row to obtain the result vector. Hence, the last step of the algorithm is an all-to-one
reduction of the n/

√
p values in each row, with the rightmost process of the row as the

destination.

Parallel Run Time The first step of sending a message of size n/
√

p from the rightmost
process of a row to the diagonal process (Figure 8.2(a)) takes time ts + twn/

√
p. We can

perform the columnwise one-to-all broadcast in at most time (ts + twn/
√

p) log(
√

p) by
using the procedure described in Section 4.1.3. Ignoring the time to perform additions, the
final rowwise all-to-one reduction also takes the same amount of time. Assuming that a
multiplication and addition pair takes unit time, each process spends approximately n2/p
time in computation. Thus, the parallel run time for this procedure is as follows:

TP =
computation︷ ︸︸ ︷

n2/p +
aligning the vector︷ ︸︸ ︷
ts + twn/

√
p +

columnwise one-to-all broadcast︷ ︸︸ ︷
(ts + twn/

√
p) log(

√
p) +

all-to-one reduction︷ ︸︸ ︷
(ts + twn/

√
p) log(

√
p)

≈ n2

p
+ ts log p + tw

n√
p

log p (8.7)

Scalability Analysis By using Equations 8.1 and 8.7, and applying the relation To =
pTp − W (Equation 5.1), we get the following expression for the overhead function of this
parallel algorithm:

To = ts p log p + twn
√

p log p. (8.8)

We now perform an approximate isoefficiency analysis along the lines of Section 5.4.2
by considering the terms of the overhead function one at a time (see Problem 8.4 for a more
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precise isoefficiency analysis). For the ts term of the overhead function, Equation 5.14
yields

W = K ts p log p. (8.9)

Equation 8.9 gives the isoefficiency term with respect to the message startup time. We
can obtain the isoefficiency function due to tw by balancing the term twn

√
p log p with the

problem size n2. Using the isoefficiency relation of Equation 5.14, we get the following:

W = n2 = K twn
√

p log p,

n = K tw
√

p log p,

n2 = K 2t2
w p log2 p,

W = K 2t2
w p log2 p. (8.10)

Finally, considering that the degree of concurrency of 2-D partitioning is n2 (that is, a
maximum of n2 processes can be used), we arrive at the following relation:

p = O(n2),

n2 = �(p),

W = �(p). (8.11)

Among Equations 8.9, 8.10, and 8.11, the one with the largest right-hand side expres-
sion determines the overall isoefficiency function of this parallel algorithm. To simplify
the analysis, we ignore the impact of the constants and consider only the asymptotic rate of
the growth of problem size that is necessary to maintain constant efficiency. The asymp-
totic isoefficiency term due to tw (Equation 8.10) clearly dominates the ones due to ts
(Equation 8.9) and due to concurrency (Equation 8.11). Therefore, the overall asymptotic
isoefficiency function is given by �(p log2 p).

The isoefficiency function also determines the criterion for cost-optimality (Sec-
tion 5.4.3). With an isoefficiency function of �(p log2 p), the maximum number of pro-
cesses that can be used cost-optimally for a given problem size W is determined by the
following relations:

p log2 p = O(n2), (8.12)

log p + 2 log log p = O(log n).

Ignoring the lower-order terms,

log p = O(log n).

Substituting log n for log p in Equation 8.12,

p log2 n = O(n2),

p = O

(
n2

log2 n

)
. (8.13)
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The right-hand side of Equation 8.13 gives an asymptotic upper bound on the number
of processes that can be used cost-optimally for an n × n matrix-vector multiplication with
a 2-D partitioning of the matrix.

Comparison of 1-D and 2-D Partitionings

A comparison of Equations 8.2 and 8.7 shows that matrix-vector multiplication is faster
with block 2-D partitioning of the matrix than with block 1-D partitioning for the same
number of processes. If the number of processes is greater than n, then the 1-D partitioning
cannot be used. However, even if the number of processes is less than or equal to n, the
analysis in this section suggests that 2-D partitioning is preferable.

Among the two partitioning schemes, 2-D partitioning has a better (smaller) asymptotic
isoefficiency function. Thus, matrix-vector multiplication is more scalable with 2-D parti-
tioning; that is, it can deliver the same efficiency on more processes with 2-D partitioning
than with 1-D partitioning.

8.2 Matrix-Matrix Multiplication

This section discusses parallel algorithms for multiplying two n × n dense, square matri-
ces A and B to yield the product matrix C = A × B. All parallel matrix multiplication
algorithms in this chapter are based on the conventional serial algorithm shown in Algo-
rithm 8.2. If we assume that an addition and multiplication pair (line 8) takes unit time,
then the sequential run time of this algorithm is n3. Matrix multiplication algorithms with
better asymptotic sequential complexities are available, for example Strassen’s algorithm.
However, for the sake of simplicity, in this book we assume that the conventional algorithm
is the best available serial algorithm. Problem 8.5 explores the performance of parallel ma-
trix multiplication regarding Strassen’s method as the base algorithm.

1. procedure MAT MULT (A, B, C)
2. begin
3. for i := 0 to n − 1 do
4. for j := 0 to n − 1 do
5. begin
6. C[i, j] := 0;
7. for k := 0 to n − 1 do
8. C[i, j] := C[i, j] + A[i, k] × B[k, j];
9. endfor;
10. end MAT MULT

Algorithm 8.2 The conventional serial algorithm for multiplication of two n × n matrices.



346 Dense Matrix Algorithms

1. procedure BLOCK MAT MULT (A, B, C)
2. begin
3. for i := 0 to q − 1 do
4. for j := 0 to q − 1 do
5. begin
6. Initialize all elements of Ci, j to zero;
7. for k := 0 to q − 1 do
8. Ci, j := Ci, j + Ai,k × Bk, j ;
9. endfor;
10. end BLOCK MAT MULT

Algorithm 8.3 The block matrix multiplication algorithm for n × n matrices with a block size of
(n/q)× (n/q).

A concept that is useful in matrix multiplication as well as in a variety of other matrix
algorithms is that of block matrix operations. We can often express a matrix computation
involving scalar algebraic operations on all its elements in terms of identical matrix alge-
braic operations on blocks or submatrices of the original matrix. Such algebraic operations
on the submatrices are called block matrix operations. For example, an n × n matrix A
can be regarded as a q × q array of blocks Ai, j (0 ≤ i, j < q) such that each block is an
(n/q) × (n/q) submatrix. The matrix multiplication algorithm in Algorithm 8.2 can then
be rewritten as Algorithm 8.3, in which the multiplication and addition operations on line 8
are matrix multiplication and matrix addition, respectively. Not only are the final results
of Algorithm 8.2 and 8.3 identical, but so are the total numbers of scalar additions and
multiplications performed by each. Algorithm 8.2 performs n3 additions and multiplica-
tions, and Algorithm 8.3 performs q3 matrix multiplications, each involving (n/q)×(n/q)
matrices and requiring (n/q)3 additions and multiplications. We can use p processes to
implement the block version of matrix multiplication in parallel by choosing q = √

p and
computing a distinct Ci, j block at each process.

In the following sections, we describe a few ways of parallelizing Algorithm 8.3. Each
of the following parallel matrix multiplication algorithms uses a block 2-D partitioning of
the matrices.

8.2.1 A Simple Parallel Algorithm

Consider two n × n matrices A and B partitioned into p blocks Ai, j and Bi, j (0 ≤ i, j <√
p) of size (n/

√
p) × (n/

√
p) each. These blocks are mapped onto a

√
p × √

p logical
mesh of processes. The processes are labeled from P0,0 to P√

p−1,
√

p−1. Process Pi, j

initially stores Ai, j and Bi, j and computes block Ci, j of the result matrix. Computing
submatrix Ci, j requires all submatrices Ai,k and Bk, j for 0 ≤ k <

√
p. To acquire all the

required blocks, an all-to-all broadcast of matrix A’s blocks is performed in each row of
processes, and an all-to-all broadcast of matrix B’s blocks is performed in each column.
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After Pi, j acquires Ai,0, Ai,1, . . . , Ai,
√

p−1 and B0, j , B1, j , . . . , B√
p−1, j , it performs the

submatrix multiplication and addition step of lines 7 and 8 in Algorithm 8.3.

Performance and Scalability Analysis The algorithm requires two all-to-all broad-
cast steps (each consisting of

√
p concurrent broadcasts in all rows and columns of the pro-

cess mesh) among groups of
√

p processes. The messages consist of submatrices of n2/p
elements. From Table 4.1, the total communication time is 2(ts log(

√
p)+ tw(n2/p)(

√
p−

1)). After the communication step, each process computes a submatrix Ci, j , which requires√
p multiplications of (n/

√
p)× (n/√p) submatrices (lines 7 and 8 of Algorithm 8.3 with

q = √
p). This takes a total of time

√
p × (n/

√
p)3 = n3/p. Thus, the parallel run time is

approximately

TP = n3

p
+ ts log p + 2tw

n2

√
p
. (8.14)

The process-time product is n3 + ts p log p + 2twn2√p, and the parallel algorithm is cost-
optimal for p = O(n2).

The isoefficiency functions due to ts and tw are ts p log p and 8(tw)3 p3/2, respectively.
Hence, the overall isoefficiency function due to the communication overhead is �(p3/2).
This algorithm can use a maximum of n2 processes; hence, p ≤ n2 or n3 ≥ p3/2. There-
fore, the isoefficiency function due to concurrency is also �(p3/2).

