#include #include #include #include #define ORDER_FORWARDS 1 #define ORDER_BACKWARDS 2 #define CTL_SIZE 4 #define GENERIC_MAX(x, y) ((x) > (y) ? (x) : (y)) #define GENERIC_MIN(x, y) ((x) < (y) ? (x) : (y)) #define ENSURE_int(i) _Generic((i), int : (i)) #define ENSURE_float(f) _Generic((f), float : (f)) #define MAX(type, x, y) (type) GENERIC_MAX(ENSURE_##type(x), ENSURE_##type(y)) #define MIN(type, x, y) (type) GENERIC_MIN(ENSURE_##type(x), ENSURE_##type(y)) void init_ctl(int *ctl, int len); void local_quicksort(int *arr, int lo, int hi); char *string_of_list(int *arr, int len); void recursive_quicksort(int *integers, int n, int root, MPI_Comm comm); int main(int argc, char **argv) { int rank, p; MPI_Init(&argc, &argv); int n = atoi(argv[1]); MPI_Comm_rank(MPI_COMM_WORLD, &rank); MPI_Comm_size(MPI_COMM_WORLD, &p); // Generate integers int n_over_p = n / p; int integers[n_over_p]; // Minor implementation detail: srand(0) is specially handled by glibc to // behave as if it was called with srand(1). To get around this, I'm seeding // with rank + 1 // // See more: https://stackoverflow.com/a/27386563 srand(rank + 1); for (int i = 0; i < n_over_p; ++i) { // TODO: For readability during debugging, I'm capping this integers[i] = rand() % 101; // printf(" - %d\n", integers[i]); } recursive_quicksort(integers, n, 0, MPI_COMM_WORLD); // sleep(1); // printf("[%d] after: %s\n", rank, string_of_list(integers, n_over_p)); // The first node is responsible for collecting all the data and then // printing it out to the file MPI_Gather(const void *sendbuf, int // sendcount, MPI_INT, void *recvbuf, // int recvcount, MPI_INT, 0, MPI_COMM_WORLD); int recvbuf[n]; MPI_Gather(integers, n_over_p, MPI_INT, recvbuf, n_over_p, MPI_INT, 0, MPI_COMM_WORLD); if (rank == 0) { FILE *f = fopen(argv[2], "w"); // printf("integers: %s\n", string_of_list(recvbuf, n)); printf("[%d] ==== FINAL ====\n", rank); for (int i = 0; i < p; i += 1) { printf("[%d] %s\n", rank, string_of_list(&recvbuf[i * n_over_p], n_over_p)); } fclose(f); } MPI_Finalize(); printf("Done.\n"); return 0; } // hi not inclusive void local_quicksort(int *arr, int lo, int hi) { int temp; if (lo >= hi || lo < 0) return; int pivot = arr[hi - 1]; int pivot_idx = lo - 1; for (int j = lo; j < hi; ++j) { if (arr[j] < pivot) { pivot_idx += 1; temp = arr[j]; arr[j] = arr[pivot_idx]; arr[pivot_idx] = temp; } } pivot_idx += 1; temp = arr[hi - 1]; arr[hi - 1] = arr[pivot_idx]; arr[pivot_idx] = temp; // Recursive call local_quicksort(arr, lo, pivot_idx); local_quicksort(arr, pivot_idx + 1, hi); } char *string_of_list(int *arr, int len) { char *buffer = calloc(sizeof(char), 1000); int offset = 0; // Keep track of the current position in the buffer for (int i = 0; i < len; i++) { offset += sprintf(buffer + offset, "%d", arr[i]); if (i < len - 1) { // Add a separator (e.g., comma or space) if it's not the last element offset += sprintf(buffer + offset, " "); } } return buffer; } void recursive_quicksort(int *integers, int n, int root, MPI_Comm comm) { int rank, p; MPI_Comm_size(comm, &p); MPI_Comm_rank(comm, &rank); if (p == 1) { // Recursion base case: just sort it serially local_quicksort(integers, 0, n); printf("Quicksorted: %s\n", string_of_list(integers, n)); return; } sleep(1); printf("\n\n"); int n_over_p_max = (n + p - 1) / p; int n_over_p = n / p; if (rank == root) n_over_p += n - p * n_over_p; // printf( // "[%d] :::::::::::::::::::::::::::: RECURSIVE