
CHAPTER 9

Sorting

Sorting is one of the most common operations performed by a computer. Because sorted
data are easier to manipulate than randomly-ordered data, many algorithms require sorted
data. Sorting is of additional importance to parallel computing because of its close relation
to the task of routing data among processes, which is an essential part of many parallel
algorithms. Many parallel sorting algorithms have been investigated for a variety of par-
allel computer architectures. This chapter presents several parallel sorting algorithms for
PRAM, mesh, hypercube, and general shared-address-space and message-passing archi-
tectures.

Sorting is defined as the task of arranging an unordered collection of elements into
monotonically increasing (or decreasing) order. Specifically, let S = 〈a1, a2, . . . , an〉 be
a sequence of n elements in arbitrary order; sorting transforms S into a monotonically
increasing sequence S′ = 〈a′

1, a′
2, . . . , a′

n〉 such that a′
i ≤ a′

j for 1 ≤ i ≤ j ≤ n, and S′ is
a permutation of S.

Sorting algorithms are categorized as internal or external. In internal sorting, the num-
ber of elements to be sorted is small enough to fit into the process’s main memory. In
contrast, external sorting algorithms use auxiliary storage (such as tapes and hard disks)
for sorting because the number of elements to be sorted is too large to fit into memory.
This chapter concentrates on internal sorting algorithms only.

Sorting algorithms can be categorized as comparison-based and noncomparison-based.
A comparison-based algorithm sorts an unordered sequence of elements by repeatedly
comparing pairs of elements and, if they are out of order, exchanging them. This fun-
damental operation of comparison-based sorting is called compare-exchange. The lower
bound on the sequential complexity of any sorting algorithms that is comparison-based
is �(n log n), where n is the number of elements to be sorted. Noncomparison-based
algorithms sort by using certain known properties of the elements (such as their binary
representation or their distribution). The lower-bound complexity of these algorithms is
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�(n). We concentrate on comparison-based sorting algorithms in this chapter, although
we briefly discuss some noncomparison-based sorting algorithms in Section 9.6.

9.1 Issues in Sorting on Parallel Computers

Parallelizing a sequential sorting algorithm involves distributing the elements to be sorted
onto the available processes. This process raises a number of issues that we must address
in order to make the presentation of parallel sorting algorithms clearer.

9.1.1 Where the Input and Output Sequences are Stored

In sequential sorting algorithms, the input and the sorted sequences are stored in the pro-
cess’s memory. However, in parallel sorting there are two places where these sequences
can reside. They may be stored on only one of the processes, or they may be distributed
among the processes. The latter approach is particularly useful if sorting is an intermediate
step in another algorithm. In this chapter, we assume that the input and sorted sequences
are distributed among the processes.

Consider the precise distribution of the sorted output sequence among the processes. A
general method of distribution is to enumerate the processes and use this enumeration to
specify a global ordering for the sorted sequence. In other words, the sequence will be
sorted with respect to this process enumeration. For instance, if Pi comes before Pj in the
enumeration, all the elements stored in Pi will be smaller than those stored in Pj . We can
enumerate the processes in many ways. For certain parallel algorithms and interconnection
networks, some enumerations lead to more efficient parallel formulations than others.

9.1.2 How Comparisons are Performed

A sequential sorting algorithm can easily perform a compare-exchange on two elements
because they are stored locally in the process’s memory. In parallel sorting algorithms,
this step is not so easy. If the elements reside on the same process, the comparison can be
done easily. But if the elements reside on different processes, the situation becomes more
complicated.

One Element Per Process

Consider the case in which each process holds only one element of the sequence to be
sorted. At some point in the execution of the algorithm, a pair of processes (Pi , Pj ) may
need to compare their elements, ai and a j . After the comparison, Pi will hold the smaller
and Pj the larger of {ai , a j }. We can perform comparison by having both processes send
their elements to each other. Each process compares the received element with its own
and retains the appropriate element. In our example, Pi will keep the smaller and Pj
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Step 1 Step 2 Step 3

ai a j

Pi PiPi PjPj Pj

max{ai , a j }min{ai , a j }a j , aiai , a j

Figure 9.1 A parallel compare-exchange operation. Processes Pi and Pj send their elements to
each other. Process Pi keeps min{ai , a j }, and Pj keeps max{ai , a j }.

will keep the larger of {ai , a j }. As in the sequential case, we refer to this operation as
compare-exchange. As Figure 9.1 illustrates, each compare-exchange operation requires
one comparison step and one communication step.

If we assume that processes Pi and Pj are neighbors, and the communication channels
are bidirectional, then the communication cost of a compare-exchange step is (ts + tw),
where ts and tw are message-startup time and per-word transfer time, respectively. In
commercially available message-passing computers, ts is significantly larger than tw, so
the communication time is dominated by ts . Note that in today’s parallel computers it
takes more time to send an element from one process to another than it takes to compare
the elements. Consequently, any parallel sorting formulation that uses as many processes
as elements to be sorted will deliver very poor performance because the overall parallel run
time will be dominated by interprocess communication.

More than One Element Per Process

A general-purpose parallel sorting algorithm must be able to sort a large sequence with a
relatively small number of processes. Let p be the number of processes P0, P1, . . . , Pp−1,
and let n be the number of elements to be sorted. Each process is assigned a block of
n/p elements, and all the processes cooperate to sort the sequence. Let A0, A1, . . . A p−1

be the blocks assigned to processes P0, P1, . . . Pp−1, respectively. We say that Ai ≤ A j

if every element of Ai is less than or equal to every element in A j . When the sorting
algorithm finishes, each process Pi holds a set A′

i such that A′
i ≤ A′

j for i ≤ j , and⋃p−1
i=0 Ai = ⋃p−1

i=0 A′
i .

As in the one-element-per-process case, two processes Pi and Pj may have to redis-
tribute their blocks of n/p elements so that one of them will get the smaller n/p elements
and the other will get the larger n/p elements. Let Ai and A j be the blocks stored in
processes Pi and Pj . If the block of n/p elements at each process is already sorted, the
redistribution can be done efficiently as follows. Each process sends its block to the other
process. Now, each process merges the two sorted blocks and retains only the appropriate
half of the merged block. We refer to this operation of comparing and splitting two sorted
blocks as compare-split. The compare-split operation is illustrated in Figure 9.2.

If we assume that processes Pi and Pj are neighbors and that the communication
channels are bidirectional, then the communication cost of a compare-split operation is
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Figure 9.2 A compare-split operation. Each process sends its block of size n/p to the other
process. Each process merges the received block with its own block and retains only the appropriate
half of the merged block. In this example, process Pi retains the smaller elements and process Pj

retains the larger elements.

(ts + twn/p). As the block size increases, the significance of ts decreases, and for suffi-
ciently large blocks it can be ignored. Thus, the time required to merge two sorted blocks
of n/p elements is �(n/p).

9.2 Sorting Networks

In the quest for fast sorting methods, a number of networks have been designed that sort n
elements in time significantly smaller than �(n log n). These sorting networks are based
on a comparison network model, in which many comparison operations are performed
simultaneously.

The key component of these networks is a comparator. A comparator is a device
with two inputs x and y and two outputs x ′ and y′. For an increasing comparator,
x ′ = min{x, y} and y′ = max{x, y}; for a decreasing comparator x ′ = max{x, y} and
y′ = min{x, y}. Figure 9.3 gives the schematic representation of the two types of com-
parators. As the two elements enter the input wires of the comparator, they are compared
and, if necessary, exchanged before they go to the output wires. We denote an increasing
comparator by ⊕ and a decreasing comparator by �. A sorting network is usually made
up of a series of columns, and each column contains a number of comparators connected
in parallel. Each column of comparators performs a permutation, and the output obtained
from the final column is sorted in increasing or decreasing order. Figure 9.4 illustrates
a typical sorting network. The depth of a network is the number of columns it contains.
Since the speed of a comparator is a technology-dependent constant, the speed of the net-
work is proportional to its depth.
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Figure 9.3 A schematic representation of comparators: (a) an increasing comparator, and (b) a
decreasing comparator.

We can convert any sorting network into a sequential sorting algorithm by emulating the
comparators in software and performing the comparisons of each column sequentially. The
comparator is emulated by a compare-exchange operation, where x and y are compared
and, if necessary, exchanged.

The following section describes a sorting network that sorts n elements in �(log2 n)
time. To simplify the presentation, we assume that n is a power of two.
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Figure 9.4 A typical sorting network. Every sorting network is made up of a series of columns,
and each column contains a number of comparators connected in parallel.
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9.2.1 Bitonic Sort

A bitonic sorting network sorts n elements in �(log2 n) time. The key operation of the
bitonic sorting network is the rearrangement of a bitonic sequence into a sorted sequence.
A bitonic sequence is a sequence of elements 〈a0, a1, . . . , an−1〉 with the property that
either (1) there exists an index i , 0 ≤ i ≤ n − 1, such that 〈a0, . . . , ai 〉 is monotonically
increasing and 〈ai+1, . . . , an−1〉 is monotonically decreasing, or (2) there exists a cyclic
shift of indices so that (1) is satisfied. For example, 〈1, 2, 4, 7, 6, 0〉 is a bitonic sequence,
because it first increases and then decreases. Similarly, 〈8, 9, 2, 1, 0, 4〉 is another bitonic
sequence, because it is a cyclic shift of 〈0, 4, 8, 9, 2, 1〉.

We present a method to rearrange a bitonic sequence to obtain a monotonically increas-
ing sequence. Let s = 〈a0, a1, . . . , an−1〉 be a bitonic sequence such that a0 ≤ a1 ≤ . . . ≤
an/2−1 and an/2 ≥ an/2+1 ≥ . . . ≥ an−1. Consider the following subsequences of s:

s1 = 〈min{a0, an/2},min{a1, an/2+1}, . . . ,min{an/2−1, an−1}〉
s2 = 〈max{a0, an/2},max{a1, an/2+1}, . . . ,max{an/2−1, an−1}〉 (9.1)

In sequence s1, there is an element bi = min{ai , an/2+i } such that all the elements before
bi are from the increasing part of the original sequence and all the elements after bi are
from the decreasing part. Also, in sequence s2, the element b′

i = max{ai , an/2+i } is such
that all the elements before b′

i are from the decreasing part of the original sequence and all
the elements after b′

i are from the increasing part. Thus, the sequences s1 and s2 are bitonic
sequences. Furthermore, every element of the first sequence is smaller than every element
of the second sequence. The reason is that bi is greater than or equal to all elements of s1,
b′

i is less than or equal to all elements of s2, and b′
i is greater than or equal to bi . Thus,

we have reduced the initial problem of rearranging a bitonic sequence of size n to that of
rearranging two smaller bitonic sequences and concatenating the results. We refer to the
operation of splitting a bitonic sequence of size n into the two bitonic sequences defined
by Equation 9.1 as a bitonic split. Although in obtaining s1 and s2 we assumed that the
original sequence had increasing and decreasing sequences of the same length, the bitonic
split operation also holds for any bitonic sequence (Problem 9.3).

We can recursively obtain shorter bitonic sequences using Equation 9.1 for each of the
bitonic subsequences until we obtain subsequences of size one. At that point, the output is
sorted in monotonically increasing order. Since after each bitonic split operation the size of
the problem is halved, the number of splits required to rearrange the bitonic sequence into
a sorted sequence is log n. The procedure of sorting a bitonic sequence using bitonic splits
is called bitonic merge. The recursive bitonic merge procedure is illustrated in Figure 9.5.

We now have a method for merging a bitonic sequence into a sorted sequence. This
method is easy to implement on a network of comparators. This network of comparators,
known as a bitonic merging network, it is illustrated in Figure 9.6. The network contains
log n columns. Each column contains n/2 comparators and performs one step of the bitonic
merge. This network takes as input the bitonic sequence and outputs the sequence in sorted
order. We denote a bitonic merging network with n inputs by ⊕BM[n]. If we replace the
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Original
sequence 3 5 8 9 10 12 14 20 95 90 60 40 35 23 18 0
1st Split 3 5 8 9 10 12 14 0 95 90 60 40 35 23 18 20
2nd Split 3 5 8 0 10 12 14 9 35 23 18 20 95 90 60 40
3rd Split 3 0 8 5 10 9 14 12 18 20 35 23 60 40 95 90
4th Split 0 3 5 8 9 10 12 14 18 20 23 35 40 60 90 95

Figure 9.5 Merging a 16-element bitonic sequence through a series of log 16 bitonic splits.