A notable drawback of this algorithm is its excessive memory requirements. At the
end of the communication phase, each process has

√
p blocks of both matrices A and B.

Since each block requires �(n2/p) memory, each process requires �(n2/
√

p) memory.
The total memory requirement over all the processes is �(n2√p), which is

√
p times the

memory requirement of the sequential algorithm.

8.2.2 Cannon’s Algorithm

Cannon’s algorithm is a memory-efficient version of the simple algorithm presented in
Section 8.2.1. To study this algorithm, we again partition matrices A and B into p square
blocks. We label the processes from P0,0 to P√

p−1,
√

p−1, and initially assign submatrices
Ai, j and Bi, j to process Pi, j . Although every process in the i th row requires all

√
p subma-

trices Ai,k (0 ≤ k <
√

p), it is possible to schedule the computations of the
√

p processes
of the i th row such that, at any given time, each process is using a different Ai,k . These
blocks can be systematically rotated among the processes after every submatrix multipli-
cation so that every process gets a fresh Ai,k after each rotation. If an identical schedule is
applied to the columns, then no process holds more than one block of each matrix at any
time, and the total memory requirement of the algorithm over all the processes is �(n2).
Cannon’s algorithm is based on this idea. The scheduling for the multiplication of sub-
matrices on separate processes in Cannon’s algorithm is illustrated in Figure 8.3 for 16
processes.

The first communication step of the algorithm aligns the blocks of A and B in such a
way that each process multiplies its local submatrices. As Figure 8.3(a) shows, this align-
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(a)  Initial alignment of A
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Figure 8.3 The communication steps in Cannon’s algorithm on 16 processes.
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ment is achieved for matrix A by shifting all submatrices Ai, j to the left (with wraparound)
by i steps. Similarly, as shown in Figure 8.3(b), all submatrices Bi, j are shifted up (with
wraparound) by j steps. These are circular shift operations (Section 4.6) in each row
and column of processes, which leave process Pi, j with submatrices Ai,( j+i)mod

√
p and

B(i+ j)mod
√

p, j . Figure 8.3(c) shows the blocks of A and B after the initial alignment,
when each process is ready for the first submatrix multiplication. After a submatrix mul-
tiplication step, each block of A moves one step left and each block of B moves one step
up (again with wraparound), as shown in Figure 8.3(d). A sequence of

√
p such submatrix

multiplications and single-step shifts pairs up each Ai,k and Bk, j for k (0 ≤ k <
√

p) at
Pi, j . This completes the multiplication of matrices A and B.

Performance Analysis The initial alignment of the two matrices (Figure 8.3(a)
and (b)) involves a rowwise and a columnwise circular shift. In any of these shifts, the
maximum distance over which a block shifts is

√
p − 1. The two shift operations require a

total of time 2(ts + twn2/p) (Table 4.1). Each of the
√

p single-step shifts in the compute-
and-shift phase of the algorithm takes time ts + twn2/p. Thus, the total communication
time (for both matrices) during this phase of the algorithm is 2(ts + twn2/p)

√
p. For large

enough p on a network with sufficient bandwidth, the communication time for the initial
alignment can be disregarded in comparison with the time spent in communication during
the compute-and-shift phase.

Each process performs
√

p multiplications of (n/
√

p)× (n/
√

p) submatrices. Assum-
ing that a multiplication and addition pair takes unit time, the total time that each process
spends in computation is n3/p. Thus, the approximate overall parallel run time of this
algorithm is

TP = n3

p
+ 2

√
pts + 2tw

n2

√
p
. (8.15)

The cost-optimality condition for Cannon’s algorithm is identical to that for the simple
algorithm presented in Section 8.2.1. As in the simple algorithm, the isoefficiency function
of Cannon’s algorithm is �(p3/2).

8.2.3 The DNS Algorithm

The matrix multiplication algorithms presented so far use block 2-D partitioning of the
input and the output matrices and use a maximum of n2 processes for n × n matrices. As
a result, these algorithms have a parallel run time of �(n) because there are �(n3) oper-
ations in the serial algorithm. We now present a parallel algorithm based on partitioning
intermediate data that can use up to n3 processes and that performs matrix multiplication
in time �(log n) by using �(n3/ log n) processes. This algorithm is known as the DNS
algorithm because it is due to Dekel, Nassimi, and Sahni.

We first introduce the basic idea, without concern for inter-process communication.
Assume that n3 processes are available for multiplying two n×n matrices. These processes
are arranged in a three-dimensional n ×n ×n logical array. Since the matrix multiplication
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Figure 8.4 The communication steps in the DNS algorithm while multiplying 4 × 4 matrices A
and B on 64 processes. The shaded processes in part (c) store elements of the first row of A and
the shaded processes in part (d) store elements of the first column of B .



8.2.3 The DNS Algorithm 351

algorithm performs n3 scalar multiplications, each of the n3 processes is assigned a single
scalar multiplication. The processes are labeled according to their location in the array, and
the multiplication A[i, k] × B[k, j] is assigned to process Pi, j,k (0 ≤ i, j, k < n). After
each process performs a single multiplication, the contents of Pi, j,0, Pi, j,1, . . ., Pi, j,n−1 are
added to obtain C[i, j]. The additions for all C[i, j] can be carried out simultaneously in
log n steps each. Thus, it takes one step to multiply and log n steps to add; that is, it takes
time �(log n) to multiply the n × n matrices by this algorithm.

We now describe a practical parallel implementation of matrix multiplication based on
this idea. As Figure 8.4 shows, the process arrangement can be visualized as n planes
of n × n processes each. Each plane corresponds to a different value of k. Initially, as
shown in Figure 8.4(a), the matrices are distributed among the n2 processes of the plane
corresponding to k = 0 at the base of the three-dimensional process array. Process Pi, j,0

initially owns A[i, j] and B[i, j].
The vertical column of processes Pi, j,∗ computes the dot product of row A[i, ∗] and

column B[∗, j]. Therefore, rows of A and columns of B need to be moved appropriately
so that each vertical column of processes Pi, j,∗ has row A[i, ∗] and column B[∗, j]. More
precisely, process Pi, j,k should have A[i, k] and B[k, j].

The communication pattern for distributing the elements of matrix A among the pro-
cesses is shown in Figure 8.4(a)–(c). First, each column of A moves to a different plane
such that the j th column occupies the same position in the plane corresponding to k = j
as it initially did in the plane corresponding to k = 0. The distribution of A after moving
A[i, j] from Pi, j,0 to Pi, j, j is shown in Figure 8.4(b). Now all the columns of A are repli-
cated n times in their respective planes by a parallel one-to-all broadcast along the j axis.
The result of this step is shown in Figure 8.4(c), in which the n processes Pi,0, j , Pi,1, j ,
. . ., Pi,n−1, j receive a copy of A[i, j] from Pi, j, j . At this point, each vertical column of
processes Pi, j,∗ has row A[i, ∗]. More precisely, process Pi, j,k has A[i, k].

For matrix B, the communication steps are similar, but the roles of i and j in process
subscripts are switched. In the first one-to-one communication step, B[i, j] is moved from
Pi, j,0 to Pi, j,i . Then it is broadcast from Pi, j,i among P0, j,i , P1, j,i , . . ., Pn−1, j,i . The
distribution of B after this one-to-all broadcast along the i axis is shown in Figure 8.4(d).
At this point, each vertical column of processes Pi, j,∗ has column B[∗, j]. Now process
Pi, j,k has B[k, j], in addition to A[i, k].

After these communication steps, A[i, k] and B[k, j] are multiplied at Pi, j,k . Now each
element C[i, j] of the product matrix is obtained by an all-to-one reduction along the k
axis. During this step, process Pi, j,0 accumulates the results of the multiplication from
processes Pi, j,1, . . ., Pi, j,n−1. Figure 8.4 shows this step for C[0, 0].

The DNS algorithm has three main communication steps: (1) moving the columns of
A and the rows of B to their respective planes, (2) performing one-to-all broadcast along
the j axis for A and along the i axis for B, and (3) all-to-one reduction along the k axis.
All these operations are performed within groups of n processes and take time �(log n).
Thus, the parallel run time for multiplying two n × n matrices using the DNS algorithm on
n3 processes is �(log n).
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DNS Algorithm with Fewer than n 3 Processes

The DNS algorithm is not cost-optimal for n3 processes, since its process-time product of
�(n3 log n) exceeds the �(n3) sequential complexity of matrix multiplication. We now
present a cost-optimal version of this algorithm that uses fewer than n3 processes. Another
variant of the DNS algorithm that uses fewer than n3 processes is described in Problem 8.6.

Assume that the number of processes p is equal to q3 for some q < n. To implement
the DNS algorithm, the two matrices are partitioned into blocks of size (n/q) × (n/q).
Each matrix can thus be regarded as a q × q two-dimensional square array of blocks. The
implementation of this algorithm on q3 processes is very similar to that on n3 processes.
The only difference is that now we operate on blocks rather than on individual elements.
Since 1 ≤ q ≤ n, the number of processes can vary between 1 and n3.