QUICKSORT (n=%d, // n/p=%d)\n", rank, n, n_over_p); // Locally sort // printf("[%d] Numbers before: %s\n", rank, // string_of_list(integers, n_over_p)); local_quicksort(integers, 0, n_over_p); printf("[%d] Numbers after first sort: %s\n", rank, string_of_list(integers, n_over_p)); // Select a pivot. // This pivot is broadcasted to all nodes int pivot; { // First, select a random element int rand_el = integers[rand() % n_over_p]; // Gather it int rand_els[p]; MPI_Gather(&rand_el, 1, MPI_INT, rand_els, 1, MPI_INT, root, comm); // Get the median if (rank == root) { // Sort local_quicksort(rand_els, 0, p); // Get the middle element pivot = rand_els[p / 2]; } MPI_Bcast(&pivot, 1, MPI_INT, root, comm); } printf("[%d] Broadcasted pivot: %d\n", rank, pivot); // Determine where the boundary between S (lower) and L (higher) lies int boundary; for (int i = 0; i < n_over_p; ++i) { if (integers[i] >= pivot) { boundary = i; break; } } int S_lo = 0, S_hi = boundary; int L_lo = boundary, L_hi = n_over_p; int S_size = S_hi - S_lo, L_size = L_hi - L_lo; // printf("[%d] S: [%d - %d] (%d), L: [%d - %d] (%d)\n", rank, S_lo, S_hi, // S_size, L_lo, L_hi, L_size); // Perform global arrangement int S_global_end, L_reverse_end, S_global_max_end; MPI_Scan(&S_size, &S_global_end, 1, MPI_INT, MPI_SUM, comm); MPI_Scan(&L_size, &L_reverse_end, 1, MPI_INT, MPI_SUM, comm); // printf("[%d] bruh %d\n", rank, S_global_end); // Get the boundary element between S and L MPI_Allreduce(&S_global_end, &S_global_max_end, 1, MPI_INT, MPI_MAX, comm); int S_global_start = S_global_end - S_size, L_reverse_start = L_reverse_end - L_size, L_global_start = n - L_reverse_end, L_global_end = n - L_reverse_start; // printf("[%d] Prefixed S: [%d - %d], Prefixed L: [%d - %d]\n", rank, // S_global_start, S_global_end - 1, L_global_start, L_global_end - 1); int S_starting_process = S_global_start / n_over_p, L_starting_process = L_global_start / n_over_p; int S_offset = S_global_start % n_over_p, L_offset = L_global_start % n_over_p; int *integers_recv_buf = calloc(sizeof(int), n); int S_ctl[p * CTL_SIZE]; int L_ctl[p * CTL_SIZE]; int S_send_ctl[p * CTL_SIZE]; int L_send_ctl[p * CTL_SIZE]; int recvpart[n_over_p]; int ctl_send_counts[p]; int ctl_send_displs[p]; int send_counts[p]; int send_displs[p]; int recv_counts[p]; int recv_displs[p]; init_ctl(S_ctl, p); init_ctl(L_ctl, p); init_ctl(S_send_ctl, p); init_ctl(L_send_ctl, p); for (int i = 0; i < p; ++i) { send_counts[i] = n_over_p; send_displs[i] = i * n_over_p; ctl_send_counts[i] = CTL_SIZE; ctl_send_displs[i] = i * CTL_SIZE; recv_counts[i] = CTL_SIZE; recv_displs[i] = i * CTL_SIZE; } // Send S to the correct target { for (int i = S_lo, dest_pos = S_global_start, processor = S_starting_process; i < S_hi;) { int next_break = MIN(int, S_global_end, MIN(int, dest_pos + (S_hi - S_lo), (dest_pos / n_over_p) * n_over_p + n_over_p)); int count = next_break - dest_pos; int from_local_start = i, from_local_end = i + count; int from_global_start = rank * n_over_p + from_local_start, from_global_end = from_global_start + count; int to_global_start = dest_pos, to_global_end = dest_pos + count; int to_local_start = to_global_start - processor * n_over_p, to_local_end = to_global_end - processor * n_over_p; // printf("[%d] S ->> (count=%d), from local [%d..%d] {%d..%d} -to-> " // "p#%d [%d..%d] {%d..