⊕ comparators in Figure 9.6 by � comparators, the input will be sorted in monotonically
decreasing order; such a network is denoted by �BM[n].

Armed with the bitonic merging network, consider the task of sorting n unordered el-
ements. This is done by repeatedly merging bitonic sequences of increasing length, as
illustrated in Figure 9.7.

Let us now see how this method works. A sequence of two elements x and y forms a
bitonic sequence, since either x ≤ y, in which case the bitonic sequence has x and y in
the increasing part and no elements in the decreasing part, or x ≥ y, in which case the
bitonic sequence has x and y in the decreasing part and no elements in the increasing part.
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Figure 9.6 A bitonic merging network for n = 16. The input wires are numbered 0, 1 . . . , n − 1,
and the binary representation of these numbers is shown. Each column of comparators is drawn
separately; the entire figure represents a ⊕BM[16] bitonic merging network. The network takes a
bitonic sequence and outputs it in sorted order.
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Hence, any unsorted sequence of elements is a concatenation of bitonic sequences of size
two. Each stage of the network shown in Figure 9.7 merges adjacent bitonic sequences
in increasing and decreasing order. According to the definition of a bitonic sequence, the
sequence obtained by concatenating the increasing and decreasing sequences is bitonic.
Hence, the output of each stage in the network in Figure 9.7 is a concatenation of bitonic
sequences that are twice as long as those at the input. By merging larger and larger bitonic
sequences, we eventually obtain a bitonic sequence of size n. Merging this sequence sorts
the input. We refer to the algorithm embodied in this method as bitonic sort and the
network as a bitonic sorting network. The first three stages of the network in Figure 9.7
are shown explicitly in Figure 9.8. The last stage of Figure 9.7 is shown explicitly in
Figure 9.6.

The last stage of an n-element bitonic sorting network contains a bitonic merging net-
work with n inputs. This has a depth of log n. The other stages perform a complete sort
of n/2 elements. Hence, the depth, d(n), of the network in Figure 9.7 is given by the
following recurrence relation:

d(n) = d(n/2)+ log n (9.2)

Solving Equation 9.2, we obtain d(n) = ∑log n
i=1 i = (log2 n + log n)/2 = �(log2 n).

This network can be implemented on a serial computer, yielding a �(n log2 n) sorting
algorithm. The bitonic sorting network can also be adapted and used as a sorting algorithm
for parallel computers. In the next section, we describe how this can be done for hypercube-
and mesh-connected parallel computers.
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Figure 9.7 A schematic representation of a network that converts an input sequence into a bitonic
sequence. In this example, ⊕BM[k] and �BM[k] denote bitonic merging networks of input size k
that use ⊕ and � comparators, respectively. The last merging network (⊕BM[16]) sorts the input.
In this example, n = 16.



9.2.2 Mapping Bitonic Sort to a Hypercube and a Mesh 387

23

90

60

40

0

3

8

12

14

20

10

9

5

0

18

23

35

40

60

90

95

20

14

12

10

9

8

18

95

5

3

18

95

35

23

40

60

90

0

12

14

8

3

5

9

20

10

18

95

35

23

40

60

0

90

14

12

8

3

9

5

20

10

35

1000

1111

1110

1101

1100

1011

1010

1001

0111

0110

0101

0100

0011

0010

0001

0000

Wires

Figure 9.8 The comparator network that transforms an input sequence of 16 unordered numbers
into a bitonic sequence. In contrast to Figure 9.6, the columns of comparators in each bitonic merging
network are drawn in a single box, separated by a dashed line.

9.2.2 Mapping Bitonic Sort to a Hypercube and a Mesh

In this section we discuss how the bitonic sort algorithm can be mapped on general-purpose
parallel computers. One of the key aspects of the bitonic algorithm is that it is communica-
tion intensive, and a proper mapping of the algorithm must take into account the topology
of the underlying interconnection network. For this reason, we discuss how the bitonic
sort algorithm can be mapped onto the interconnection network of a hypercube- and mesh-
connected parallel computers.

The bitonic sorting network for sorting n elements contains log n stages, and stage i
consists of i columns of n/2 comparators. As Figures 9.6 and 9.8 show, each column of
comparators performs compare-exchange operations on n wires. On a parallel computer,
the compare-exchange function is performed by a pair of processes.

One Element Per Process

In this mapping, each of the n processes contains one element of the input sequence.
Graphically, each wire of the bitonic sorting network represents a distinct process. During
each step of the algorithm, the compare-exchange operations performed by a column of
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comparators are performed by n/2 pairs of processes. One important question is how to
map processes to wires in order to minimize the distance that the elements travel during a
compare-exchange operation. If the mapping is poor, the elements travel a long distance
before they can be compared, which will degrade performance. Ideally, wires that perform
a compare-exchange should be mapped onto neighboring processes. Then the parallel for-
mulation of bitonic sort will have the best possible performance over all the formulations
that require n processes.

To obtain a good mapping, we must further investigate the way that input wires are
paired during each stage of bitonic sort. Consider Figures 9.6 and 9.8, which show the
full bitonic sorting network for n = 16. In each of the (1 + log 16)(log 16)/2 = 10
comparator columns, certain wires compare-exchange their elements. Focus on the binary
representation of the wire labels. In any step, the compare-exchange operation is performed
between two wires only if their labels differ in exactly one bit. During each of the four
stages, wires whose labels differ in the least-significant bit perform a compare-exchange
in the last step of each stage. During the last three stages, wires whose labels differ in
the second-least-significant bit perform a compare-exchange in the second-to-last step of
each stage. In general, wires whose labels differ in the i th least-significant bit perform
a compare-exchange (log n − i + 1) times. This observation helps us efficiently map
wires onto processes by mapping wires that perform compare-exchange operations more
frequently to processes that are close to each other.

Hypercube Mapping wires onto the processes of a hypercube-connected parallel com-
puter is straightforward. Compare-exchange operations take place between wires whose
labels differ in only one bit. In a hypercube, processes whose labels differ in only one
bit are neighbors (Section 2.4.3). Thus, an optimal mapping of input wires to hypercube
processes is the one that maps an input wire with label l to a process with label l where
l = 0, 1, . . . , n − 1.

Consider how processes are paired for their compare-exchange steps in a d-dimensional
hypercube (that is, p = 2d ). In the final stage of bitonic sort, the input has been converted
into a bitonic sequence. During the first step of this stage, processes that differ only in the
d th bit of the binary representation of their labels (that is, the most significant bit) compare-
exchange their elements. Thus, the compare-exchange operation takes place between pro-
cesses along the d th dimension. Similarly, during the second step of the algorithm, the
compare-exchange operation takes place among the processes along the (d − 1)th dimen-
sion. In general, during the i th step of the final stage, processes communicate along the
(d − (i − 1))th dimension. Figure 9.9 illustrates the communication during the last stage
of the bitonic sort algorithm.

A bitonic merge of sequences of size 2k can be performed on a k-dimensional subcube,
with each such sequence assigned to a different subcube (Problem 9.5). Furthermore,
during the i th step of this bitonic merge, the processes that compare their elements are
neighbors along the (k − (i − 1))th dimension. Figure 9.10 is a modification of Figure 9.7,
showing the communication characteristics of the bitonic sort algorithm on a hypercube.
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Figure 9.9 Communication during the last stage of bitonic sort. Each wire is mapped to a hyper-
cube process; each connection represents a compare-exchange between processes.
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1. procedure BITONIC SORT(label, d)
2. begin
3. for i := 0 to d − 1 do
4. for j := i downto 0 do
5. if (i + 1)st bit of label 
= j th bit of label then
6. comp exchange max(j);
7. else
8. comp exchange min(j);
9. end BITONIC SORT

Algorithm 9.1 Parallel formulation of bitonic sort on a hypercube with n = 2d processes. In this
algorithm, label is the process’s label and d is the dimension of the hypercube.

The bitonic sort algorithm for a hypercube is shown in Algorithm 9.1. The algorithm
relies on the functions comp exchange max(i) and comp exchange min(i). These functions
compare the local element with the element on the nearest process along the i th dimension
and retain either the minimum or the maximum of the two elements. Problem 9.6 explores
the correctness of Algorithm 9.1.

During each step of the algorithm, every process performs a compare-exchange opera-
tion. The algorithm performs a total of (1 + log n)(log n)/2 such steps; thus, the parallel
run time is

TP = �(log2 n) (9.3)

This parallel formulation of bitonic sort is cost optimal with respect to the sequential im-
plementation of bitonic sort (that is, the process-time product is �(n log2 n)), but it is not
cost-optimal with respect to an optimal comparison-based sorting algorithm, which has a
serial time complexity of �(n log n).

Mesh Consider how the input wires of the bitonic sorting network can be mapped effi-
ciently onto an n-process mesh. Unfortunately, the connectivity of a mesh is lower than
that of a hypercube, so it is impossible to map wires to processes such that each compare-
exchange operation occurs only between neighboring processes. Instead, we map wires
such that the most frequent compare-exchange operations occur between neighboring pro-
cesses.

There are several ways to map the input wires onto the mesh processes. Some of these
are illustrated in Figure 9.11. Each process in this figure is labeled by the wire that is
mapped onto it. Of these three mappings, we concentrate on the row-major shuffled map-
ping, shown in Figure 9.11(c). We leave the other two mappings as exercises (Problem 9.7).

The advantage of row-major shuffled mapping is that processes that perform compare-
exchange operations reside on square subsections of the mesh whose size is inversely
related to the frequency of compare-exchanges. For example, processes that perform
compare-exchange during every stage of bitonic sort (that is, those corresponding to wires
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Figure 9.11 Different ways of mapping the input wires of the bitonic sorting network to a mesh
of processes: (a) row-major mapping, (b) row-major snakelike mapping, and (c) row-major shuffled
mapping.

that differ in the least-significant bit) are neighbors. In general, wires that differ in the
i th least-significant bit are mapped onto mesh processes that are 2�(i−1)/2� communication
links away. The compare-exchange steps of the last stage of bitonic sort for the row-major
shuffled mapping are shown in Figure 9.12. Note that each earlier stage will have only
some of these steps.

During the (1 + log n)(log n)/2 steps of the algorithm, processes that are a certain dis-
tance apart compare-exchange their elements. The distance between processes determines
the communication overhead of the parallel formulation. The total amount of commu-
nication performed by each process is

∑log n
i=1

∑i
j=1 2�( j−1)/2� ≈ 7

√
n, which is �(

√
n)

(Problem 9.7). During each step of the algorithm, each process performs at most one com-
parison; thus, the total computation performed by each process is �(log2 n). This yields a

Step 1 Step 2 Step 3 Step 4

Stage 4

Figure 9.12 The last stage of the bitonic sort algorithm for n = 16 on a mesh, using the row-
major shuffled mapping. During each step, process pairs compare-exchange their elements. Arrows
indicate the pairs of processes that perform compare-exchange operations.
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parallel run time of

TP =
comparisons︷ ︸︸ ︷
�(log2 n) +

communication︷ ︸︸ ︷
�(

√
n).

This is not a cost-optimal formulation, because the process-time product is �(n1.5), but
the sequential complexity of sorting is �(n log n). Although the parallel formulation for
a hypercube was optimal with respect to the sequential complexity of bitonic sort, the
formulation for mesh is not. Can we do any better? No. When sorting n elements, one per
mesh process, for certain inputs the element stored in the process at the upper-left corner
will end up in the process at the lower-right corner. For this to happen, this element must
travel along 2

√
n − 1 communication links before reaching its destination. Thus, the run

time of sorting on a mesh is bounded by �(
√

n). Our parallel formulation achieves this
lower bound; thus, it is asymptotically optimal for the mesh architecture.