Performance Analysis The first one-to-one communication step is performed for both
A and B, and takes time ts + tw(n/q)2 for each matrix. The second step of one-to-all
broadcast is also performed for both matrices and takes time ts log q + tw(n/q)2 log q for
each matrix. The final all-to-one reduction is performed only once (for matrix C) and
takes time ts log q + tw(n/q)2 log q. The multiplication of (n/q) × (n/q) submatrices by
each process takes time (n/q)3. We can ignore the communication time for the first one-
to-one communication step because it is much smaller than the communication time of
one-to-all broadcasts and all-to-one reduction. We can also ignore the computation time
for addition in the final reduction phase because it is of a smaller order of magnitude than
the computation time for multiplying the submatrices. With these assumptions, we get the
following approximate expression for the parallel run time of the DNS algorithm:

TP ≈
(

n

q

)3

+ 3ts log q + 3tw

(
n

q

)2

log q

Since q = p1/3, we get

TP = n3

p
+ ts log p + tw

n2

p2/3
log p. (8.16)

The total cost of this parallel algorithm is n3 + ts p log p + twn2 p1/3 log p. The isoeffi-
ciency function is �(p(log p)3). The algorithm is cost-optimal for n3 = �(p(log p)3), or
p = O(n3/(log n)3).

8.3 Solving a System of Linear Equations

This section discusses the problem of solving a system of linear equations of the form

a0,0x0 + a0,1x1 + · · · + a0,n−1xn−1 = b0,
a1,0x0 + a1,1x1 + · · · + a1,n−1xn−1 = b1,
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...
...

...
...

an−1,0x0 + an−1,1x1 + · · · + an−1,n−1xn−1 = bn−1.

In matrix notation, this system is written as Ax = b. Here A is a dense n × n matrix of
coefficients such that A[i, j] = ai, j , b is an n × 1 vector [b0, b1, . . . , bn−1]T , and x is the
desired solution vector [x0, x1, . . . , xn−1]T . We will make all subsequent references to ai, j

by A[i, j] and xi by x[i].
A system of equations Ax = b is usually solved in two stages. First, through a series of

algebraic manipulations, the original system of equations is reduced to an upper-triangular
system of the form

x0 + u0,1x1 + u0,2x2 + · · · + u0,n−1xn−1 = y0,
x1 + u1,2x2 + · · · + u1,n−1xn−1 = y1,

...
...

xn−1 = yn−1.

We write this as U x = y, where U is a unit upper-triangular matrix – one in which all
subdiagonal entries are zero and all principal diagonal entries are equal to one. Formally,
U [i, j] = 0 if i > j , otherwise U [i, j] = ui, j . Furthermore, U [i, i] = 1 for 0 ≤ i < n.
In the second stage of solving a system of linear equations, the upper-triangular system is
solved for the variables in reverse order from x[n − 1] to x[0] by a procedure known as
back-substitution (Section 8.3.3).

We discuss parallel formulations of the classical Gaussian elimination method for
upper-triangularization in Sections 8.3.1 and 8.3.2. In Section 8.3.1, we describe a straight-
forward Gaussian elimination algorithm assuming that the coefficient matrix is nonsingu-
lar, and its rows and columns are permuted in a way that the algorithm is numerically
stable. Section 8.3.2 discusses the case in which a numerically stable solution of the sys-
tem of equations requires permuting the columns of the matrix during the execution of the
Gaussian elimination algorithm.

Although we discuss Gaussian elimination in the context of upper-triangularization, a
similar procedure can be used to factorize matrix A as the product of a lower-triangular
matrix L and a unit upper-triangular matrix U so that A = L × U . This factorization
is commonly referred to as LU factorization. Performing LU factorization (rather than
upper-triangularization) is particularly useful if multiple systems of equations with the
same left-hand side Ax need to be solved. Algorithm 3.3 gives a procedure for column-
oriented LU factorization.

8.3.1 A Simple Gaussian Elimination Algorithm

The serial Gaussian elimination algorithm has three nested loops. Several variations of the
algorithm exist, depending on the order in which the loops are arranged. Algorithm 8.4
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1. procedure GAUSSIAN ELIMINATION (A, b, y)
2. begin
3. for k := 0 to n − 1 do /* Outer loop */
4. begin
5. for j := k + 1 to n − 1 do
6. A[k, j] := A[k, j]/A[k, k]; /* Division step */
7. y[k] := b[k]/A[k, k];
8. A[k, k] := 1;
9. for i := k + 1 to n − 1 do
10. begin
11. for j := k + 1 to n − 1 do
12. A[i, j] := A[i, j] − A[i, k] × A[k, j]; /* Elimination step */
13. b[i] := b[i] − A[i, k] × y[k];
14. A[i, k] := 0;
15. endfor; /* Line 9 */
16. endfor; /* Line 3 */
17. end GAUSSIAN ELIMINATION

Algorithm 8.4 A serial Gaussian elimination algorithm that converts the system of linear equations
Ax = b to a unit upper-triangular system U x = y. The matrix U occupies the upper-triangular
locations of A. This algorithm assumes that A[k, k] 
= 0 when it is used as a divisor on lines 6 and
7.

shows one variation of Gaussian elimination, which we will adopt for parallel implemen-
tation in the remainder of this section. This program converts a system of linear equations
Ax = b to a unit upper-triangular system U x = y. We assume that the matrix U shares
storage with A and overwrites the upper-triangular portion of A. The element A[k, j]
computed on line 6 of Algorithm 8.4 is actually U [k, j]. Similarly, the element A[k, k]
equated to 1 on line 8 is U [k, k]. Algorithm 8.4 assumes that A[k, k] 
= 0 when it is used
as a divisor on lines 6 and 7.

In this section, we will concentrate only on the operations on matrix A in Algorithm 8.4.
The operations on vector b on lines 7 and 13 of the program are straightforward to imple-
ment. Hence, in the rest of the section, we will ignore these steps. If the steps on lines 7,
8, 13, and 14 are not performed, then Algorithm 8.4 leads to the LU factorization of A as a
product L × U . After the termination of the procedure, L is stored in the lower-triangular
part of A, and U occupies the locations above the principal diagonal.

For k varying from 0 to n − 1, the Gaussian elimination procedure systematically elimi-
nates variable x[k] from equations k +1 to n −1 so that the matrix of coefficients becomes
upper-triangular. As shown in Algorithm 8.4, in the kth iteration of the outer loop (starting
on line 3), an appropriate multiple of the kth equation is subtracted from each of the equa-
tions k + 1 to n − 1 (loop starting on line 9). The multiples of the kth equation (or the kth
row of matrix A) are chosen such that the kth coefficient becomes zero in equations k + 1
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Figure 8.5 A typical computation in Gaussian elimination.

to n − 1 eliminating x[k] from these equations. A typical computation of the Gaussian
elimination procedure in the kth iteration of the outer loop is shown in Figure 8.5. The kth
iteration of the outer loop does not involve any computation on rows 1 to k − 1 or columns
1 to k − 1. Thus, at this stage, only the lower-right (n − k)× (n − k) submatrix of A (the
shaded portion in Figure 8.5) is computationally active.

Gaussian elimination involves approximately n2/2 divisions (line 6) and approximately
(n3/3)− (n2/2) subtractions and multiplications (line 12). In this section, we assume that
each scalar arithmetic operation takes unit time. With this assumption, the sequential run
time of the procedure is approximately 2n3/3 (for large n); that is,

W = 2

3
n3. (8.17)

Parallel Implementation with 1-D Partitioning

We now consider a parallel implementation of Algorithm 8.4, in which the coefficient
matrix is rowwise 1-D partitioned among the processes. A parallel implementation of this
algorithm with columnwise 1-D partitioning is very similar, and its details can be worked
out based on the implementation using rowwise 1-D partitioning (Problems 8.8 and 8.9).

We first consider the case in which one row is assigned to each process, and the n × n
coefficient matrix A is partitioned along the rows among n processes labeled from P0

to Pn−1. In this mapping, process Pi initially stores elements A[i, j] for 0 ≤ j < n.
Figure 8.6 illustrates this mapping of the matrix onto the processes for n = 8. The figure
also illustrates the computation and communication that take place in the iteration of the
outer loop when k = 3.

Algorithm 8.4 and Figure 8.5 show that A[k, k + 1], A[k, k + 2], . . . , A[k, n − 1] are
divided by A[k, k] (line 6) at the beginning of the kth iteration. All matrix elements par-
ticipating in this operation (shown by the shaded portion of the matrix in Figure 8.6(a))
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Figure 8.6 Gaussian elimination steps during the iteration corresponding to k = 3 for an 8 × 8
matrix partitioned rowwise among eight processes.
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belong to the same process. So this step does not require any communication. In the
second computation step of the algorithm (the elimination step of line 12), the modified
(after division) elements of the kth row are used by all other rows of the active part of
the matrix. As Figure 8.6(b) shows, this requires a one-to-all broadcast of the active part
of the kth row to the processes storing rows k + 1 to n − 1. Finally, the computation
A[i, j] := A[i, j] − A[i, k] × A[k, j] takes place in the remaining active portion of the
matrix, which is shown shaded in Figure 8.6(c).

The computation step corresponding to Figure 8.6(a) in the kth iteration requires
n − k − 1 divisions at process Pk . Similarly, the computation step of Figure 8.6(c) in-
volves n − k − 1 multiplications and subtractions in the kth iteration at all processes Pi ,
such that k < i < n. Assuming a single arithmetic operation takes unit time, the total time
spent in computation in the kth iteration is 3(n − k − 1). Note that when Pk is performing
the divisions, the remaining p − 1 processes are idle, and while processes Pk+1, . . ., Pn−1

are performing the elimination step, processes P0, . . ., Pk are idle. Thus, the total time
spent during the computation steps shown in Figures 8.6(a) and (c) in this parallel imple-
mentation of Gaussian elimination is 3�n−1

k=0 (n − k − 1), which is equal to 3n(n − 1)/2.
The communication step of Figure 8.6(b) takes time (ts +tw(n−k−1)) log n (Table 4.1).