%d}\n", // rank, count, from_local_start, from_local_end, // from_global_start, from_global_end, processor, to_local_start, // to_local_end, to_global_start, to_global_end); S_send_ctl[processor * CTL_SIZE] = count; S_send_ctl[processor * CTL_SIZE + 1] = from_global_start; S_send_ctl[processor * CTL_SIZE + 2] = to_local_start; S_send_ctl[processor * CTL_SIZE + 3] = from_local_start; i += count; dest_pos += count; processor += 1; } MPI_Alltoallv(S_send_ctl, ctl_send_counts, ctl_send_displs, MPI_INT, S_ctl, recv_counts, recv_displs, MPI_INT, comm); } // Send L to the correct target { for (int i = L_lo, dest_pos = L_global_start, processor = L_starting_process; i < L_hi;) { int next_break = MIN(int, L_global_end, MIN(int, dest_pos + (L_hi - L_lo), (dest_pos / n_over_p) * n_over_p + n_over_p)); int count = next_break - dest_pos; int from_local_start = i, from_local_end = i + count; int from_global_start = rank * n_over_p + from_local_start, from_global_end = from_global_start + count; int to_global_start = dest_pos, to_global_end = dest_pos + count; int to_local_start = to_global_start - processor * n_over_p, to_local_end = to_global_end - processor * n_over_p; // printf("[%d] L ->> (count=%d), from local [%d..%d] {%d..%d} -to-> " // "p#%d [%d..%d] {%d..%d}\n", // rank, count, from_local_start, from_local_end, // from_global_start, from_global_end, processor, to_local_start, // to_local_end, to_global_start, to_global_end); L_send_ctl[processor * CTL_SIZE] = count; L_send_ctl[processor * CTL_SIZE + 1] = from_global_start; L_send_ctl[processor * CTL_SIZE + 2] = to_local_start; L_send_ctl[processor * CTL_SIZE + 3] = from_local_start; i += count; dest_pos += count; processor += 1; } MPI_Alltoallv(L_send_ctl, ctl_send_counts, ctl_send_displs, MPI_INT, L_ctl, recv_counts, recv_displs, MPI_INT, comm); } // After sending S and L information for (int i = 0; i < p; ++i) { recv_counts[i] = n_over_p; recv_displs[i] = i * n_over_p; } // MPI_Alltoallv(integers, send_counts, send_displs, MPI_INT, // integers_recv_buf, // recv_counts, recv_displs, MPI_INT, MPI_COMM_WORLD); // MPI_Allgather(integers, n_over_p, MPI_INT, integers_recv_buf, n_over_p, // MPI_INT, comm); // printf("[%d] ints: %s\n", rank, string_of_list(integers_recv_buf, n)); // Scheme for all send int integers_recv_2[n_over_p]; int integers_recv_3[n_over_p]; for (int i = 0; i < n_over_p; ++i) { integers_recv_2[i] = -1; integers_recv_3[i] = integers[i]; } for (int host_p = 0; host_p < p; ++host_p) { if (rank == host_p) { // Your {S,L}_ctl is a mapping from source_processor -> ctl // Everyone already knows who needs to send to who now for (int sender_p = 0; sender_p < p; ++sender_p) { int S_count = S_ctl[sender_p * CTL_SIZE]; if (S_count > 0) { int to_local_start = S_ctl[sender_p * CTL_SIZE + 2]; int from_local_start = S_ctl[sender_p * CTL_SIZE + 3]; if (sender_p == host_p) { for (int k = 0; k < S_count; ++k) { integers_recv_3[to_local_start + k] = integers[from_local_start + k]; } continue; } // printf("[%d] - S inbound from host %d to [%d..%d] (%d)\n", rank, // sender_p, to_local_start, to_local_start + S_count, // S_count); MPI_Recv(&integers_recv_2[to_local_start], S_count, MPI_INT, sender_p, 124, comm, MPI_STATUS_IGNORE); for (int k = 0; k < S_count; ++k) { integers_recv_3[to_local_start + k] = integers_recv_2[to_local_start + k]; } } } } else { // Your {S,L}_send_ctl contains a mapping from dest_processor -> ctl for (int dest_p = 0; dest_p < p; ++dest_p) { int S_count = S_send_ctl[dest_p * CTL_SIZE]; if (S_count > 0 && dest_p == host_p) { int from_local_start = S_send_ctl[dest_p * CTL_SIZE + 3]; // printf("[%d] - S outbound to host %d from [%d..