A Block of Elements Per Process

In the parallel formulations of the bitonic sort algorithm presented so far, we assumed there
were as many processes as elements to be sorted. Now we consider the case in which the
number of elements to be sorted is greater than the number of processes.

Let p be the number of processes and n be the number of elements to be sorted, such
that p < n. Each process is assigned a block of n/p elements and cooperates with the
other processes to sort them. One way to obtain a parallel formulation with our new setup
is to think of each process as consisting of n/p smaller processes. In other words, imag-
ine emulating n/p processes by using a single process. The run time of this formulation
will be greater by a factor of n/p because each process is doing the work of n/p pro-
cesses. This virtual process approach (Section 5.3) leads to a poor parallel implementation
of bitonic sort. To see this, consider the case of a hypercube with p processes. Its run
time will be �((n log2 n)/p), which is not cost-optimal because the process-time product
is �(n log2 n).

An alternate way of dealing with blocks of elements is to use the compare-split op-
eration presented in Section 9.1. Think of the (n/p)-element blocks as elements to be
sorted using compare-split operations. The problem of sorting the p blocks is identical to
that of performing a bitonic sort on the p blocks using compare-split operations instead
of compare-exchange operations (Problem 9.8). Since the total number of blocks is p, the
bitonic sort algorithm has a total of (1 + log p)(log p)/2 steps. Because compare-split
operations preserve the initial sorted order of the elements in each block, at the end of
these steps the n elements will be sorted. The main difference between this formulation
and the one that uses virtual processes is that the n/p elements assigned to each process
are initially sorted locally, using a fast sequential sorting algorithm. This initial local sort
makes the new formulation more efficient and cost-optimal.

Hypercube The block-based algorithm for a hypercube with p processes is similar to
the one-element-per-process case, but now we have p blocks of size n/p, instead of p
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elements. Furthermore, the compare-exchange operations are replaced by compare-split
operations, each taking �(n/p) computation time and �(n/p) communication time. Ini-
tially the processes sort their n/p elements (using merge sort) in time �((n/p) log(n/p))
and then perform �(log2 p) compare-split steps. The parallel run time of this formula-
tion is

TP =

local sort︷ ︸︸ ︷
�

(
n

p
log

n

p

)
+

comparisons︷ ︸︸ ︷
�

(
n

p
log2 p

)
+

communication︷ ︸︸ ︷
�

(
n

p
log2 p

)
.

Because the sequential complexity of the best sorting algorithm is �(n log n), the speedup
and efficiency are as follows:

S = �(n log n)

�((n/p) log(n/p))+�((n/p) log2 p)

E = 1

1 −�((log p)/(log n))+�((log2 p)/(log n))
(9.4)

From Equation 9.4, for a cost-optimal formulation (log2 p)/(log n) = O(1). Thus, this

algorithm can efficiently use up to p = �(2
√

log n) processes. Also from Equation 9.4,
the isoefficiency function due to both communication and extra work is �(plog p log2 p),
which is worse than any polynomial isoefficiency function for sufficiently large p. Hence,
this parallel formulation of bitonic sort has poor scalability.

Mesh The block-based mesh formulation is also similar to the one-element-per-process
case. The parallel run time of this formulation is as follows:

TP =

local sort︷ ︸︸ ︷
�

(
n

p
log

n

p

)
+

comparisons︷ ︸︸ ︷
�

(
n

p
log2 p

)
+

communication︷ ︸︸ ︷
�

(
n√
p

)

Note that comparing the communication overhead of this mesh-based parallel bitonic
sort (O(n/

√
p)) to the communication overhead of the hypercube-based formulation

(O((n log2 p)/p)), we can see that it is higher by a factor of O(
√

p/ log2 p). This factor is
smaller than the O(

√
p) difference in the bisection bandwidth of these architectures. This

illustrates that a proper mapping of the bitonic sort on the underlying mesh can achieve
better performance than that achieved by simply mapping the hypercube algorithm on the
mesh.

The speedup and efficiency are as follows:

S = �(n log n)

�((n/p) log(n/p))+�((n/p) log2 p)+�(n/
√

p)

E = 1

1 −�((log p)/(log n))+�((log2 p)/(log n))+�(
√

p/ log n)
(9.5)
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Table 9.1 The performance of parallel formulations of bitonic sort for n elements on p processes.
Maximum Number of Corresponding Isoefficiency

Architecture Processes for E = �(1) Parallel Run Time Function

Hypercube �(2
√

log n) �(n/(2
√

log n) log n) �(plog p log2 p)
Mesh �(log2 n) �(n/ log n) �(2

√
p√

p)
Ring �(log n) �(n) �(2 p p)

From Equation 9.5, for a cost-optimal formulation
√

p/ log n = O(1). Thus, this for-
mulation can efficiently use up to p = �(log2 n) processes. Also from Equation 9.5,
the isoefficiency function �(2

√
p√p). The isoefficiency function of this formulation is

exponential, and thus is even worse than that for the hypercube.
From the analysis for hypercube and mesh, we see that parallel formulations of bitonic

sort are neither very efficient nor very scalable. This is primarily because the sequential
algorithm is suboptimal. Good speedups are possible on a large number of processes only
if the number of elements to be sorted is very large. In that case, the efficiency of the
internal sorting outweighs the inefficiency of the bitonic sort. Table 9.1 summarizes the
performance of bitonic sort on hypercube-, mesh-, and ring-connected parallel computer.

9.3 Bubble Sort and its Variants

The previous section presented a sorting network that could sort n elements in a time of
�(log2 n). We now turn our attention to more traditional sorting algorithms. Since serial
algorithms with�(n log n) time complexity exist, we should be able to use�(n) processes
to sort n elements in time �(log n). As we will see, this is difficult to achieve. We can,
however, easily parallelize many sequential sorting algorithms that have�(n2) complexity.
The algorithms we present are based on bubble sort.

The sequential bubble sort algorithm compares and exchanges adjacent elements in the
sequence to be sorted. Given a sequence 〈a1, a2, . . . , an〉, the algorithm first performs
n − 1 compare-exchange operations in the following order: (a1, a2), (a2, a3), . . . , (an−1,

an). This step moves the largest element to the end of the sequence. The last element in the
transformed sequence is then ignored, and the sequence of compare-exchanges is applied
to the resulting sequence 〈a′

1, a′
2, . . . , a′

n−1〉. The sequence is sorted after n − 1 iterations.
We can improve the performance of bubble sort by terminating when no exchanges take
place during an iteration. The bubble sort algorithm is shown in Algorithm 9.2.

An iteration of the inner loop of bubble sort takes time �(n), and we perform a total
of �(n) iterations; thus, the complexity of bubble sort is �(n2). Bubble sort is difficult to
parallelize. To see this, consider how compare-exchange operations are performed during
each phase of the algorithm (lines 4 and 5 of Algorithm 9.2). Bubble sort compares all
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1. procedure BUBBLE SORT(n)
2. begin
3. for i := n − 1 downto 1 do
4. for j := 1 to i do
5. compare-exchange(a j , a j+1);
6. end BUBBLE SORT

Algorithm 9.2 Sequential bubble sort algorithm.

adjacent pairs in order; hence, it is inherently sequential. In the following two sections, we
present two variants of bubble sort that are well suited to parallelization.

9.3.1 Odd-Even Transposition

The odd-even transposition algorithm sorts n elements in n phases (n is even), each of
which requires n/2 compare-exchange operations. This algorithm alternates between two
phases, called the odd and even phases. Let 〈a1, a2, . . . , an〉 be the sequence to be sorted.
During the odd phase, elements with odd indices are compared with their right neighbors,
and if they are out of sequence they are exchanged; thus, the pairs (a1, a2), (a3, a4), . . . ,

(an−1, an) are compare-exchanged (assuming n is even). Similarly, during the even phase,
elements with even indices are compared with their right neighbors, and if they are out
of sequence they are exchanged; thus, the pairs (a2, a3), (a4, a5), . . . , (an−2, an−1) are
compare-exchanged. After n phases of odd-even exchanges, the sequence is sorted. Each
phase of the algorithm (either odd or even) requires�(n) comparisons, and there are a total
of n phases; thus, the sequential complexity is �(n2). The odd-even transposition sort is
shown in Algorithm 9.3 and is illustrated in Figure 9.13.

1. procedure ODD-EVEN(n)
2. begin
3. for i := 1 to n do
4. begin
5. if i is odd then
6. for j := 0 to n/2 − 1 do
7. compare-exchange(a2 j+1, a2 j+2);
8. if i is even then
9. for j := 1 to n/2 − 1 do
10. compare-exchange(a2 j , a2 j+1);
11. end for
12. end ODD-EVEN

Algorithm 9.3 Sequential odd-even transposition sort algorithm.
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Figure 9.13 Sorting n = 8 elements, using the odd-even transposition sort algorithm. During
each phase, n = 8 elements are compared.

Parallel Formulation

It is easy to parallelize odd-even transposition sort. During each phase of the algorithm,
compare-exchange operations on pairs of elements are performed simultaneously. Con-
sider the one-element-per-process case. Let n be the number of processes (also the number
of elements to be sorted). Assume that the processes are arranged in a one-dimensional
array. Element ai initially resides on process Pi for i = 1, 2, . . . , n. During the odd phase,
each process that has an odd label compare-exchanges its element with the element re-
siding on its right neighbor. Similarly, during the even phase, each process with an even
label compare-exchanges its element with the element of its right neighbor. This parallel
formulation is presented in Algorithm 9.4.

During each phase of the algorithm, the odd or even processes perform a compare-
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1. procedure ODD-EVEN PAR(n)
2. begin
3. id := process’s label
4. for i := 1 to n do
5. begin
6. if i is odd then
7. if id is odd then
8. compare-exchange min(id + 1);
9. else
10. compare-exchange max(id − 1);
11. if i is even then
12. if id is even then
13. compare-exchange min(id + 1);
14. else
15. compare-exchange max(id − 1);
16. end for
17. end ODD-EVEN PAR

Algorithm 9.4 The parallel formulation of odd-even transposition sort on an n-process ring.

exchange step with their right neighbors. As we know from Section 9.1, this requires time
�(1). A total of n such phases are performed; thus, the parallel run time of this formulation
is �(n). Since the sequential complexity of the best sorting algorithm for n elements is
�(n log n), this formulation of odd-even transposition sort is not cost-optimal, because its
process-time product is �(n2).

To obtain a cost-optimal parallel formulation, we use fewer processes. Let p be the
number of processes, where p < n. Initially, each process is assigned a block of n/p
elements, which it sorts internally (using merge sort or quicksort) in �((n/p) log(n/p))
time. After this, the processes execute p phases (p/2 odd and p/2 even), performing
compare-split operations. At the end of these phases, the list is sorted (Problem 9.10).
During each phase, �(n/p) comparisons are performed to merge two blocks, and time
�(n/p) is spent communicating. Thus, the parallel run time of the formulation is

TP =

local sort︷ ︸︸ ︷
�

(
n

p
log

n

p

)
+

comparisons︷ ︸︸ ︷
�(n) +

communication︷ ︸︸ ︷
�(n).

Since the sequential complexity of sorting is�(n log n), the speedup and efficiency of this
formulation are as follows:

S = �(n log n)

�((n/p) log(n/p))+�(n)

E = 1

1 −�((log p)/(log n))+�(p/ log n)
(9.6)
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From Equation 9.6, odd-even transposition sort is cost-optimal when p = O(log n). The
isoefficiency function of this parallel formulation is �(p 2p), which is exponential. Thus,
it is poorly scalable and is suited to only a small number of processes.

9.3.2 Shellsort

The main limitation of odd-even transposition sort is that it moves elements only one po-
sition at a time. If a sequence has just a few elements out of order, and if they are �(n)
distance from their proper positions, then the sequential algorithm still requires time�(n2)

to sort the sequence. To make a substantial improvement over odd-even transposition sort,
we need an algorithm that moves elements long distances. Shellsort is one such serial
sorting algorithm.