Hence, the total communication time over all iterations is �n−1
k=0 (ts + tw(n − k − 1)) log n,

which is equal to tsn log n + tw(n(n − 1)/2) log n. The overall parallel run time of this
algorithm is

TP = 3

2
n(n − 1)+ tsn log n + 1

2
twn(n − 1) log n. (8.18)

Since the number of processes is n, the cost, or the process-time product, is�(n3 log n)
due to the term associated with tw in Equation 8.18. This cost is asymptotically higher than
the sequential run time of this algorithm (Equation 8.17). Hence, this parallel implemen-
tation is not cost-optimal.

Pipelined Communication and Computation We now present a parallel imple-
mentation of Gaussian elimination that is cost-optimal on n processes.

In the parallel Gaussian elimination algorithm just presented, the n iterations of the
outer loop of Algorithm 8.4 execute sequentially. At any given time, all processes work
on the same iteration. The (k + 1)th iteration starts only after all the computation and
communication for the kth iteration is complete. The performance of the algorithm can be
improved substantially if the processes work asynchronously; that is, no process waits for
the others to finish an iteration before starting the next one. We call this the asynchronous
or pipelined version of Gaussian elimination. Figure 8.7 illustrates the pipelined Algo-
rithm 8.4 for a 5 × 5 matrix partitioned along the rows onto a logical linear array of five
processes.

During the kth iteration of Algorithm 8.4, process Pk broadcasts part of the kth row of
the matrix to processes Pk+1, . . ., Pn−1 (Figure 8.6(b)). Assuming that the processes form
a logical linear array, and Pk+1 is the first process to receive the kth row from process Pk .
Then process Pk+1 must forward this data to Pk+2. However, after forwarding the kth row
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Figure 8.7 Pipelined Gaussian elimination on a 5 × 5 matrix partitioned with one row per process.
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to Pk+2, process Pk+1 need not wait to perform the elimination step (line 12) until all the
processes up to Pn−1 have received the kth row. Similarly, Pk+2 can start its computation
as soon as it has forwarded the kth row to Pk+3, and so on. Meanwhile, after completing
the computation for the kth iteration, Pk+1 can perform the division step (line 6), and start
the broadcast of the (k + 1)th row by sending it to Pk+2.

In pipelined Gaussian elimination, each process independently performs the following
sequence of actions repeatedly until all n iterations are complete. For the sake of simplicity,
we assume that steps (1) and (2) take the same amount of time (this assumption does not
affect the analysis):

1. If a process has any data destined for other processes, it sends those data to the
appropriate process.

2. If the process can perform some computation using the data it has, it does so.

3. Otherwise, the process waits to receive data to be used for one of the above actions.

Figure 8.7 shows the 16 steps in the pipelined parallel execution of Gaussian elimina-
tion for a 5 × 5 matrix partitioned along the rows among five processes. As Figure 8.7(a)
shows, the first step is to perform the division on row 0 at process P0. The modified row 0
is then sent to P1 (Figure 8.7(b)), which forwards it to P2 (Figure 8.7(c)). Now P1 is free to
perform the elimination step using row 0 (Figure 8.7(d)). In the next step (Figure 8.7(e)),
P2 performs the elimination step using row 0. In the same step, P1, having finished its com-
putation for iteration 0, starts the division step of iteration 1. At any given time, different
stages of the same iteration can be active on different processes. For instance, in Fig-
ure 8.7(h), process P2 performs the elimination step of iteration 1 while processes P3 and
P4 are engaged in communication for the same iteration. Furthermore, more than one iter-
ation may be active simultaneously on different processes. For instance, in Figure 8.7(i),
process P2 is performing the division step of iteration 2 while process P3 is performing the
elimination step of iteration 1.

We now show that, unlike the synchronous algorithm in which all processes work on
the same iteration at a time, the pipelined or the asynchronous version of Gaussian elimi-
nation is cost-optimal. As Figure 8.7 shows, the initiation of consecutive iterations of the
outer loop of Algorithm 8.4 is separated by a constant number of steps. A total of n such
iterations are initiated. The last iteration modifies only the bottom-right corner element
of the coefficient matrix; hence, it completes in a constant time after its initiation. Thus,
the total number of steps in the entire pipelined procedure is �(n) (Problem 8.7). In any
step, either O(n) elements are communicated between directly-connected processes, or a
division step is performed on O(n) elements of a row, or an elimination step is performed
on O(n) elements of a row. Each of these operations take O(n) time. Hence, the entire
procedure consists of �(n) steps of O(n) complexity each, and its parallel run time is
O(n2). Since n processes are used, the cost is O(n3), which is of the same order as the
sequential complexity of Gaussian elimination. Hence, the pipelined version of parallel
Gaussian elimination with 1-D partitioning of the coefficient matrix is cost-optimal.
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Figure 8.8 The communication in the Gaussian elimination iteration corresponding to k = 3 for an
8 × 8 matrix distributed among four processes using block 1-D partitioning.

Block 1-D Partitioning with Fewer than n Processes The preceding pipelined
implementation of parallel Gaussian elimination can be easily adapted for the case in which
n > p. Consider an n × n matrix partitIoned among p processes (p < n) such that
each process is assigned n/p contiguous rows of the matrix. Figure 8.8 illustrates the
communication steps in a typical iteration of Gaussian elimination with such a mapping.
As the figure shows, the kth iteration of the algorithm requires that the active part of the
kth row be sent to the processes storing rows k + 1, k + 2, . . . , n − 1.

Figure 8.9(a) shows that, with block 1-D partitioning, a process with all rows belonging
to the active part of the matrix performs (n − k − 1)n/p multiplications and subtractions
during the elimination step of the kth iteration. Note that in the last (n/p) − 1 iterations,
no process has all active rows, but we ignore this anomaly. If the pipelined version of

(b)  Cyclic 1-D mapping(a)  Block 1-D mapping
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Figure 8.9 Computation load on different processes in block and cyclic 1-D partitioning of an 8 ×
8 matrix on four processes during the Gaussian elimination iteration corresponding to k = 3.
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the algorithm is used, then the number of arithmetic operations on a maximally-loaded
process in the kth iteration (2(n − k − 1)n/p) is much higher than the number of words
communicated (n − k − 1) by a process in the same iteration. Thus, for sufficiently large
values of n with respect to p, computation dominates communication in each iteration.
Assuming that each scalar multiplication and subtraction pair takes unit time, the total
parallel run time of this algorithm (ignoring communication overhead) is 2(n/p)�n−1

k=0 (n −
k − 1), which is approximately equal to n3/p.

The process-time product of this algorithm is n3, even if the communication costs are
ignored. Thus, the cost of the parallel algorithm is higher than the sequential run time
(Equation 8.17) by a factor of 3/2. This inefficiency of Gaussian elimination with block
1-D partitioning is due to process idling resulting from an uneven load distribution. As
Figure 8.9(a) shows for an 8 × 8 matrix and four processes, during the iteration corre-
sponding to k = 3 (in the outer loop of Algorithm 8.4), one process is completely idle,
one is partially loaded, and only two processes are fully active. By the time half of the
iterations of the outer loop are over, only half the processes are active. The remaining idle
processes make the parallel algorithm costlier than the sequential algorithm.

This problem can be alleviated if the matrix is partitioned among the processes using
cyclic 1-D mapping as shown in Figure 8.9(b). With the cyclic 1-D partitioning, the differ-
ence between the computational loads of a maximally loaded process and the least loaded
process in any iteration is of at most one row (that is, O(n) arithmetic operations). Since
there are n iterations, the cumulative overhead due to process idling is only O(n2 p) with a
cyclic mapping, compared to �(n3) with a block mapping (Problem 8.12).

Parallel Implementation with 2-D Partitioning

We now describe a parallel implementation of Algorithm 8.4 in which the n × n matrix A
is mapped onto an n × n mesh of processes such that process Pi, j initially stores A[i, j].
The communication and computation steps in the iteration of the outer loop corresponding
to k = 3 are illustrated in Figure 8.10 for n = 8. Algorithm 8.4 and Figures 8.5 and 8.10
show that in the kth iteration of the outer loop, A[k, k] is required by processes Pk,k+1,
Pk,k+2, . . ., Pk,n−1 to divide A[k, k+1], A[k, k+2], . . . , A[k, n−1], respectively. After the
division on line 6, the modified elements of the kth row are used to perform the elimination
step by all the other rows in the active part of the matrix. The modified (after the division
on line 6) elements of the kth row are used by all other rows of the active part of the matrix.
Similarly, the elements of the kth column are used by all other columns of the active part
of the matrix for the elimination step. As Figure 8.10 shows, the communication in the
kth iteration requires a one-to-all broadcast of A[i, k] along the i th row (Figure 8.10(a))
for k ≤ i < n, and a one-to-all broadcast of A[k, j] along the j th column (Figure 8.10(c))
for k < j < n. Just like the 1-D partitioning case, a non-cost-optimal parallel formulation
results if these broadcasts are performed synchronously on all processes (Problem 8.11).