%d] (%d)\n", rank, // dest_p, from_local_start, from_local_start + S_count, // S_count); MPI_Send(&integers[from_local_start], S_count, MPI_INT, dest_p, 124, comm); } } } } for (int host_p = 0; host_p < p; ++host_p) { if (rank == host_p) { // Your {S,L}_ctl is a mapping from source_processor -> ctl // Everyone already knows who needs to send to who now for (int sender_p = 0; sender_p < p; ++sender_p) { int L_count = L_ctl[sender_p * CTL_SIZE]; if (L_count > 0) { int to_local_start = L_ctl[sender_p * CTL_SIZE + 2]; int from_local_start = L_ctl[sender_p * CTL_SIZE + 3]; if (sender_p == host_p) { for (int k = 0; k < L_count; ++k) { integers_recv_3[to_local_start + k] = integers[from_local_start + k]; } continue; } // printf("[%d] - L inbound from host %d to [%d..%d] (%d)\n", rank, // sender_p, to_local_start, to_local_start + L_count, // L_count); MPI_Recv(&integers_recv_2[to_local_start], L_count, MPI_INT, sender_p, 125, comm, MPI_STATUS_IGNORE); for (int k = 0; k < L_count; ++k) { integers_recv_3[to_local_start + k] = integers_recv_2[to_local_start + k]; } } } } else { // Your {S,L}_send_ctl contains a mapping from dest_processor -> ctl for (int dest_p = 0; dest_p < p; ++dest_p) { int L_count = L_send_ctl[dest_p * CTL_SIZE]; if (L_count > 0 && dest_p == host_p) { int from_local_start = L_send_ctl[dest_p * CTL_SIZE + 3]; // printf("[%d] - L outbound to host %d from [%d..%d] (%d)\n", rank, // dest_p, from_local_start, from_local_start + L_count, // L_count); MPI_Send(&integers[from_local_start], L_count, MPI_INT, dest_p, 125, comm); } } } } printf("[%d] after: %s\n", rank, string_of_list(integers_recv_3, n_over_p)); for (int i = 0; i < n_over_p; ++i) { integers[i] = integers_recv_3[i]; } // Now, determine which processes should be responsible for taking the S and L // arrays // Specifically, the part where it's split, break the tie to see if it goes // down or up int colors[p]; int p_of_split = S_global_max_end / n_over_p; int split_point = S_global_max_end % n_over_p; // printf("[%d] p_of_split = %d / %d = %d\n", rank, S_global_max_end, // n_over_p, // p_of_split); int S_split_add = split_point, L_split_sub = n_over_p - split_point; int lo_start = 0, lo_end; int hi_start, hi_end = p; if (split_point > n_over_p / 2) { // Belongs to the lower group lo_end = hi_start = p_of_split + 1; } else { // Belongs to the higher group lo_end = hi_start = p_of_split; } int child_root = -1; for (int i = 0; i < p; ++i) { if (i < lo_end) colors[i] = 100; else { colors[i] = 200; if (child_root == -1) child_root = i; } } // MPI_Comm child; // MPI_Comm_split(comm, colors[rank], rank, &child); // printf("[%d] Recursing...\n", rank); // int child_size; // MPI_Comm_size(child, &child_size); // int start_at = 0, new_n = child_size * n_over_p; // if (colors[rank] == 100) { // new_n += S_split_add; // } else { // new_n -= L_split_sub; // if (rank == p_of_split) // start_at = split_point; // } // recursive_quicksort(integers, n, child_root, child); // printf("[%d] Done recursing.\n", rank); // MPI_Comm_free(&child); } void init_ctl(int *ctl, int len) { for (int i = 0; i < len; ++i) { for (int j = 0; j < CTL_SIZE; ++j) { ctl[i * CTL_SIZE + j] = -1; } } }