Let n be the number of elements to be sorted and p be the number of processes. To
simplify the presentation we will assume that the number of processes is a power of two,
that is, p = 2d , but the algorithm can be easily extended to work for an arbitrary number
of processes as well. Each process is assigned a block of n/p elements. The processes
are considered to be arranged in a logical one-dimensional array, and the ordering of the
processes in that array defines the global ordering of the sorted sequence. The algorithm
consists of two phases. During the first phase, processes that are far away from each other
in the array compare-split their elements. Elements thus move long distances to get close
to their final destinations in a few steps. During the second phase, the algorithm switches
to an odd-even transposition sort similar to the one described in the previous section. The
only difference is that the odd and even phases are performed only as long as the blocks on
the processes are changing. Because the first phase of the algorithm moves elements close
to their final destinations, the number of odd and even phases performed by the second
phase may be substantially smaller than p.

Initially, each process sorts its block of n/p elements internally in �(n/p log(n/p))
time. Then, each process is paired with its corresponding process in the reverse order
of the array. That is, process Pi , where i < p/2, is paired with process Pp−i−1. Each
pair of processes performs a compare-split operation. Next, the processes are partitioned
into two groups; one group has the first p/2 processes and the other group has the last
p/2 processes. Now, each group is treated as a separate set of p/2 processes and the
above scheme of process-pairing is applied to determine which processes will perform the
compare-split operation. This process continues for d steps, until each group contains
only a single process. The compare-split operations of the first phase are illustrated in
Figure 9.14 for d = 3. Note that it is not a direct parallel formulation of the sequential
shellsort, but it relies on similar ideas.

In the first phase of the algorithm, each process performs d = log p compare-split oper-
ations. In each compare-split operation a total of p/2 pairs of processes need to exchange
their locally stored n/p elements. The communication time required by these compare-
split operations depend on the bisection bandwidth of the network. In the case in which
the bisection bandwidth is�(p), the amount of time required by each operation is�(n/p).
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Figure 9.14 An example of the first phase of parallel shellsort on an eight-process array.

Thus, the complexity of this phase is �((n log p)/p). In the second phase, l odd and even
phases are performed, each requiring time �(n/p). Thus, the parallel run time of the
algorithm is

TP =

local sort︷ ︸︸ ︷
�

(
n

p
log

n

p

)
+

first phase︷ ︸︸ ︷
�

(
n

p
log p

)
+

second phase︷ ︸︸ ︷
�

(
l

n

p

)
. (9.7)

The performance of shellsort depends on the value of l. If l is small, then the algorithm
performs significantly better than odd-even transposition sort; if l is �(p), then both algo-
rithms perform similarly. Problem 9.13 investigates the worst-case value of l.

9.4 Quicksort

All the algorithms presented so far have worse sequential complexity than that of the lower
bound for comparison-based sorting, �(n log n). This section examines the quicksort al-
gorithm, which has an average complexity of �(n log n). Quicksort is one of the most
common sorting algorithms for sequential computers because of its simplicity, low over-
head, and optimal average complexity.

Quicksort is a divide-and-conquer algorithm that sorts a sequence by recursively di-
viding it into smaller subsequences. Assume that the n-element sequence to be sorted is
stored in the array A[1 . . . n]. Quicksort consists of two steps: divide and conquer. During
the divide step, a sequence A[q . . . r] is partitioned (rearranged) into two nonempty sub-
sequences A[q . . . s] and A[s + 1 . . . r] such that each element of the first subsequence is
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1. procedure QUICKSORT (A, q, r)
2. begin
3. if q < r then
4. begin
5. x := A[q];
6. s := q;
7. for i := q + 1 to r do
8. if A[i] ≤ x then
9. begin
10. s := s + 1;
11. swap(A[s], A[i]);
12. end if
13. swap(A[q], A[s]);
14. QUICKSORT (A, q, s);
15. QUICKSORT (A, s + 1, r);
16. end if
17. end QUICKSORT

Algorithm 9.5 The sequential quicksort algorithm.

smaller than or equal to each element of the second subsequence. During the conquer step,
the subsequences are sorted by recursively applying quicksort. Since the subsequences
A[q . . . s] and A[s + 1 . . . r] are sorted and the first subsequence has smaller elements than
the second, the entire sequence is sorted.

How is the sequence A[q . . . r] partitioned into two parts – one with all elements smaller
than the other? This is usually accomplished by selecting one element x from A[q . . . r]
and using this element to partition the sequence A[q . . . r] into two parts – one with el-
ements less than or equal to x and the other with elements greater than x . Element x is
called the pivot. The quicksort algorithm is presented in Algorithm 9.5. This algorithm
arbitrarily chooses the first element of the sequence A[q . . . r] as the pivot. The operation
of quicksort is illustrated in Figure 9.15.

The complexity of partitioning a sequence of size k is �(k). Quicksort’s performance
is greatly affected by the way it partitions a sequence. Consider the case in which a se-
quence of size k is split poorly, into two subsequences of sizes 1 and k − 1. The run time
in this case is given by the recurrence relation T (n) = T (n − 1) +�(n), whose solution
is T (n) = �(n2). Alternatively, consider the case in which the sequence is split well,
into two roughly equal-size subsequences of �k/2� and k/2� elements. In this case, the
run time is given by the recurrence relation T (n) = 2T (n/2) + �(n), whose solution
is T (n) = �(n log n). The second split yields an optimal algorithm. Although quick-
sort can have O(n2) worst-case complexity, its average complexity is significantly better;
the average number of compare-exchange operations needed by quicksort for sorting a
randomly-ordered input sequence is 1.4n log n, which is asymptotically optimal. There are
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Figure 9.15 Example of the quicksort algorithm sorting a sequence of size n = 8.

several ways to select pivots. For example, the pivot can be the median of a small num-
ber of elements of the sequence, or it can be an element selected at random. Some pivot
selection strategies have advantages over others for certain input sequences.

9.4.1 Parallelizing Quicksort

Quicksort can be parallelized in a variety of ways. First, consider a naive parallel formu-
lation that was also discussed briefly in Section 3.2.1 in the context of recursive decompo-
sition. Lines 14 and 15 of Algorithm 9.5 show that, during each call of QUICKSORT, the
array is partitioned into two parts and each part is solved recursively. Sorting the smaller
arrays represents two completely independent subproblems that can be solved in parallel.
Therefore, one way to parallelize quicksort is to execute it initially on a single process;
then, when the algorithm performs its recursive calls (lines 14 and 15), assign one of the
subproblems to another process. Now each of these processes sorts its array by using
quicksort and assigns one of its subproblems to other processes. The algorithm terminates
when the arrays cannot be further partitioned. Upon termination, each process holds an
element of the array, and the sorted order can be recovered by traversing the processes as
we will describe later. This parallel formulation of quicksort uses n processes to sort n ele-
ments. Its major drawback is that partitioning the array A[q . . . r] into two smaller arrays,
A[q . . . s] and A[s + 1 . . . r], is done by a single process. Since one process must partition
the original array A[1 . . . n], the run time of this formulation is bounded below by �(n).
This formulation is not cost-optimal, because its process-time product is �(n2).

The main limitation of the previous parallel formulation is that it performs the parti-
tioning step serially. As we will see in subsequent formulations, performing partitioning
in parallel is essential in obtaining an efficient parallel quicksort. To see why, consider the
recurrence equation T (n) = 2T (n/2) + �(n), which gives the complexity of quicksort
for optimal pivot selection. The term �(n) is due to the partitioning of the array. Com-
pare this complexity with the overall complexity of the algorithm, �(n log n). From these
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two complexities, we can think of the quicksort algorithm as consisting of �(log n) steps,
each requiring time �(n) – that of splitting the array. Therefore, if the partitioning step
is performed in time �(1), using �(n) processes, it is possible to obtain an overall par-
allel run time of �(log n), which leads to a cost-optimal formulation. However, without
parallelizing the partitioning step, the best we can do (while maintaining cost-optimality)
is to use only �(log n) processes to sort n elements in time �(n) (Problem 9.14). Hence,
parallelizing the partitioning step has the potential to yield a significantly faster parallel
formulation.

In the previous paragraph, we hinted that we could partition an array of size n into
two smaller arrays in time �(1) by using �(n) processes. However, this is difficult for
most parallel computing models. The only known algorithms are for the abstract PRAM
models. Because of communication overhead, the partitioning step takes longer than �(1)
on realistic shared-address-space and message-passing parallel computers. In the following
sections we present three distinct parallel formulations: one for a CRCW PRAM, one for a
shared-address-space architecture, and one for a message-passing platform. Each of these
formulations parallelizes quicksort by performing the partitioning step in parallel.

9.4.2 Parallel Formulation for a CRCW PRAM

We will now present a parallel formulation of quicksort for sorting n elements on an n-
process arbitrary CRCW PRAM. Recall from Section 2.4.1 that an arbitrary CRCW PRAM
is a concurrent-read, concurrent-write parallel random-access machine in which write con-
flicts are resolved arbitrarily. In other words, when more than one process tries to write to
the same memory location, only one arbitrarily chosen process is allowed to write, and the
remaining writes are ignored.

Executing quicksort can be visualized as constructing a binary tree. In this tree, the
pivot is the root; elements smaller than or equal to the pivot go to the left subtree, and
elements larger than the pivot go to the right subtree. Figure 9.16 illustrates the binary
tree constructed by the execution of the quicksort algorithm illustrated in Figure 9.15. The
sorted sequence can be obtained from this tree by performing an in-order traversal. The
PRAM formulation is based on this interpretation of quicksort.

The algorithm starts by selecting a pivot element and partitioning the array into two
parts – one with elements smaller than the pivot and the other with elements larger than the
pivot. Subsequent pivot elements, one for each new subarray, are then selected in parallel.
This formulation does not rearrange elements; instead, since all the processes can read
the pivot in constant time, they know which of the two subarrays (smaller or larger) the
elements assigned to them belong to. Thus, they can proceed to the next iteration.

The algorithm that constructs the binary tree is shown in Algorithm 9.6. The array
to be sorted is stored in A[1 . . . n] and process i is assigned element A[i]. The arrays
leftchild[1 . . . n] and rightchild[1 . . . n] keep track of the children of a given pivot. For
each process, the local variable parenti stores the label of the process whose element is the
pivot. Initially, all the processes write their process labels into the variable root in line 5.
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Figure 9.16 A binary tree generated by the execution of the quicksort algorithm. Each level of the
tree represents a different array-partitioning iteration. If pivot selection is optimal, then the height of
the tree is�(log n), which is also the number of iterations.

1. procedure BUILD TREE (A[1 . . . n])
2. begin
3. for each process i do
4. begin
5. root := i ;
6. parenti := root;
7. leftchild[i] := rightchild[i] := n + 1;
8. end for
9. repeat for each process i 
= root do
10. begin
11. if (A[i] < A[parenti ]) or

(A[i] = A[parenti ] and i <parenti ) then
12. begin
13. leftchild[parenti ] := i ;
14. if i = leftchild[parenti ] then exit
15. else parenti := leftchild[parenti ];
16. end for
17. else
18. begin
19. rightchild[parenti ] := i ;
20. if i = rightchild[parenti ] then exit
21. else parenti := rightchild[parenti ];
22. end else
23. end repeat
24. end BUILD TREE

Algorithm 9.6 The binary tree construction procedure for the CRCW PRAM parallel quicksort
formulation.
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Because the concurrent write operation is arbitrary, only one of these labels will actually
be written into root. The value A[root] is used as the first pivot and root is copied into
parenti for each process i . Next, processes that have elements smaller than A[parenti ]
write their process labels into leftchild[parenti ], and those with larger elements write their
process label into rightchild[parenti ]. Thus, all processes whose elements belong in the
smaller partition have written their labels into leftchild[parenti ], and those with elements
in the larger partition have written their labels into rightchild[parenti ]. Because of the
arbitrary concurrent-write operations, only two values – one for leftchild[parenti ] and one
for rightchild[parenti ] – are written into these locations. These two values become the
labels of the processes that hold the pivot elements for the next iteration, in which two
smaller arrays are being partitioned. The algorithm continues until n pivot elements are
selected. A process exits when its element becomes a pivot. The construction of the binary
tree is illustrated in Figure 9.17. During each iteration of the algorithm, a level of the
tree is constructed in time �(1). Thus, the average complexity of the binary tree building
algorithm is �(log n) as the average height of the tree is �(log n) (Problem 9.16).