Pipelined Communication and Computation Based on our experience with Gaus-
sian elimination using 1-D partitioning of the coefficient matrix, we develop a pipelined
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Figure 8.10 Various steps in the Gaussian elimination iteration corresponding to k = 3 for an 8 ×
8 matrix on 64 processes arranged in a logical two-dimensional mesh.

version of the algorithm using 2-D partitioning.
As Figure 8.10 shows, in the kth iteration of the outer loop (lines 3–16 of Algo-

rithm 8.4), A[k, k] is sent to the right from Pk,k to Pk,k+1 to Pk,k+2, and so on, until it
reaches Pk,n−1. Process Pk,k+1 performs the division A[k, k + 1]/A[k, k] as soon as it
receives A[k, k] from Pk,k . It does not have to wait for A[k, k] to reach all the way up to
Pk,n−1 before performing its local computation. Similarly, any subsequent process Pk, j of
the kth row can perform its division as soon as it receives A[k, k]. After performing the
division, A[k, j] is ready to be communicated downward in the j th column. As A[k, j]
moves down, each process it passes is free to use it for computation. Processes in the j th
column need not wait until A[k, j] reaches the last process of the column. Thus, Pi, j per-
forms the elimination step A[i, j] := A[i, j] − A[i, k] × A[k, j] as soon as A[i, k] and
A[k, j] are available. Since some processes perform the computation for a given iteration
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earlier than other processes, they start working on subsequent iterations sooner.
The communication and computation can be pipelined in several ways. We present

one such scheme in Figure 8.11. In Figure 8.11(a), the iteration of the outer loop for
k = 0 starts at process P0,0, when P0,0 sends A[0, 0] to P0,1. Upon receiving A[0, 0],
P0,1 computes A[0, 1] := A[0, 1]/A[0, 0] (Figure 8.11(b)). Now P0,1 forwards A[0, 0]
to P0,2 and also sends the updated A[0, 1] down to P1,1 (Figure 8.11(c)). At the same
time, P1,0 sends A[1, 0] to P1,1. Having received A[0, 1] and A[1, 0], P1,1 performs the
elimination step A[1, 1] := A[1, 1] − A[1, 0] × A[0, 1], and having received A[0, 0],
P0,2 performs the division step A[0, 2] := A[0, 2]/A[0, 0] (Figure 8.11(d)). After this
computation step, another set of processes (that is, processes P0,2, P1,1, and P2,0) is ready
to initiate communication (Figure 8.11(e)).

All processes performing communication or computation during a particular iteration lie
along a diagonal in the bottom-left to top-right direction (for example, P0,2, P1,1, and P2,0

performing communication in Figure 8.11(e) and P0,3, P1,2, and P2,1 performing compu-
tation in Figure 8.11(f)). As the parallel algorithm progresses, this diagonal moves toward
the bottom-right corner of the logical 2-D mesh. Thus, the computation and communica-
tion for each iteration moves through the mesh from top-left to bottom-right as a “front.”
After the front corresponding to a certain iteration passes through a process, the process
is free to perform subsequent iterations. For instance, in Figure 8.11(g), after the front for
k = 0 has passed P1,1, it initiates the iteration for k = 1 by sending A[1, 1] to P1,2. This
initiates a front for k = 1, which closely follows the front for k = 0. Similarly, a third front
for k = 2 starts at P2,2 (Figure 8.11(m)). Thus, multiple fronts that correspond to different
iterations are active simultaneously.

Every step of an iteration, such as division, elimination, or transmitting a value to a
neighboring process, is a constant-time operation. Therefore, a front moves a single step
closer to the bottom-right corner of the matrix in constant time (equivalent to two steps of
Figure 8.11). The front for k = 0 takes time �(n) to reach Pn−1,n−1 after its initiation
at P0,0. The algorithm initiates n fronts for the n iterations of the outer loop. Each front
lags behind the previous one by a single step. Thus, the last front passes the bottom-right
corner of the matrix �(n) steps after the first one. The total time elapsed between the
first front starting at P0,0 and the last one finishing is �(n). The procedure is complete
after the last front passes the bottom-right corner of the matrix; hence, the total parallel
run time is �(n). Since n2 process are used, the cost of the pipelined version of Gaussian
elimination is�(n3), which is the same as the sequential run time of the algorithm. Hence,
the pipelined version of Gaussian elimination with 2-D partitioning is cost-optimal.

2-D Partitioning with Fewer than n 2 Processes Consider the case in which p
processes are used so that p < n2 and the matrix is mapped onto a

√
p×√

p mesh by using
block 2-D partitioning. Figure 8.12 illustrates that a typical parallel Gaussian iteration
involves a rowwise and a columnwise communication of n/

√
p values. Figure 8.13(a)

illustrates the load distribution in block 2-D mapping for n = 8 and p = 16.
Figures 8.12 and 8.13(a) show that a process containing a completely active part of the
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Figure 8.11 Pipelined Gaussian elimination for a 5 × 5 matrix with 25 processes.
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Figure 8.12 The communication steps in the Gaussian elimination iteration corresponding to k =
3 for an 8 × 8 matrix on 16 processes of a two-dimensional mesh.

matrix performs n2/p multiplications and subtractions, and communicates n/
√

p words
along its row and its column (ignoring the fact that in the last (n/

√
p) − 1 iterations, the

active part of the matrix becomes smaller than the size of a block, and no process contains
a completely active part of the matrix). If the pipelined version of the algorithm is used,
the number of arithmetic operations per process (2n2/p) is an order of magnitude higher
than the number of words communicated per process (n/

√
p) in each iteration. Thus,

for sufficiently large values of n2 with respect to p, the communication in each iteration
is dominated by computation. Ignoring the communication cost and assuming that each
scalar arithmetic operation takes unit time, the total parallel run time of this algorithm is
(2n2/p) × n, which is equal to 2n3/p. The process-time product is 2n3, which is three
times the cost of the serial algorithm (Equation 8.17). As a result, there is an upper bound
of 1/3 on the efficiency of the parallel algorithm.

As in the case of a block 1-D mapping, the inefficiency of Gaussian elimination with a
block 2-D partitioning of the matrix is due to process idling resulting from an uneven load
distribution. Figure 8.13(a) shows the active part of an 8 × 8 matrix of coefficients in the
iteration of the outer loop for k = 3 when the matrix is block 2-D partitioned among 16
processes. As shown in the figure, seven out of 16 processes are fully idle, five are partially
loaded, and only four are fully active. By the time half of the iterations of the outer loop
have been completed, only one-fourth of the processes are active. The remaining idle
processes make the parallel algorithm much costlier than the sequential algorithm.

This problem can be alleviated if the matrix is partitioned in a 2-D cyclic fashion as
shown in Figure 8.13(b). With the cyclic 2-D partitioning, the maximum difference in
computational load between any two processes in any iteration is that of one row and one
column update. For example, in Figure 8.13(b), n2/p matrix elements are active in the
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Figure 8.13 Computational load on different processes in block and cyclic 2-D mappings of an 8
× 8 matrix onto 16 processes during the Gaussian elimination iteration corresponding to k = 3.

bottom-right process, and (n − 1)2/p elements are active in the top-left process. The dif-
ference in workload between any two processes is at most�(n/

√
p) in any iteration, which

contributes �(n
√

p) to the overhead function. Since there are n iterations, the cumulative
overhead due to process idling is only �(n2√p) with cyclic mapping in contrast to �(n3)

with block mapping (Problem 8.12). In practical parallel implementations of Gaussian
elimination and LU factorization, a block-cyclic mapping is used to reduce the overhead
due to message startup time associated with a pure cyclic mapping and to obtain better
serial CPU utilization by performing block-matrix operations (Problem 8.15).

From the discussion in this section, we conclude that pipelined parallel Gaussian elim-
ination for an n × n matrix takes time �(n3/p) on p processes with both 1-D and 2-D
partitioning schemes. 2-D partitioning can use more processes (O(n2)) than 1-D partition-
ing (O(n)) for an n×n coefficient matrix. Hence, an implementation with 2-D partitioning
is more scalable.

8.3.2 Gaussian Elimination with Partial Pivoting

The Gaussian elimination algorithm in Algorithm 8.4 fails if any diagonal entry A[k, k] of
the matrix of coefficients is close or equal to zero. To avoid this problem and to ensure
the numerical stability of the algorithm, a technique called partial pivoting is used. At
the beginning of the outer loop in the kth iteration, this method selects a column i (called
the pivot column) such that A[k, i] is the largest in magnitude among all A[k, j] such that
k ≤ j < n. It then exchanges the kth and the i th columns before starting the iteration.
These columns can either be exchanged explicitly by physically moving them into each
other’s locations, or they can be exchanged implicitly by simply maintaining an n × 1
permutation vector to keep track of the new indices of the columns of A. If partial pivoting
is performed with an implicit exchange of column indices, then the factors L and U are
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not exactly triangular matrices, but columnwise permutations of triangular matrices.
Assuming that columns are exchanged explicitly, the value of A[k, k] used as the divisor

on line 6 of Algorithm 8.4 (after exchanging columns k and i) is greater than or equal to
any A[k, j] that it divides in the kth iteration. Partial pivoting in Algorithm 8.4 results in
a unit upper-triangular matrix in which all elements above the principal diagonal have an
absolute value of less than one.

1-D Partitioning

Performing partial pivoting is straightforward with rowwise partitioning as discussed in
Section 8.3.1. Before performing the divide operation in the kth iteration, the process
storing the kth row makes a comparison pass over the active portion of this row, and selects
the element with the largest absolute value as the divisor. This element determines the pivot
column, and all processes must know the index of this column. This information can be
passed on to the rest of the processes along with the modified (after the division) elements
of the kth row. The combined pivot-search and division step takes time�(n − k −1) in the
kth iteration, as in case of Gaussian elimination without pivoting. Thus, partial pivoting
has no significant effect on the performance of Algorithm 8.4 if the coefficient matrix is
partitioned along the rows.

Now consider a columnwise 1-D partitioning of the coefficient matrix. In the absence of
pivoting, parallel implementations of Gaussian elimination with rowwise and columnwise
1-D partitioning are almost identical (Problem 8.9). However, the two are significantly
different if partial pivoting is performed.

The first difference is that, unlike rowwise partitioning, the pivot search is distributed
in columnwise partitioning. If the matrix size is n × n and the number of processes is p,
then the pivot search in columnwise partitioning involves two steps. During pivot search
for the kth iteration, first each process determines the maximum of the n/p (or fewer)
elements of the kth row that it stores. The next step is to find the maximum of the resulting
p (or fewer) values, and to distribute the maximum among all processes. Each pivot search
takes time �(n/p)+�(log p). For sufficiently large values of n with respect to p, this is
less than the time �(n) it takes to perform a pivot search with rowwise partitioning. This
seems to suggest that a columnwise partitioning is better for partial pivoting that a rowwise
partitioning. However, the following factors favor rowwise partitioning.

Figure 8.7 shows how communication and computation “fronts” move from top to bot-
tom in the pipelined version of Gaussian elimination with rowwise 1-D partitioning. Simi-
larly, the communication and computation fronts move from left to right in case of colum-
nwise 1-D partitioning. This means that the (k + 1)th row is not ready for pivot search for
the (k + 1)th iteration (that is, it is not fully updated) until the front corresponding to the
kth iteration reaches the rightmost process. As a result, the (k + 1)th iteration cannot start
until the entire kth iteration is complete. This effectively eliminates pipelining, and we are
therefore forced to use the synchronous version with poor efficiency.

While performing partial pivoting, columns of the coefficient matrix may or may not



368 Dense Matrix Algorithms

be explicitly exchanged. In either case, the performance of Algorithm 8.4 is adversely
affected with columnwise 1-D partitioning. Recall that cyclic or block-cyclic mappings re-
sult in a better load balance in Gaussian elimination than a block mapping. A cyclic map-
ping ensures that the active portion of the matrix is almost uniformly distributed among
the processes at every stage of Gaussian elimination. If pivot columns are not exchanged
explicitly, then this condition may cease to hold. After a pivot column is used, it no longer
stays in the active portion of the matrix. As a result of pivoting without explicit exchange,
columns are arbitrarily removed from the different processes’ active portions of the ma-
trix. This randomness may disturb the uniform distribution of the active portion. On the
other hand, if columns belonging to different processes are exchanged explicitly, then this
exchange requires communication between the processes. A rowwise 1-D partitioning nei-
ther requires communication for exchanging columns, nor does it lose the load-balance if
columns are not exchanged explicitly.

2-D Partitioning

In the case of 2-D partitioning of the coefficient matrix, partial pivoting seriously restricts
pipelining, although it does not completely eliminate it. Recall that in the pipelined version
of Gaussian elimination with 2-D partitioning, fronts corresponding to various iterations
move from top-left to bottom-right. The pivot search for the (k + 1)th iteration can com-
mence as soon as the front corresponding to the kth iteration has moved past the diagonal
of the active matrix joining its top-right and bottom-left corners.

Thus, partial pivoting may lead to considerable performance degradation in parallel
Gaussian elimination with 2-D partitioning. If numerical considerations allow, it may be
possible to reduce the performance loss due to partial pivoting. We can restrict the search
for the pivot in the kth iteration to a band of q columns (instead of all n − k columns). In
this case, the i th column is selected as the pivot in the kth iteration if A[k, i] is the largest
element in a band of q elements of the active part of the i th row. This restricted partial
pivoting not only reduces the communication cost, but also permits limited pipelining. By
restricting the number of columns for pivot search to q, an iteration can start as soon as the
previous iteration has updated the first q + 1 columns.

Another way to get around the loss of pipelining due to partial pivoting in Gaussian
elimination with 2-D partitioning is to use fast algorithms for one-to-all broadcast, such
as those described in Section 4.7.1. With 2-D partitioning of the n × n coefficient matrix
on p processes, a process spends time �(n/

√
p) in communication in each iteration of

the pipelined version of Gaussian elimination. Disregarding the message startup time ts ,
a non-pipelined version that performs explicit one-to-all broadcasts using the algorithm of
Section 4.1 spends time �((n/

√
p) log p) communicating in each iteration. This commu-

nication time is higher than that of the pipelined version. The one-to-all broadcast algo-
rithms described in Section 4.7.1 take time �(n/

√
p) in each iteration (disregarding the

startup time). This time is asymptotically equal to the per-iteration communication time of
the pipelined algorithm. Hence, using a smart algorithm to perform one-to-all broadcast,
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even non-pipelined parallel Gaussian elimination can attain performance comparable to
that of the pipelined algorithm. However, the one-to-all broadcast algorithms described in
Section 4.7.1 split a message into smaller parts and route them separately. For these algo-
rithms to be effective, the sizes of the messages should be large enough; that is, n should
be large compared to p.

Although pipelining and pivoting do not go together in Gaussian elimination with 2-D
partitioning, the discussion of 2-D partitioning in this section is still useful. With some
modification, it applies to the Cholesky factorization algorithm (Algorithm 8.6 in Prob-
lem 8.16), which does not require pivoting. Cholesky factorization applies only to sym-
metric, positive definite matrices. A real n × n matrix A is positive definite if x T Ax > 0
for any n × 1 nonzero, real vector x . The communication pattern in Cholesky factorization
is quite similar to that of Gaussian elimination (Problem 8.16), except that, due to symmet-
ric lower and upper-triangular halves in the matrix, Cholesky factorization uses only one
triangular half of the matrix.

8.3.3 Solving a Triangular System: Back-Substitution

We now briefly discuss the second stage of solving a system of linear equations. After
the full matrix A has been reduced to an upper-triangular matrix U with ones along the
principal diagonal, we perform back-substitution to determine the vector x . A sequential
back-substitution algorithm for solving an upper-triangular system of equations U x = y is
shown in Algorithm 8.5.

Starting with the last equation, each iteration of the main loop (lines 3–8) of Algo-
rithm 8.5 computes the values of a variable and substitutes the variable’s value back into
the remaining equations. The program performs approximately n2/2 multiplications and
subtractions. Note that the number of arithmetic operations in back-substitution is less
than that in Gaussian elimination by a factor of �(n). Hence, if back-substitution is used
in conjunction with Gaussian elimination, it is best to use the matrix partitioning scheme
that is the most efficient for parallel Gaussian elimination.

1. procedure BACK SUBSTITUTION (U , x , y)
2. begin
3. for k := n − 1 downto 0 do /* Main loop */
4. begin
5. x[k] := y[k];
6. for i := k − 1 downto 0 do
7. y[i] := y[i] − x[k] × U [i, k];
8. endfor;
9. end BACK SUBSTITUTION

Algorithm 8.5 A serial algorithm for back-substitution. U is an upper-triangular matrix with all
entries of the principal diagonal equal to one, and all subdiagonal entries equal to zero.
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Consider a rowwise block 1-D mapping of the n × n matrix U onto p processes. Let
the vector y be distributed uniformly among all the processes. The value of the variable
solved in a typical iteration of the main loop (line 3) must be sent to all the processes with
equations involving that variable. This communication can be pipelined (Problem 8.22). If
so, the time to perform the computations of an iteration dominates the time that a process
spends in communication in an iteration. In every iteration of a pipelined implementation,
a process receives (or generates) the value of a variable and sends that value to another
process. Using the value of the variable solved in the current iteration, a process also
performs up to n/p multiplications and subtractions (lines 6 and 7). Hence, each step of a
pipelined implementation requires a constant amount of time for communication and time
�(n/p) for computation. The algorithm terminates in �(n) steps (Problem 8.22), and the
parallel run time of the entire algorithm is �(n2/p).

If the matrix is partitioned by using 2-D partitioning on a
√

p × √
p logical mesh of

processes, and the elements of the vector are distributed along one of the columns of the
process mesh, then only the

√
p processes containing the vector perform any computation.

Using pipelining to communicate the appropriate elements of U to the process containing
the corresponding elements of y for the substitution step (line 7), the algorithm can be
executed in time �(n2/

√
p) (Problem 8.22). Thus, the cost of parallel back-substitution

with 2-D mapping is �(n2√p). The algorithm is not cost-optimal because its sequential
cost is only �(n2). However, the entire process of solving the linear system, including
upper-triangularization using Gaussian elimination, is still cost-optimal for

√
p = O(n)

because the sequential complexity of the entire process is �(n3).

8.3.4 Numerical Considerations in Solving Systems of Linear
Equations

A system of linear equations of the form Ax = b can be solved by using a factorization
algorithm to express A as the product of a lower-triangular matrix L , and a unit upper-
triangular matrix U . The system of equations is then rewritten as LU x = b, and is
solved in two steps. First, the lower-triangular system Ly = b is solved for y. Second, the
upper-triangular system U x = y is solved for x .