After building the binary tree, the algorithm determines the position of each element
in the sorted array. It traverses the tree and keeps a count of the number of elements in
the left and right subtrees of any element. Finally, each element is placed in its proper
position in time �(1), and the array is sorted. The algorithm that traverses the binary
tree and computes the position of each element is left as an exercise (Problem 9.15). The
average run time of this algorithm is �(log n) on an n-process PRAM. Thus, its overall
process-time product is �(n log n), which is cost-optimal.

9.4.3 Parallel Formulation for Practical Architectures

We now turn our attention to a more realistic parallel architecture – that of a p-process
system connected via an interconnection network. Initially, our discussion will focus on
developing an algorithm for a shared-address-space system and then we will show how this
algorithm can be adapted to message-passing systems.

Shared-Address-Space Parallel Formulation

The quicksort formulation for a shared-address-space system works as follows. Let A be
an array of n elements that need to be sorted and p be the number of processes. Each
process is assigned a consecutive block of n/p elements, and the labels of the processes
define the global order of the sorted sequence. Let Ai be the block of elements assigned to
process Pi .

The algorithm starts by selecting a pivot element, which is broadcast to all processes.
Each process Pi , upon receiving the pivot, rearranges its assigned block of elements into
two sub-blocks, one with elements smaller than the pivot Si and one with elements larger
than the pivot Li . This local rearrangement is done in place using the collapsing the loops
approach of quicksort. The next step of the algorithm is to rearrange the elements of the
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Figure 9.17 The execution of the PRAM algorithm on the array shown in (a). The arrays leftchild
and rightchild are shown in (c), (d), and (e) as the algorithm progresses. Figure (f) shows the binary
tree constructed by the algorithm. Each node is labeled by the process (in square brackets), and
the element is stored at that process (in curly brackets). The element is the pivot. In each node,
processes with smaller elements than the pivot are grouped on the left side of the node, and those
with larger elements are grouped on the right side. These two groups form the two partitions of the
original array. For each partition, a pivot element is selected at random from the two groups that form
the children of the node.
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original array A so that all the elements that are smaller than the pivot (i.e., S = ⋃
i Si ) are

stored at the beginning of the array, and all the elements that are larger than the pivot (i.e.,
L = ⋃

i Li ) are stored at the end of the array.
Once this global rearrangement is done, then the algorithm proceeds to partition the

processes into two groups, and assign to the first group the task of sorting the smaller
elements S, and to the second group the task of sorting the larger elements L . Each of
these steps is performed by recursively calling the parallel quicksort algorithm. Note that
by simultaneously partitioning both the processes and the original array each group of
processes can proceed independently. The recursion ends when a particular sub-block of
elements is assigned to only a single process, in which case the process sorts the elements
using a serial quicksort algorithm.

The partitioning of processes into two groups is done according to the relative sizes of
the S and L blocks. In particular, the first |S|p/n +0.5� processes are assigned to sort the
smaller elements S, and the rest of the processes are assigned to sort the larger elements L .
Note that the 0.5 term in the above formula is to ensure that the processes are assigned in
the most balanced fashion.

Example 9.1 Efficient parallel quicksort
Figure 9.18 illustrates this algorithm using an example of 20 integers and five pro-
cesses. In the first step, each process locally rearranges the four elements that it is
initially responsible for, around the pivot element (seven in this example), so that
the elements smaller or equal to the pivot are moved to the beginning of the locally
assigned portion of the array (and are shaded in the figure). Once this local rearrange-
ment is done, the processes perform a global rearrangement to obtain the third array
shown in the figure (how this is performed will be discussed shortly). In the second
step, the processes are partitioned into two groups. The first contains {P0, P1} and
is responsible for sorting the elements that are smaller than or equal to seven, and
the second group contains processes {P2, P3, P4} and is responsible for sorting the
elements that are greater than seven. Note that the sizes of these process groups were
created to match the relative size of the smaller than and larger than the pivot arrays.
Now, the steps of pivot selection, local, and global rearrangement are recursively re-
peated for each process group and sub-array, until a sub-array is assigned to a single
process, in which case it proceeds to sort it locally. Also note that these final local
sub-arrays will in general be of different size, as they depend on the elements that
were selected to act as pivots.

In order to globally rearrange the elements of A into the smaller and larger sub-arrays we
need to know where each element of A will end up going at the end of that rearrangement.
One way of doing this rearrangement is illustrated at the bottom of Figure 9.19. In this
approach, S is obtained by concatenating the various Si blocks over all the processes, in
increasing order of process label. Similarly, L is obtained by concatenating the various Li
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Figure 9.18 An example of the execution of an efficient shared-address-space quicksort algorithm.



408 Sorting

pivot=7

pivot selection

after local
rearrangement

after global
rearrangement

1 313 1014 920177 418 152 196 1116 12 5 8

314 9207 15 1962 18 13 1 17 10 4 16 5 1112 8

2 1 6 3 4 5 18 13 17 14 20 10 15 9 19 16 12 11 87
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 1 1 2 1 2 3 3 2 3

0 2 5 8 100 2 3 4 6 7 13

P0

P0

P1

P1

P2

P2

P3

P3

P4

P4

|Si | |Li |
Prefix SumPrefix Sum

Figure 9.19 Efficient global rearrangement of the array.

blocks in the same order. As a result, for process Pi , the j th element of its Si sub-block
will be stored at location

∑i−1
k=0 |Sk | + j , and the j th element of its Li sub-block will be

stored at location n −∑p−1
k=i |Lk | − j .

These locations can be easily computed using the prefix-sum operation described in
Section 4.3. Two prefix-sums are computed, one involving the sizes of the Si sub-blocks
and the other the sizes of the Li sub-blocks. Let Q and R be the arrays of size p that store
these prefix sums, respectively. Their elements will be

Qi =
i−1∑
k=0

Si , and Ri =
i−1∑
k=0

Li .

Note that for each process Pi , Qi is the starting location in the final array where its lower-
than-the-pivot element will be stored, and Ri is the ending location in the final array where
its greater-than-the-pivot elements will be stored. Once these locations have been deter-
mined, the overall rearrangement of A can be easily performed by using an auxiliary array
A′ of size n. These steps are illustrated in Figure 9.19. Note that the above definition
of prefix-sum is slightly different from that described in Section 4.3, in the sense that the
value that is computed for location Qi (or Ri ) does not include Si (or Li ) itself. This type
of prefix-sum is sometimes referred to as non-inclusive prefix-sum.
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Analysis The complexity of the shared-address-space formulation of the quicksort algo-
rithm depends on two things. The first is the amount of time it requires to split a particular
array into the smaller-than- and the greater-than-the-pivot sub-arrays, and the second is
the degree to which the various pivots being selected lead to balanced partitions. In this
section, to simplify our analysis, we will assume that pivot selection always results in bal-
anced partitions. However, the issue of proper pivot selection and its impact on the overall
parallel performance is addressed in Section 9.4.4.

Given an array of n elements and p processes, the shared-address-space formulation of
the quicksort algorithm needs to perform four steps: (i) determine and broadcast the pivot;
(ii) locally rearrange the array assigned to each process; (iii) determine the locations in the
globally rearranged array that the local elements will go to; and (iv) perform the global
rearrangement. The first step can be performed in time �(log p) using an efficient recur-
sive doubling approach for shared-address-space broadcast. The second step can be done
in time �(n/p) using the traditional quicksort algorithm for splitting around a pivot ele-
ment. The third step can be done in�(log p) using two prefix sum operations. Finally, the
fourth step can be done in at least time �(n/p) as it requires us to copy the local elements
to their final destination. Thus, the overall complexity of splitting an n-element array is
�(n/p)+�(log p). This process is repeated for each of the two subarrays recursively on
half the processes, until the array is split into p parts, at which point each process sorts the
elements of the array assigned to it using the serial quicksort algorithm. Thus, the overall
complexity of the parallel algorithm is:

TP =

local sort︷ ︸︸ ︷
�

(
n

p
log

n

p

)
+

array splits︷ ︸︸ ︷
�

(
n

p
log p

)
+�(log2 p). (9.8)

The communication overhead in the above formulation is reflected in the �(log2 p) term,
which leads to an overall isoefficiency of �(p log2 p). It is interesting to note that the
overall scalability of the algorithm is determined by the amount of time required to perform
the pivot broadcast and the prefix sum operations.

Message-Passing Parallel Formulation

The quicksort formulation for message-passing systems follows the general structure of
the shared-address-space formulation. However, unlike the shared-address-space case in
which array A and the globally rearranged array A′ are stored in shared memory and can
be accessed by all the processes, these arrays are now explicitly distributed among the
processes. This makes the task of splitting A somewhat more involved.

In particular, in the message-passing version of the parallel quicksort, each process
stores n/p elements of array A. This array is also partitioned around a particular pivot
element using a two-phase approach. In the first phase (which is similar to the shared-
address-space formulation), the locally stored array Ai at process Pi is partitioned into the
smaller-than- and larger-than-the-pivot sub-arrays Si and Li locally. In the next phase, the
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algorithm first determines which processes will be responsible for recursively sorting the
smaller-than-the-pivot sub-arrays (i.e., S = ⋃

i Si ) and which process will be responsible
for recursively sorting the larger-than-the-pivot sub-arrays (i.e., L = ⋃

i Li ). Once this is
done, then the processes send their Si and Li arrays to the corresponding processes. After
that, the processes are partitioned into the two groups, one for S and one for L , and the
algorithm proceeds recursively. The recursion terminates when each sub-array is assigned
to a single process, at which point it is sorted locally.

The method used to determine which processes will be responsible for sorting S and
L is identical to that for the shared-address-space formulation, which tries to partition the
processes to match the relative size of the two sub-arrays. Let pS and pL be the number
of processes assigned to sort S and L , respectively. Each one of the pS processes will end
up storing |S|/pS elements of the smaller-than-the-pivot sub-array, and each one of the pL

processes will end up storing |L|/pL elements of the larger-than-the-pivot sub-array. The
method used to determine where each process Pi will send its Si and Li elements follows
the same overall strategy as the shared-address-space formulation. That is, the various Si

(or Li ) sub-arrays will be stored in consecutive locations in S (or L) based on the process
number. The actual processes that will be responsible for these elements are determined by
the partition of S (or L) into pS (or pL ) equal-size segments, and can be computed using a
prefix-sum operation. Note that each process Pi may need to split its Si (or Li ) sub-arrays
into multiple segments and send each one to different processes. This can happen because
its elements may be assigned to locations in S (or L) that span more than one process. In
general, each process may have to send its elements to two different processes; however,
there may be cases in which more than two partitions are required.

Analysis Our analysis of the message-passing formulation of quicksort will mirror the
corresponding analysis of the shared-address-space formulation.

Consider a message-passing parallel computer with p processes and O(p) bisection
bandwidth. The amount of time required to split an array of size n is �(log p) for broad-
casting the pivot element, �(n/p) for splitting the locally assigned portion of the array,
�(log p) for performing the prefix sums to determine the process partition sizes and the
destinations of the various Si and Li sub-arrays, and the amount of time required for send-
ing and receiving the various arrays. This last step depends on how the processes are
mapped on the underlying architecture and on the maximum number of processes that
each process needs to communicate with. In general, this communication step involves
all-to-all personalized communication (because a particular process may end-up receiv-
ing elements from all other processes), whose complexity has a lower bound of �(n/p).
Thus, the overall complexity for the split is �(n/p) + �(log p), which is asymptotically
similar to that of the shared-address-space formulation. As a result, the overall runtime is
also the same as in Equation 9.8, and the algorithm has a similar isoefficiency function of
�(p log2 p).
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9.4.4 Pivot Selection

In the parallel quicksort algorithm, we glossed over pivot selection. Pivot selection is
particularly difficult, and it significantly affects the algorithm’s performance. Consider the
case in which the first pivot happens to be the largest element in the sequence. In this
case, after the first split, one of the processes will be assigned only one element, and the
remaining p − 1 processes will be assigned n − 1 elements. Hence, we are faced with a
problem whose size has been reduced only by one element but only p − 1 processes will
participate in the sorting operation. Although this is a contrived example, it illustrates a
significant problem with parallelizing the quicksort algorithm. Ideally, the split should be
done such that each partition has a non-trivial fraction of the original array.