The Gaussian elimination algorithm given in Algorithm 8.4 effectively factorizes A into
L and U . However, it also solves the lower-triangular system Ly = b on the fly by means
of steps on lines 7 and 13. Algorithm 8.4 gives what is called a row-oriented Gaussian
elimination algorithm. In this algorithm, multiples of rows are subtracted from other rows.
If partial pivoting, as described in Section 8.3.2, is incorporated into this algorithm, then
the resulting upper-triangular matrix U has all its elements less than or equal to one in
magnitude. The lower-triangular matrix L , whether implicit or explicit, may have elements
with larger numerical values. While solving the system Ax = b, the triangular system
Ly = b is solved first. If L contains large elements, then rounding errors can occur while
solving for y due to the finite precision of floating-point numbers in the computer. These
errors in y are propagated through the solution of U x = y.
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An alternate form of Gaussian elimination is the column-oriented form that can be
obtained from Algorithm 8.4 by reversing the roles of rows and columns. In the column-
oriented algorithm, multiples of columns are subtracted from other columns, pivot search
is also performed along the columns, and numerical stability is guaranteed by row inter-
changes, if needed. All elements of the lower-triangular matrix L generated by the column-
oriented algorithm have a magnitude less than or equal to one. This minimizes numerical
error while solving Ly = b, and results in a significantly smaller error in the overall solu-
tion than the row-oriented algorithm. Algorithm 3.3 gives a procedure for column-oriented
LU factorization.

From a practical point of view, the column-oriented Gaussian elimination algorithm is
more useful than the row-oriented algorithm. We have chosen to present the row-oriented
algorithm in detail in this chapter because it is more intuitive. It is easy to see that the
system of linear equations resulting from the subtraction of a multiple of an equation
from other equations is equivalent to the original system. The entire discussion on the
row-oriented algorithm of Algorithm 8.4 presented in this section applies to the column-
oriented algorithm with the roles of rows and columns reversed. For example, columnwise
1-D partitioning is more suitable than rowwise 1-D partitioning for the column-oriented
algorithm with partial pivoting.

8.4 Bibliographic Remarks

Matrix transposition with 1-D partitioning is essentially an all-to-all personalized commu-
nication problem [Ede89]. Hence, all the references in Chapter 4 for all-to-all personalized
communication apply directly to matrix transposition. The recursive transposition algo-
rithm, popularly known as RTA, was first reported by Eklundh [Ekl72]. Its adaptations
for hypercubes have been described by Bertsekas and Tsitsiklis [BT97], Fox and Fur-
manski [FF86], Johnsson [Joh87], and McBryan and Van de Velde [MdV87] for one-port
communication on each process. Johnsson [Joh87] also discusses parallel RTA for hy-
percubes that permit simultaneous communication on all channels. Further improvements
on the hypercube RTA have been suggested by Ho and Raghunath [HR91], Johnsson and
Ho [JH88], Johnsson [Joh90], and Stout and Wagar [SW87].

A number of sources of parallel dense linear algebra algorithms, including those for
matrix-vector multiplication and matrix multiplication, are available [CAHH91, GPS90,
GL96a, Joh87, Mod88, OS85]. Since dense matrix multiplication is highly compu-
tationally intensive, there has been a great deal of interest in developing parallel for-
mulations of this algorithm and in testing its performance on various parallel architec-
tures [Akl89, Ber89, CAHH91, Can69, Cha79, CS88, DNS81, dV89, FJL+88, FOH87,
GK91, GL96a, Hip89, HJE91, Joh87, PV80, Tic88]. Some of the early parallel formula-
tions of matrix multiplication were developed by Cannon [Can69], Dekel, Nassimi, and
Sahni [DNS81], and Fox et al. [FOH87]. Variants and improvements of these algorithms
have been presented by Berntsen [Ber89], and by Ho, Johnsson, and Edelman [HJE91]. In
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particular, Berntsen [Ber89] presents an algorithm that has strictly smaller communication
overhead than Cannon’s algorithm, but has a smaller degree of concurrency. Ho, Johns-
son, and Edelman [HJE91] present another variant of Cannon’s algorithm for a hypercube
that permits communication on all channels simultaneously. This algorithm, while reduc-
ing communication, also reduces the degree of concurrency. Gupta and Kumar [GK91]
present a detailed scalability analysis of several matrix multiplication algorithms. They
present an analysis to determine the best algorithm to multiply two n × n matrices on a
p-process hypercube for different ranges of n, p and the hardware-related constants. They
also show that the improvements suggested by Berntsen and Ho et al. do not improve the
overall scalability of matrix multiplication on a hypercube.

Parallel algorithms for LU factorization and solving dense systems of linear equa-
tions have been discussed by several researchers [Ber84, BT97, CG87, Cha87, Dav86,
DHvdV93, FJL+88, Gei85, GH86, GPS90, GR88, Joh87, LD90, Lei92, Mod88, Mol86,
OR88, Ort88, OS86, PR85, Rob90, Saa86, Vav89]. Geist and Heath [GH85, GH86], and
Heath [Hea85] specifically concentrate on parallel dense Cholesky factorization. Parallel
algorithms for solving triangular systems have also been studied in detail [EHHR88, HR88,
LC88, LC89, RO88, Rom87]. Demmel, Heath, and van der Vorst [DHvdV93] present a
comprehensive survey of parallel matrix computations considering numerical implications
in detail.

A portable software implementation of all matrix and vector operations discussed in
this chapter, and many more, is available as PBLAS (parallel basic linear algebra subrou-
tines) [C+95]. The ScaLAPACK library [B+97] uses PBLAS to implement a variety of
linear algebra routines of practical importance, including procedures for various methods
of matrix factorizations and solving systems of linear equations.

Problems

8.1 Consider the two algorithms for all-to-all personalized communication in Sec-
tion 4.5.3. Which method would you use on a 64-node parallel computer with
�(p) bisection width for transposing a 1024×1024 matrix with the 1-D partition-
ing if ts = 100µs and tw = 1µs? Why?

8.2 Describe a parallel formulation of matrix-vector multiplication in which the matrix
is 1-D block-partitioned along the columns and the vector is equally partitioned
among all the processes. Show that the parallel run time is the same as in case of
rowwise 1-D block partitioning.
Hint: The basic communication operation used in the case of columnwise 1-D
partitioning is all-to-all reduction, as opposed to all-to-all broadcast in the case of
rowwise 1-D partitioning. Problem 4.8 describes all-to-all reduction.

8.3 Section 8.1.2 describes and analyzes matrix-vector multiplication with 2-D par-
titioning. If n � √

p, then suggest ways of improving the parallel run time to
n2/p + 2ts log p + 2tw(n/

√
p). Is the improved method more scalable than the
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one used in Section 8.1.2?

8.4 The overhead function for multiplying an n × n 2-D partitioned matrix with an
n × 1 vector using p processes is ts p log p + twn

√
p log p (Equation 8.8). Substi-

tuting this expression in Equation 5.14 yields a quadratic equation in n. Using this
equation, determine the precise isoefficiency function for the parallel algorithm
and compare it with Equations 8.9 and 8.10. Does this comparison alter the con-
clusion that the term associated with tw is responsible for the overall isoefficiency
function of this parallel algorithm?

8.5 Strassen’s method [AHU74, CLR90] for matrix multiplication is an algorithm
based on the divide-and-conquer technique. The sequential complexity of mul-
tiplying two n × n matrices using Strassen’s algorithm is �(n2.81). Consider the
simple matrix multiplication algorithm (Section 8.2.1) for multiplying two n × n
matrices using p processes. Assume that the n/

√
p × n/

√
p submatrices are mul-

tiplied using Strassen’s algorithm at each process. Derive an expression for the
parallel run time of this algorithm. Is the parallel algorithm cost-optimal?

8.6 (DNS algorithm with fewer than n3 processes [DNS81]) Section 8.2.3 describes
a parallel formulation of the DNS algorithm that uses fewer than n3 processes.
Another variation of this algorithm works with p = n2q processes, where 1 ≤ q ≤
n. Here the process arrangement is regarded as a q×q×q logical three-dimensional
array of “superprocesses,” in which each superprocess is an (n/q)×(n/q)mesh of
processes. This variant can be viewed as identical to the block variant described in
Section 8.2.3, except that the role of each process is now assumed by an (n/q) ×
(n/q) logical mesh of processes. This means that each block multiplication of
(n/q)×(n/q) submatrices is performed in parallel by (n/q)2 processes rather than
by a single process. Any of the algorithms described in Sections 8.2.1 or 8.2.2 can
be used to perform this multiplication.
Derive an expression for the parallel run time for this variant of the DNS algorithm
in terms of n, p, ts , and tw. Compare the expression with Equation 8.16. Discuss
the relative merits and drawbacks of the two variations of the DNS algorithm for
fewer than n3 processes.

8.7 Figure 8.7 shows that the pipelined version of Gaussian elimination requires 16
steps for a 5 × 5 matrix partitioned rowwise on five processes. Show that, in
general, the algorithm illustrated in this figure completes in 4(n − 1) steps for an
n × n matrix partitioned rowwise with one row assigned to each process.