One way to select pivots is to choose them at random as follows. During the i th split,
one process in each of the process groups randomly selects one of its elements to be the
pivot for this partition. This is analogous to the random pivot selection in the sequential
quicksort algorithm. Although this method seems to work for sequential quicksort, it is
not well suited to the parallel formulation. To see this, consider the case in which a bad
pivot is selected at some point. In sequential quicksort, this leads to a partitioning in which
one subsequence is significantly larger than the other. If all subsequent pivot selections
are good, one poor pivot will increase the overall work by at most an amount equal to
the length of the subsequence; thus, it will not significantly degrade the performance of
sequential quicksort. In the parallel formulation, however, one poor pivot may lead to a
partitioning in which a process becomes idle, and that will persist throughout the execution
of the algorithm.

If the initial distribution of elements in each process is uniform, then a better pivot
selection method can be derived. In this case, the n/p elements initially stored at each
process form a representative sample of all n elements. In other words, the median of each
n/p-element subsequence is very close to the median of the entire n-element sequence.
Why is this a good pivot selection scheme under the assumption of identical initial dis-
tributions? Since the distribution of elements on each process is the same as the overall
distribution of the n elements, the median selected to be the pivot during the first step is
a good approximation of the overall median. Since the selected pivot is very close to the
overall median, roughly half of the elements in each process are smaller and the other half
larger than the pivot. Therefore, the first split leads to two partitions, such that each of
them has roughly n/2 elements. Similarly, the elements assigned to each process of the
group that is responsible for sorting the smaller-than-the-pivot elements (and the group re-
sponsible for sorting the larger-than-the-pivot elements) have the same distribution as the
n/2 smaller (or larger) elements of the original list. Thus, the split not only maintains load
balance but also preserves the assumption of uniform element distribution in the process
group. Therefore, the application of the same pivot selection scheme to the sub-groups of
processes continues to yield good pivot selection.

Can we really assume that the n/p elements in each process have the same distribution
as the overall sequence? The answer depends on the application. In some applications,
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either the random or the median pivot selection scheme works well, but in others neither
scheme delivers good performance. Two additional pivot selection schemes are examined
in Problems 9.20 and 9.21.

9.5 Bucket and Sample Sort

A popular serial algorithm for sorting an array of n elements whose values are uniformly
distributed over an interval [a, b] is the bucket sort algorithm. In this algorithm, the interval
[a, b] is divided into m equal-sized subintervals referred to as buckets, and each element
is placed in the appropriate bucket. Since the n elements are uniformly distributed over
the interval [a, b], the number of elements in each bucket is roughly n/m. The algorithm
then sorts the elements in each bucket, yielding a sorted sequence. The run time of this
algorithm is �(n log(n/m)). For m = �(n), it exhibits linear run time, �(n). Note that
the reason that bucket sort can achieve such a low complexity is because it assumes that
the n elements to be sorted are uniformly distributed over an interval [a, b].

Parallelizing bucket sort is straightforward. Let n be the number of elements to be
sorted and p be the number of processes. Initially, each process is assigned a block of n/p
elements, and the number of buckets is selected to be m = p. The parallel formulation of
bucket sort consists of three steps. In the first step, each process partitions its block of n/p
elements into p sub-blocks, one for each of the p buckets. This is possible because each
process knows the interval [a, b) and thus the interval for each bucket. In the second step,
each process sends sub-blocks to the appropriate processes. After this step, each process
has only the elements belonging to the bucket assigned to it. In the third step, each process
sorts its bucket internally by using an optimal sequential sorting algorithm.

Unfortunately, the assumption that the input elements are uniformly distributed over an
interval [a, b] is not realistic. In most cases, the actual input may not have such a distri-
bution or its distribution may be unknown. Thus, using bucket sort may result in buckets
that have a significantly different number of elements, thereby degrading performance. In
such situations an algorithm called sample sort will yield significantly better performance.
The idea behind sample sort is simple. A sample of size s is selected from the n-element
sequence, and the range of the buckets is determined by sorting the sample and choosing
m − 1 elements from the result. These elements (called splitters) divide the sample into m
equal-sized buckets. After defining the buckets, the algorithm proceeds in the same way as
bucket sort. The performance of sample sort depends on the sample size s and the way it
is selected from the n-element sequence.

Consider a splitter selection scheme that guarantees that the number of elements ending
up in each bucket is roughly the same for all buckets. Let n be the number of elements
to be sorted and m be the number of buckets. The scheme works as follows. It divides
the n elements into m blocks of size n/m each, and sorts each block by using quicksort.
From each sorted block it chooses m − 1 evenly spaced elements. The m(m − 1) elements
selected from all the blocks represent the sample used to determine the buckets. This
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Figure 9.20 An example of the execution of sample sort on an array with 24 elements on three
processes.

scheme guarantees that the number of elements ending up in each bucket is less than 2n/m
(Problem 9.28).

How can we parallelize the splitter selection scheme? Let p be the number of processes.
As in bucket sort, set m = p; thus, at the end of the algorithm, each process contains
only the elements belonging to a single bucket. Each process is assigned a block of n/p
elements, which it sorts sequentially. It then chooses p − 1 evenly spaced elements from
the sorted block. Each process sends its p − 1 sample elements to one process – say P0.
Process P0 then sequentially sorts the p(p − 1) sample elements and selects the p − 1
splitters. Finally, process P0 broadcasts the p − 1 splitters to all the other processes. Now
the algorithm proceeds in a manner identical to that of bucket sort. This algorithm is
illustrated in Figure 9.20.

Analysis We now analyze the complexity of sample sort on a message-passing com-
puter with p processes and O(p) bisection bandwidth.

The internal sort of n/p elements requires time�((n/p) log(n/p)), and the selection of
p−1 sample elements requires time�(p). Sending p−1 elements to process P0 is similar
to a gather operation (Section 4.4); the time required is �(p2). The time to internally sort
the p(p − 1) sample elements at P0 is�(p2 log p), and the time to select p − 1 splitters is
�(p). The p − 1 splitters are sent to all the other processes by using one-to-all broadcast
(Section 4.1), which requires time�(p log p). Each process can insert these p−1 splitters
in its local sorted block of size n/p by performing p − 1 binary searches. Each process
thus partitions its block into p sub-blocks, one for each bucket. The time required for
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this partitioning is �(p log(n/p)). Each process then sends sub-blocks to the appropriate
processes (that is, buckets). The communication time for this step is difficult to compute
precisely, as it depends on the size of the sub-blocks to be communicated. These sub-blocks
can vary arbitrarily between 0 and n/p. Thus, the upper bound on the communication time
is O(n)+ O(p log p).

If we assume that the elements stored in each process are uniformly distributed, then
each sub-block has roughly �(n/p2) elements. In this case, the parallel run time is

TP =

local sort︷ ︸︸ ︷
�

(
n

p
log

n

p

)
+

sort sample︷ ︸︸ ︷
�
(

p2 log p
)

+

block partition︷ ︸︸ ︷
�

(
p log

n

p

)
+

communication︷ ︸︸ ︷
�(n/p)+ O(p log p). (9.9)

In this case, the isoefficiency function is �(p3 log p). If bitonic sort is used to sort the
p(p − 1) sample elements, then the time for sorting the sample would be �(p log p), and
the isoefficiency will be reduced to �(p2 log p) (Problem 9.30).

9.6 Other Sorting Algorithms

As mentioned in the introduction to this chapter, there are many sorting algorithms, and
we cannot explore them all in this chapter. However, in this section we briefly present
two additional sorting algorithms that are important both practically and theoretically. Our
discussion of these schemes will be brief. Refer to the bibliographic remarks (Section 9.7)
for references on these and other algorithms.

9.6.1 Enumeration Sort

All the sorting algorithms presented so far are based on compare-exchange operations. This
section considers an algorithm based on enumeration sort, which does not use compare-
exchange. The basic idea behind enumeration sort is to determine the rank of each element.
The rank of an element ai is the number of elements smaller than ai in the sequence
to be sorted. The rank of ai can be used to place it in its correct position in the sorted
sequence. Several parallel algorithms are based on enumeration sort. Here we present
one such algorithm that is suited to the CRCW PRAM model. This formulation sorts n
elements by using n2 processes in time �(1).

Assume that concurrent writes to the same memory location of the CRCW PRAM result
in the sum of all the values written being stored at that location (Section 2.4.1). Consider
the n2 processes as being arranged in a two-dimensional grid. The algorithm consists
of two steps. During the first step, each column j of processes computes the number
of elements smaller than a j . During the second step, each process P1, j of the first row
places a j in its proper position as determined by its rank. The algorithm is shown in
Algorithm 9.7. It uses an auxiliary array C[1 . . . n] to store the rank of each element. The
crucial steps of this algorithm are lines 7 and 9. There, each process Pi, j , writes 1 in C[ j]
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1. procedure ENUM SORT (n)
2. begin
3. for each process P1, j do
4. C[ j] := 0;
5. for each process Pi, j do
6. if (A[i] < A[ j]) or (A[i] = A[ j] and i < j) then
7. C[ j] := 1;
8. else
9. C[ j] := 0;
10. for each process P1, j do
11. A[C[ j]] := A[ j];
12. end ENUM SORT

Algorithm 9.7 Enumeration sort on a CRCW PRAM with additive-write conflict resolution.

if the element A[i] is smaller than A[ j] and writes 0 otherwise. Because of the additive-
write conflict resolution scheme, the effect of these instructions is to count the number of
elements smaller than A[ j] and thus compute its rank. The run time of this algorithm is
�(1). Modifications of this algorithm for various parallel architectures are discussed in
Problem 9.26.

9.6.2 Radix Sort

The radix sort algorithm relies on the binary representation of the elements to be sorted.
Let b be the number of bits in the binary representation of an element. The radix sort
algorithm examines the elements to be sorted r bits at a time, where r < b. Radix sort
requires b/r iterations. During iteration i , it sorts the elements according to their i th least
significant block of r bits. For radix sort to work properly, each of the b/r sorts must be
stable. A sorting algorithm is stable if its output preserves the order of input elements with
the same value. Radix sort is stable if it preserves the input order of any two r-bit blocks
when these blocks are equal. The most common implementation of the intermediate b/r
radix-2r sorts uses enumeration sort (Section 9.6.1) because the range of possible values
[0 . . . 2r − 1] is small. For such cases, enumeration sort significantly outperforms any
comparison-based sorting algorithm.

Consider a parallel formulation of radix sort for n elements on a message-passing com-
puter with n processes. The parallel radix sort algorithm is shown in Algorithm 9.8. The
main loop of the algorithm (lines 3–17) performs the b/r enumeration sorts of the r-bit
blocks. The enumeration sort is performed by using the prefix sum() and parallel sum()
functions. These functions are similar to those described in Sections 4.1 and 4.3. During
each iteration of the inner loop (lines 6–15), radix sort determines the position of the el-
ements with an r-bit value of j . It does this by summing all the elements with the same
value and then assigning them to processes. The variable rank holds the position of each
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1. procedure RADIX SORT(A, r)
2. begin
3. for i := 0 to b/r − 1 do
4. begin
5. offset := 0;
6. for j := 0 to 2r − 1 do
7. begin
8. flag := 0;
9. if the i th least significant r-bit block of A[Pk] = j then
10. flag := 1;
11. index := prefix sum(flag)
12. if f lag = 1 then
13. rank := offset + index;
14. offset := parallel sum(flag);
15. endfor
16. each process Pk send its element A[Pk ] to process Prank ;
17. endfor
18. end RADIX SORT

Algorithm 9.8 A parallel radix sort algorithm, in which each element of the array A[1 . . . n] to be
sorted is assigned to one process. The function prefix sum() computes the prefix sum of the flag
variable, and the function parallel sum() returns the total sum of the flag variable.

element. At the end of the loop (line 16), each process sends its element to the appropriate
process. Process labels determine the global order of sorted elements.

As shown in Sections 4.1 and 4.3, the complexity of both the parallel sum() and pre-
fix sum() operations is �(log n) on a message-passing computer with n processes. The
complexity of the communication step on line 16 is �(n). Thus, the parallel run time of
this algorithm is

TP = b

r
2r (�(log n)+�(n))

9.7 Bibliographic Remarks

Knuth [Knu73] discusses sorting networks and their history. The question of whether a
sorting network could sort n elements in time O(log n) remained open for a long time. In
1983, Ajtai, Komlos, and Szemeredi [AKS83] discovered a sorting network that could sort
n elements in time O(log n) by using O(n log n) comparators. Unfortunately, the constant
of their sorting network is quite large (many thousands), and thus is not practical. The
bitonic sorting network was discovered by Batcher [Bat68], who also discovered the net-
work for odd-even sort. These were the first networks capable of sorting n elements in
time O(log2 n). Stone [Sto71] maps the bitonic sort onto a perfect-shuffle interconnection
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network, sorting n elements by using n processes in time O(log2 n). Siegel [Sie77] shows
that bitonic sort can also be performed on the hypercube in time O(log2 n). The block-
based hypercube formulation of bitonic sort is discussed in Johnsson [Joh84] and Fox
et al. [FJL+88]. Algorithm 9.1 is adopted from [FJL+88]. The shuffled row-major index-
ing formulation of bitonic sort on a mesh-connected computer is presented by Thompson
and Kung [TK77]. They also show how the odd-even merge sort can be used with snake-
like row-major indexing. Nassimi and Sahni [NS79] present a row-major indexed bitonic
sort formulation for a mesh with the same performance as shuffled row-major indexing.
An improved version of the mesh odd-even merge is proposed by Kumar and Hirschberg
[KH83]. The compare-split operation can be implemented in many ways. Baudet and
Stevenson [BS78] describe one way to perform this operation. An alternative way of per-
forming a compare-split operation based on a bitonic sort (Problem 9.1) that requires no
additional memory was discovered by Hsiao and Menon [HM80].

The odd-even transposition sort is described by Knuth [Knu73]. Several early refer-
ences to parallel sorting by odd-even transposition are given by Knuth [Knu73] and Kung
[Kun80]. The block-based extension of the algorithm is due to Baudet and Stevenson
[BS78]. Another variation of block-based odd-even transposition sort that uses bitonic
merge-split is described by DeWitt, Friedland, Hsiao, and Menon [DFHM82]. Their algo-
rithm uses p processes and runs in time O(n + n log(n/p)). In contrast to the algorithm of
Baudet and Stevenson [BS78], which is faster but requires 4n/p storage locations in each
process, the algorithm of DeWitt et al. requires only (n/p)+1 storage locations to perform
the compare-split operation.

The shellsort algorithm described in Section 9.3.2 is due to Fox et al. [FJL+88]. They
show that, as n increases, the probability that the final odd-even transposition will ex-
hibit worst-case performance (in other words, will require p phases) diminishes. A differ-
ent shellsort algorithm based on the original sequential algorithm [She59] is described by
Quinn [Qui88].

The sequential quicksort algorithm is due to Hoare [Hoa62]. Sedgewick [Sed78] pro-
vides a good reference on the details of the implementation and how they affect its perfor-
mance. The random pivot-selection scheme is described and analyzed by Robin [Rob75].
The algorithm for sequence partitioning on a single process was suggested by Sedgewick
[Sed78] and used in parallel formulations by Raskin [Ras78], Deminet [Dem82], and
Quinn [Qui88]. The CRCW PRAM algorithm (Section 9.4.2) is due to Chlebus and
Vrto [CV91]. Many other quicksort-based algorithms for PRAM and shared-address-space
parallel computers have been developed that can sort n elements in time �(log n) by us-
ing �(n) processes. Martel and Gusfield [MG89] developed a quicksort algorithm for a
CRCW PRAM that requires space O(n3) on the average. An algorithm suited to shared-
address-space parallel computers with fetch-and-add capabilities was discovered by Hei-
delberger, Norton, and Robinson [HNR90]. Their algorithm runs in time �(log n) on
the average and can be adapted for commercially available shared-address-space comput-
ers. The hypercube formulation of quicksort described in Problem 9.17 is due to Wagar
[Wag87]. His hyperquicksort algorithm uses the median-based pivot-selection scheme and
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assumes that the elements in each process have the same distribution. His experimental re-
sults show that hyperquicksort is faster than bitonic sort on a hypercube. An alternate pivot-
selection scheme (Problem 9.20) was implemented by Fox et al. [FJL+88]. This scheme
significantly improves the performance of hyperquicksort when the elements are not evenly
distributed in each process. Plaxton [Pla89] describes a quicksort algorithm on a p-process
hypercube that sorts n elements in time O((n log n)/p+(n log3/2 p)/p+log3 p log(n/p)).
This algorithm uses a time O((n/p) log log p + log2 p log(n/p)) parallel selection algo-
rithm to determine the perfect pivot selection. The mesh formulation of quicksort (Prob-
lem 9.24) is due to Singh, Kumar, Agha, and Tomlinson [SKAT91a]. They also describe
a modification to the algorithm that reduces the complexity of each step by a factor of
�(log p).

The sequential bucket sort algorithm was first proposed by Isaac and Singleton in 1956.
Hirschberg [Hir78] proposed a bucket sort algorithm for the EREW PRAM model. This
algorithm sorts n elements in the range [0 . . . n − 1] in time�(log n) by using n processes.
A side effect of this algorithm is that duplicate elements are eliminated. Their algorithm
requires space �(n2). Hirschberg [Hir78] generalizes this algorithm so that duplicate el-
ements remain in the sorted array. The generalized algorithm sorts n elements in time
�(k log n) by using n1+1/k processes, where k is an arbitrary integer.

The sequential sample sort algorithm was discovered by Frazer and McKellar [FM70].
The parallel sample sort algorithm (Section 9.5) was discovered by Shi and Schaeffer
[SS90]. Several parallel formulations of sample sort for different parallel architectures
have been proposed. Abali, Ozguner, and Bataineh [AOB93] presented a splitter selec-
tion scheme that guarantees that the number of elements ending up in each bucket is n/p.
Their algorithm requires time O((n log n)/p + p log2 n), on average, to sort n elements
on a p-process hypercube. Reif and Valiant [RV87] present a sample sort algorithm that
sorts n elements on an n-process hypercube-connected computer in time O(log n) with
high probability. Won and Sahni [WS88] and Seidel and George [SG88] present parallel
formulations of a variation of sample sort called bin sort [FKO86].

Many other parallel sorting algorithms have been proposed. Various parallel sorting
algorithms can be efficiently implemented on a PRAM model or on shared-address-space
computers. Akl [Akl85], Borodin and Hopcroft [BH82], Shiloach and Vishkin [SV81],
and Bitton, DeWitt, Hsiao, and Menon [BDHM84] provide a good survey of the subject.
Valiant [Val75] proposed a sorting algorithm for a shared-address-space SIMD computer
that sorts by merging. It sorts n elements in time O(log n log log n) by using n/2 pro-
cesses. Reischuk [Rei81] was the first to develop an algorithm that sorted n elements in
time �(log n) for an n-process PRAM. Cole [Col88] developed a parallel merge-sort al-
gorithm that sorts n elements in time �(log n) on an EREW PRAM. Natvig [Nat90] has
shown that the constants hidden behind the asymptotic notation are very large. In fact, the
�(log2 n) bitonic sort outperforms the �(log n) merge sort as long as n is smaller than
7.6 × 1022! Plaxton [Pla89] has developed a hypercube sorting algorithm, called smooth-
sort, that runs asymptotically faster than any previously known algorithm for that architec-
ture. Leighton [Lei85a] proposed a sorting algorithm, called columnsort, that consists of
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a sequence of sorts followed by elementary matrix operations. Columnsort is a generaliza-
tion of Batcher’s odd-even sort. Nigam and Sahni [NS93] presented an algorithm based on
Leighton’s columnsort for reconfigurable meshes with buses that sorts n elements on an
n2-process mesh in time O(1).

Problems

9.1 Consider the following technique for performing the compare-split operation. Let
x1, x2, . . . , xk be the elements stored at process Pi in increasing order, and let
y1, y2, . . . , yk be the elements stored at process Pj in decreasing order. Process Pi

sends x1 to Pj . Process Pj compares x1 with y1 and then sends the larger element
back to process Pi and keeps the smaller element for itself. The same procedure
is repeated for pairs (x2, y2), (x3, y3), . . . , (xk, yk). If for any pair (xl , yl) for 1 ≤
l ≤ k, xl ≥ yl , then no more exchanges are needed. Finally, each process sorts
its elements. Show that this method correctly performs a compare-split operation.
Analyze its run time, and compare the relative merits of this method to those of
the method presented in the text. Is this method better suited for MIMD or SIMD
parallel computers?

9.2 Show that the ≤ relation, as defined in Section 9.1 for blocks of elements, is a
partial ordering relation.
Hint: A relation is a partial ordering if it is reflexive, antisymmetric, and transi-
tive.

9.3 Consider the sequence s = {a0, a1, . . . , an−1}, where n is a power of 2. In the
following cases, prove that the sequences s1 and s2 obtained by performing the
bitonic split operation described in Section 9.2.1, on the sequence s, satisfy the
properties that (1) s1 and s2 are bitonic sequences, and (2) the elements of s1 are
smaller than the elements of s2:

(a) s is a bitonic sequence such that a0 ≤ a1 ≤ · · · ≤ an/2−1 and an/2 ≥
an/2+1 ≥ · · · ≥ an−1.

(b) s is a bitonic sequence such that a0 ≤ a1 ≤ · · · ≤ ai and ai+1 ≥ ai+2 ≥
· · · ≥ an−1 for some i, 0 ≤ i ≤ n − 1.

(c) s is a bitonic sequence that becomes increasing-decreasing after shifting its
elements.

9.4 In the parallel formulations of bitonic sort, we assumed that we had n processes
available to sort n items. Show how the algorithm needs to be modified when only
n/2 processes are available.

9.5 Show that, in the hypercube formulation of bitonic sort, each bitonic merge of
sequences of size 2k is performed on a k-dimensional hypercube and each sequence
is assigned to a separate hypercube.
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9.6 Show that the parallel formulation of bitonic sort shown in Algorithm 9.1 is correct.
In particular, show that the algorithm correctly compare-exchanges elements and
that the elements end up in the appropriate processes.

9.7 Consider the parallel formulation of bitonic sort for a mesh-connected parallel
computer. Compute the exact parallel run time of the following formulations:

(a) One that uses the row-major mapping shown in Figure 9.11(a) for a mesh
with store-and-forward routing.

(b) One that uses the row-major snakelike mapping shown in Figure 9.11(b) for
a mesh with store-and-forward routing.

(c) One that uses the row-major shuffled mapping shown in Figure 9.11(c) for a
mesh with store-and-forward routing.

Also, determine how the above run times change when cut-through routing is used.

9.8 Show that the block-based bitonic sort algorithm that uses compare-split operations
is correct.

9.9 Consider a ring-connected parallel computer with n processes. Show how to map
the input wires of the bitonic sorting network onto the ring so that the communica-
tion cost is minimized. Analyze the performance of your mapping. Consider the
case in which only p processes are available. Analyze the performance of your
parallel formulation for this case. What is the largest number of processes that
can be used while maintaining a cost-optimal parallel formulation? What is the
isoefficiency function of your scheme?

9.10 Prove that the block-based odd-even transposition sort yields a correct algorithm.
Hint: This problem is similar to Problem 9.8.

9.11 Show how to apply the idea of the shellsort algorithm (Section 9.3.2) to a p-process
mesh-connected computer. Your algorithm does not need to be an exact copy of
the hypercube formulation.