8.8 Describe in detail a parallel implementation of the Gaussian elimination algorithm
of Algorithm 8.4 without pivoting if the n × n coefficient matrix is partitioned
columnwise among p processes. Consider both pipelined and non-pipelined im-
plementations. Also consider the cases p = n and p < n.
Hint: The parallel implementation of Gaussian elimination described in Sec-
tion 8.3.1 shows horizontal and vertical communication on a logical two-
dimensional mesh of processes (Figure 8.12). A rowwise partitioning requires
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only the vertical part of this communication. Similarly, columnwise partitioning
performs only the horizontal part of this communication.

8.9 Derive expressions for the parallel run times of all the implementations in Prob-
lem 8.8. Is the run time of any of these parallel implementations significantly
different from the corresponding implementation with rowwise 1-D partitioning?

8.10 Rework Problem 8.9 with partial pivoting. In which implementations are the par-
allel run times significantly different for rowwise and columnwise partitioning?

8.11 Show that Gaussian elimination on an n × n matrix 2-D partitioned on an n × n
logical mesh of processes is not cost-optimal if the 2n one-to-all broadcasts are
performed synchronously.

8.12 Show that the cumulative idle time over all the processes in the Gaussian elimina-
tion algorithm is�(n3) for a block mapping, whether the n×n matrix is partitioned
along one or both dimensions. Show that this idle time is reduced to �(n2 p) for
cyclic 1-D mapping and �(n2√p) for cyclic 2-D mapping.

8.13 Prove that the isoefficiency function of the asynchronous version of the Gaussian
elimination with 2-D mapping is �(p3/2) if pivoting is not performed.

8.14 Derive precise expressions for the parallel run time of Gaussian elimination with
and without partial pivoting if the n ×n matrix of coefficients is partitioned among
p processes of a logical square two-dimensional mesh in the following formats:
(a) Rowwise block 1-D partitioning.
(b) Rowwise cyclic 1-D partitioning.
(c) Columnwise block 1-D partitioning.
(d) Columnwise cyclic 1-D partitioning.

8.15 Rewrite Algorithm 8.4 in terms of block matrix operations as discussed at the be-
ginning of Section 8.2. Consider Gaussian elimination of an n × n matrix par-
titioned into a q × q array of submatrices, where each submatrix is of size of
n/q × n/q. This array of blocks is mapped onto a logical

√
p × √

p mesh of pro-
cesses in a cyclic manner, resulting in a 2-D block cyclic mapping of the original
matrix onto the mesh. Assume that n > q >

√
p and that n is divisible by q,

which in turn is divisible by
√

p. Derive expressions for the parallel run time for
both synchronous and pipelined versions of Gaussian elimination.
Hint: The division step A[k, j] := A[k, j]/A[k, k] is replaced by submatrix oper-
ation Ak, j := A−1

k,k Ak, j , where Ak,k is the lower triangular part of the kth diagonal
submatrix.

8.16 (Cholesky factorization) Algorithm 8.6 describes a row-oriented version of the
Cholesky factorization algorithm for factorizing a symmetric positive definite ma-
trix into the form A = U T U . Cholesky factorization does not require pivoting.
Describe a pipelined parallel formulation of this algorithm that uses 2-D parti-
tioning of the matrix on a square mesh of processes. Draw a picture similar to
Figure 8.11.
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1. procedure CHOLESKY (A)
2. begin
3. for k := 0 to n − 1 do
4. begin
5. A[k, k] := √

A[k, k];
6. for j := k + 1 to n − 1 do
7. A[k, j] := A[k, j]/A[k, k];
8. for i := k + 1 to n − 1 do
9. for j := i to n − 1 do
10. A[i, j] := A[i, j] − A[k, i] × A[k, j];
11. endfor; /* Line 3 */
12. end CHOLESKY

Algorithm 8.6 A row-oriented Cholesky factorization algorithm.

8.17 (Scaled speedup) Scaled speedup (Section 5.7) is defined as the speedup obtained
when the problem size is increased linearly with the number of processes; that is,
if W is chosen as a base problem size for a single process, then

Scaled speedup = W p

TP (W p, p)
. (8.19)

For the simple matrix multiplication algorithm described in Section 8.2.1, plot the
standard and scaled speedup curves for the base problem of multiplying 16 × 16
matrices. Use p = 1, 4, 16, 64, and 256. Assume that ts = 10 and tw = 1 in
Equation 8.14.

8.18 Plot a third speedup curve for Problem 8.17, in which the problem size is scaled
up according to the isoefficiency function, which is �(p3/2). Use the same values
of ts and tw.
Hint: The scaled speedup under this method of scaling is

Isoefficient scaled speedup = W p3/2

TP (W p3/2, p)
.

8.19 Plot the efficiency curves for the simple matrix multiplication algorithm corre-
sponding to the standard speedup curve (Problem 8.17), the scaled speedup curve
(Problem 8.17), and the speedup curve when the problem size is increased accord-
ing to the isoefficiency function (Problem 8.18).

8.20 A drawback of increasing the number of processes without increasing the total
workload is that the speedup does not increase linearly with the number of pro-
cesses, and the efficiency drops monotonically. Based on your experience with
Problems 8.17 and 8.19, discuss whether using scaled speedup instead of standard
speedup solves the problem in general. What can you say about the isoefficiency
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function of a parallel algorithm whose scaled speedup curve matches the speedup
curve determined by increasing the problem size according to the isoefficiency
function?

8.21 (Time-constrained scaling) Assume that ts = 10 and tw = 1 in the expression
of parallel execution time (Equation 8.14) of the matrix-multiplication algorithm
discussed in Section 8.2.1. For p = 1, 4, 16, 64, 256, 1024, and 4096, what is
the largest problem that can be solved if the total run time is not to exceed 512
time units? In general, is it possible to solve an arbitrarily large problem in a fixed
amount of time, provided that an unlimited number of processes is available? Give
a brief explanation.

8.22 Describe a pipelined algorithm for performing back-substitution to solve a triangu-
lar system of equations of the form U x = y, where the n × n unit upper-triangular
matrix U is 2-D partitioned onto an n × n mesh of processes. Give an expression
for the parallel run time of the algorithm. Modify the algorithm to work on fewer
than n2 processes, and derive an expression for the parallel execution time of the
modified algorithm.

8.23 Consider the parallel algorithm given in Algorithm 8.7 for multiplying two n × n
matrices A and B to obtain the product matrix C . Assume that it takes time tlocal

for a memory read or write operation on a matrix element and time tc to add and
multiply two numbers. Determine the parallel run time for this algorithm on an
n2-processor CREW PRAM. Is this parallel algorithm cost-optimal?

8.24 Assuming that concurrent read accesses to a memory location are serialized on an
EREW PRAM, derive the parallel run time of the algorithm given in Algorithm 8.7
on an n2-processor EREW PRAM. Is this algorithm cost-optimal on an EREW
PRAM?

8.25 Consider a shared-address-space parallel computer with n2 processors. Assume

1. procedure MAT MULT CREW PRAM (A, B, C , n)
2. begin
3. Organize the n2 processes into a logical mesh of n × n;
4. for each process Pi, j do
5. begin
6. C[i, j] := 0;
7. for k := 0 to n − 1 do
8. C[i, j] := C[i, j] + A[i, k] × B[k, j];
9. endfor;
10. end MAT MULT CREW PRAM

Algorithm 8.7 An algorithm for multiplying two n × n matrices A and B on a CREW PRAM,
yielding matrix C = A × B .
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1. procedure MAT MULT EREW PRAM (A, B, C , n)
2. begin
3. Organize the n2 processes into a logical mesh of n × n;
4. for each process Pi, j do
5. begin
6. C[i, j] := 0;
7. for k := 0 to n − 1 do
8. C[i, j] := C[i, j]+

A[i, (i + j + k) mod n] × B[(i + j + k) mod n, j];
9. endfor;
10. end MAT MULT EREW PRAM

Algorithm 8.8 An algorithm for multiplying two n × n matrices A and B on an EREW PRAM,
yielding matrix C = A × B .

that each processor has some local memory, and A[i, j] and B[i, j] are stored in
the local memory of processor Pi, j . Furthermore, processor Pi, j computes C[i, j]
in its local memory. Assume that it takes time tlocal + tw to perform a read or write
operation on nonlocal memory and time tlocal on local memory. Derive an expres-
sion for the parallel run time of the algorithm in Algorithm 8.7 on this parallel
computer.

8.26 Algorithm 8.7 can be modified so that the parallel run time on an EREW PRAM is
less than that in Problem 8.24. The modified program is shown in Algorithm 8.8.
What is the parallel run time of Algorithm 8.8 on an EREW PRAM and a shared-
address-space parallel computer with memory access times as described in Prob-
lems 8.24 and 8.25? Is the algorithm cost-optimal on these architectures?

8.27 Consider an implementation of Algorithm 8.8 on a shared-address-space parallel
computer with fewer than n2 (say, p) processors and with memory access times as
described in Problem 8.25. What is the parallel runtime?

8.28 Consider the implementation of the parallel matrix multiplication algorithm pre-
sented in Section 8.2.1 on a shared-address-space computer with memory access
times as given in Problem 8.25. In this algorithm, each processor first receives all
the data it needs into its local memory, and then performs the computation. Derive
the parallel run time of this algorithm. Compare the performance of this algorithm
with that in Problem 8.27.

8.29 Use the results of Problems 8.23–8.28 to comment on the viability of the PRAM
model as a platform for parallel algorithm design. Also comment on the relevance
of the message-passing model for shared-address-space computers.
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