9.12 Show how to parallelize the sequential shellsort algorithm for a p-process hyper-
cube. Note that the shellsort algorithm presented in Section 9.3.2 is not an exact
parallelization of the sequential algorithm.

9.13 Consider the shellsort algorithm presented in Section 9.3.2. Its performance de-
pends on the value of l, which is the number of odd and even phases performed
during the second phase of the algorithm. Describe a worst-case initial key distri-
bution that will require l = �(p) phases. What is the probability of this worst-case
scenario?

9.14 In Section 9.4.1 we discussed a parallel formulation of quicksort for a CREW
PRAM that is based on assigning each subproblem to a separate process. This
formulation uses n processes to sort n elements. Based on this approach, derive a
parallel formulation that uses p processes, where (p < n). Derive expressions for
the parallel run time, efficiency, and isoefficiency function. What is the maximum
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number of processes that your parallel formulation can use and still remain cost-
optimal?

9.15 Derive an algorithm that traverses the binary search tree constructed by the algo-
rithm in Algorithm 9.6 and determines the position of each element in the sorted ar-
ray. Your algorithm should use n processes and solve the problem in time�(log n)
on an arbitrary CRCW PRAM.

9.16 Consider the PRAM formulation of the quicksort algorithm (Section 9.4.2). Com-
pute the average height of the binary tree generated by the algorithm.

9.17 Consider the following parallel quicksort algorithm that takes advantage of the
topology of a p-process hypercube connected parallel computer. Let n be the
number of elements to be sorted and p = 2d be the number of processes in a
d-dimensional hypercube. Each process is assigned a block of n/p elements, and
the labels of the processes define the global order of the sorted sequence. The algo-
rithm starts by selecting a pivot element, which is broadcast to all processes. Each
process, upon receiving the pivot, partitions its local elements into two blocks,
one with elements smaller than the pivot and one with elements larger than the
pivot. Then the processes connected along the d th communication link exchange
appropriate blocks so that one retains elements smaller than the pivot and the other
retains elements larger than the pivot. Specifically, each process with a 0 in the
d th bit (the most significant bit) position of the binary representation of its process
label retains the smaller elements, and each process with a 1 in the d th bit retains
the larger elements. After this step, each process in the (d − 1)-dimensional hy-
percube whose d th label bit is 0 will have elements smaller than the pivot, and
each process in the other (d − 1)-dimensional hypercube will have elements larger
than the pivot. This procedure is performed recursively in each subcube, splitting
the subsequences further. After d such splits – one along each dimension – the
sequence is sorted with respect to the global ordering imposed on the processes.
This does not mean that the elements at each process are sorted. Therefore, each
process sorts its local elements by using sequential quicksort. This hypercube for-
mulation of quicksort is shown in Algorithm 9.9. The execution of the algorithm
is illustrated in Figure 9.21.
Analyze the complexity of this hypercube-based parallel quicksort algorithm. De-
rive expressions for the parallel runtime, speedup, and efficiency. Perform this
analysis assuming that the elements that were initially assigned at each process are
distributed uniformly.

9.18 Consider the parallel formulation of quicksort for a d-dimensional hypercube de-
scribed in Problem 9.17. Show that after d splits – one along each communication
link – the elements are sorted according to the global order defined by the process’s
labels.

9.19 Consider the parallel formulation of quicksort for a d-dimensional hypercube de-
scribed in Problem 9.17. Compare this algorithm against the message-passing
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1. procedure HYPERCUBE QUICKSORT (B, n)
2. begin
3. id := process’s label;
4. for i := 1 to d do
5. begin
6. x := pivot;
7. partition B into B1 and B2 such that B1 ≤ x < B2;
8. if i th bit is 0 then
9. begin
10. send B2 to the process along the i th communication link;
11. C := subsequence received along the i th communication link;
12. B := B1 ∪ C ;
13. endif
14. else
15. send B1 to the process along the i th communication link;
16. C := subsequence received along the i th communication link;
17. B := B2 ∪ C ;
18. endelse
19. endfor
20. sort B using sequential quicksort;
21. end HYPERCUBE QUICKSORT

Algorithm 9.9 A parallel formulation of quicksort on a d-dimensional hypercube. B is the n/p-
element subsequence assigned to each process.

quicksort algorithm described in Section 9.4.3. Which algorithm is more scalable?
Which algorithm is more sensitive on poor selection of pivot elements?

9.20 An alternative way of selecting pivots in the parallel formulation of quicksort for a
d-dimensional hypercube (Problem 9.17) is to select all the 2d − 1 pivots at once
as follows:

(a) Each process picks a sample of l elements at random.

(b) All processes together sort the sample of l × 2d items by using the shellsort
algorithm (Section 9.3.2).

(c) Choose 2d − 1 equally distanced pivots from this list.

(d) Broadcast pivots so that all the processes know the pivots.

How does the quality of this pivot selection scheme depend on l? Do you think l
should be a function of n? Under what assumptions will this scheme select good
pivots? Do you think this scheme works when the elements are not identically
distributed on each process? Analyze the complexity of this scheme.

9.21 Another pivot selection scheme for parallel quicksort for hypercube (Section 9.17)
is as follows. During the split along the i th dimension, 2i−1 pairs of processes ex-
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Figure 9.21 The execution of the hypercube formulation of quicksort for d = 3. The three splits –
one along each communication link – are shown in (a), (b), and (c). The second column represents
the partitioning of the n-element sequence into subcubes. The arrows between subcubes indicate
the movement of larger elements. Each box is marked by the binary representation of the process
labels in that subcube. A ∗ denotes that all the binary combinations are included.

change elements. The pivot is selected in two steps. In the first step, each of the
2i−1 pairs of processes compute the median of their combined sequences. In the
second step, the median of the 2i−1 medians is computed. This median of medi-
ans becomes the pivot for the split along the i th communication link. Subsequent
pivots are selected in the same way among the participating subcubes. Under what
assumptions will this scheme yield good pivot selections? Is this better than the
median scheme described in the text? Analyze the complexity of selecting the
pivot.
Hint: If A and B are two sorted sequences, each having n elements, then we can
find the median of A ∪ B in time �(log n).

9.22 In the parallel formulation of the quicksort algorithm on shared-address-space and
message-passing architectures (Section 9.4.3) each iteration is followed by a bar-
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(a) (b)

Root

Figure 9.22 (a) An arbitrary portion of a mesh that holds part of the sequence to be sorted at
some point during the execution of quicksort, and (b) a binary tree embedded into the same portion
of the mesh.

rier synchronization. Is barrier synchronization necessary to ensure the correctness
of the algorithm? If not, then how does the performance change in the absence of
barrier synchronization?

9.23 Consider the message-passing formulation of the quicksort algorithm presented in
Section 9.4.3. Compute the exact (that is, using ts , tw, and tc) parallel run time and
efficiency of the algorithm under the assumption of perfect pivots. Compute the
various components of the isoefficiency function of your formulation when

(a) tc = 1, tw = 1, ts = 1

(b) tc = 1, tw = 1, ts = 10

(c) tc = 1, tw = 10, ts = 100

for cases in which the desired efficiency is 0.50, 0.75, and 0.95. Does the scal-
ability of this formulation depend on the desired efficiency and the architectural
characteristics of the machine?

9.24 Consider the following parallel formulation of quicksort for a mesh-connected
message-passing parallel computer. Assume that one element is assigned to each
process. The recursive partitioning step consists of selecting the pivot and then
rearranging the elements in the mesh so that those smaller than the pivot are in
one part of the mesh and those larger than the pivot are in the other. We assume
that the processes in the mesh are numbered in row-major order. At the end of the
quicksort algorithm, elements are sorted with respect to this order.
Consider the partitioning step for an arbitrary subsequence illustrated in Fig-
ure 9.22(a). Let k be the length of this sequence, and let Pm, Pm+1, . . . , Pm+k

be the mesh processes storing it. Partitioning consists of the following four steps:

1. A pivot is selected at random and sent to process Pm . Process Pm broad-
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casts this pivot to all k processes by using an embedded tree, as shown in
Figure 9.22(b). The root (Pm) transmits the pivot toward the leaves. The tree
embedding is also used in the following steps.

2. Information is gathered at each process and passed up the tree. In particu-
lar, each process counts the number of elements smaller and larger than the
pivot in both its left and right subtrees. Each process knows the pivot value
and therefore can determine if its element is smaller or larger. Each process
propagates two values to its parent: the number of elements smaller than the
pivot and the number of elements larger than the pivot in the process’s sub-
tree. Because the tree embedded in the mesh is not complete, some nodes
will not have left or right subtrees. At the end of this step, process Pm knows
how many of the k elements are smaller and larger than the pivot. If s is the
number of the elements smaller than the pivot, then the position of the pivot
in the sorted sequence is Pm+s .

3. Information is propagated down the tree to enable each element to be moved
to its proper position in the smaller or larger partitions. Each process in
the tree receives from its parent the next empty position in the smaller and
larger partitions. Depending on whether the element stored at each process is
smaller or larger than the pivot, the process propagates the proper information
down to its subtrees. Initially, the position for elements smaller than the pivot
is Pm and the position for elements larger than the pivot is Pm+s+1.

4. The processes perform a permutation, and each element moves to the proper
position in the smaller or larger partition.

This algorithm is illustrated in Figure 9.23.
Analyze the complexity of this mesh-based parallel quicksort algorithm. Derive
expressions for the parallel runtime, speedup, and efficiency. Perform this anal-
ysis assuming that the elements that were initially assigned at each process are
distributed uniformly.

9.25 Consider the quicksort formulation for a mesh described in Problem 9.24. Describe
a scaled-down formulation that uses p < n processes. Analyze its parallel run
time, speedup, and isoefficiency function.

9.26 Consider the enumeration sort algorithm presented in Section 9.6.1. Show how the
algorithm can be implemented on each of the following:

(a) a CREW PRAM

(b) a EREW PRAM

(c) a hypercube-connected parallel computer

(d) a mesh-connected parallel computer.

Analyze the performance of your formulations. Furthermore, show how you can
extend this enumeration sort to a hypercube to sort n elements using p processes.
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Figure 9.23 Partitioning a sequence of 13 elements on a 4 × 4 mesh: (a) row-major numbering
of the mesh processes, (b) the elements stored in each process (the shaded element is the pivot),
(c) the tree embedded on a portion of the mesh, (d) the number of smaller or larger elements in the
process of the first column after the execution of the second step, (e) the destination of the smaller
or larger elements propagated down to the processes in the first column during the third step, (f) the
destination of the elements at the end of the third step, and (g) the locations of the elements after
one-to-one personalized communication.

9.27 Derive expressions for the speedup, efficiency, and isoefficiency function of the
bucket sort parallel formulation presented in Section 9.5. Compare these expres-
sions with the expressions for the other sorting algorithms presented in this chapter.
Which parallel formulations perform better than bucket sort, and which perform
worse?

9.28 Show that the splitter selection scheme described in Section 9.5 guarantees that the
number of elements in each of the m buckets is less than 2n/m.

9.29 Derive expressions for the speedup, efficiency, and isoefficiency function of the
sample sort parallel formulation presented in Section 9.5. Derive these metrics
under each of the following conditions: (1) the p sub-blocks at each process are of
equal size, and (2) the size of the p sub-blocks at each process can vary by a factor
of log p.

9.30 In the sample sort algorithm presented in Section 9.5, all processes send p − 1
elements to process P0, which sorts the p(p − 1) elements and distributes splitters
to all the processes. Modify the algorithm so that the processes sort the p(p − 1)
elements in parallel using bitonic sort. How will you choose the splitters? Compute
the parallel run time, speedup, and efficiency of your formulation.
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9.31 How does the performance of radix sort (Section 9.6.2) depend on the value of r?
Compute the value of r that minimizes the run time of the algorithm.

9.32 Extend the radix sort algorithm presented in Section 9.6.2 to the case in which p
processes (p < n) are used to sort n elements. Derive expressions for the speedup,
efficiency, and isoefficiency function for this parallel formulation. Can you devise
a better ranking mechanism?
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