Introduction to

Parallel Computing

George Karypis

Principles of Parallel Algorithm
Design

Outline

m Overview of some Serial Algorithms
m Parallel Algorithm vs Parallel Formulation
m Elements of a Parallel Algorithm/Formulation

m Common Decomposition Methods
concurrency extractor!

m Common Mapping Methods
parallel overhead reducer!

Some Serial Algorithms
Working Examples

m Dense Matrix-Matrix & Matrix-Vector
Multiplication

m Sparse Matrix-Vector Multiplication

m Gaussian Elimination

m Floyd’s All-pairs Shortest Path

m Quicksort

m Minimum/Maximum Finding

m Heuristic Search—15-puzzle problem

Dense Matrix-Vector Multiplication

procedure MAT_VECT (4, x, y)
begin
fori :=0ton —1do
begin
vli] :==0;

for j :=0ton —1do
vlil = ylil + Ali, j1 x x[J];
endfor;
end MAT_VECT

A A e

Algorithm 8.1 A serial algorithm for multiplying an » x n matrix 4 with an » x 1 vector x to yield
an n x 1 product vector y.

"
Dense Matrix-Matrix Multiplication

1 procedure MAT _MULT (4, B, ()

2 begin

3 fori :=0ton —1do

4 for j :=0ton —1do

5. begin

6. Cli, j]:=0;

7 fork:=0ton —1do

8 Cli, j1:= Cli, j1+ Ali, k] x Blk, j1;
9. endfor;

10. end MAT_MULT

Algorithm 8.2 The conventional serial algorithm for multiplication of two » x » matrices.

" B
Sparse Matrix-Vector Multiplication

y = Ab

A b
01234567 891011 .
e e ® [[|]
L0 L ®e® [| | []| ||
oee e | | | ||]
o0 ® | [[||

L o0 e [| ||
o0 o000 ® | [|
o0 o000 O0 OO ||
o e | | ||]

e e o e | ||]
oee o0 | ||

L o |]

L e ||

ylil= Y"_ (Ali, j1 % bLj1)

Gaussian Elimination

ao.0Xx0 + ap,1x) + oo+ oagy—1xp—1 = by,
ar,oxo + apx + ot oaym1xp—1 = by,
dp—1.0x0 T ayp—1ax1 t oot oap_ | po1Xp—1 = by—1.

procedure GAUSSIAN_ELIMINATION (A, b, y)

1. gl)

2. begin L2 I

3. fork:=0ton —1do /* Outer loop */ Inactive part iéi i_g:

4. begin] 1) et

5. for j:=k+1ton—1do — —

6. Alk. j1:= Alk. j1/Alk. k). /* Division step */ "y i i

7. VUK := blk1/ Alk. k; R

8. Atk k=1 e s L T S . o :

5 R a ITRew kI (R i) | Alkj] = ATV
10. begin

11. for j:=k+1ton—1do Active part - >

12. Ali, j1:= Ali, j1 — Ali. k] x Ak, j]: /* Elimination step */

13. bli] := bli] — Ali. k] = y[k];

14. Ali k] :==0; TTTRow T k) —= Gy el Alg] = AflLg] - AlLk] x Alk]
15. endfor; /* Line 9 */ LS

16. endfor; /* Line 3 */

17. end GAUSSIAN_ELIMINATION . : et e : .
Figure 3.28 A typical computation in Gaussian elimination and the active part of the coefficient

matrix during the /th iteration of the outer loop.

Algorithm 8.4 A serial Gaussian elimination algorithm that converts the system of linear equations
Ax = b 1o a unit upper-triangular system {/x = y. The matrix {/ occupies the upper-triangular
locations of 4. This algorithm assumes that A[. k] # 0 when it is used as a divisor on lines 6 and
1.

Floyd’s All-Pairs Shortest Path

k) _
df'-j -

w(vi, vj) if k=0
min {d}f‘rl),dfifl) —i—dg;”] it k=>1

procedure FLOYD_ALL_PAIRS_SP(A)
begin
]_)fﬂ) — A;

fork:=1ton do
fori :=1tondo
for j ;== 1ton do
(k) . - (e=1) (k=1) =D\,
d; j 1= min (d;'._;' g)
end FLOYD_ALL_PAIRS_SP

el A Ul e

Algorithm 10.3 Floyd's all-pairs shortest paths algorithm. This program computes the all-pairs
shortest paths of the graph G = (V, E) with adjacency matrix A.

"

uicksort

e I ol o o

—_ e e e e e e = AD
NownwkwWwh = oo

procedure QUICKSORT (4.gq.r)
begin
if ¢ < r then
begin
x = Alql:
s =y,
fori:=q+ 1tordo
if A[i] < x then
begin
si=s5+1;
swap(A[s], A[i]);
end if
swap(Alql, Als]);
QUICKSORT (4. 4q.s);
QUICKSORT (A4, s + 1,r);
end if
end QUICKSORT

(a) |3|2|l|5|8‘4|3‘7|
(b) |1|2|3|5|3|4|3‘?| |:|Pi\-m
(c) |1|2|3|3 |4 ‘ 5|3 | ?| I:I Final position

o [i]2]s]s[als |0 [8]

@ |1]2]3|3[4]5]|7]3

Figure 9.15 Example of the quicksort algorithm sorting a sequence of size » = 8.

Algorithm 9.5 The sequential quicksort algorithm.

Minimum Finding

procedure SERIAL_MIN (A4, n)
begin
min = A[0];
fori :=1ton —1do
if (A[i] < min) min = Alil;
endfor;
return min,
end SERIAL_MIN

e AR e

Algorithm 3.1 A serial program for finding the minimum in an array of numbers 4 of length ».

W
15—Puzzle Problem

1|2]3]4 1234 1234 1|2]3]4
50648 506|718 506|718 506|718
I
9 [10] 7 |11 9 [10| =rll 9 |10[11] 4 9 [10]11]12
I
13]1415]12 1314 15|12 13[14|15]12 13 (1415
(a) (b) (c) (d)

Figure 3.17 A 15-puzzle problem instance showing the initial configuration (a), the final configura-
tion (d), and a sequence of moves leading from the initial to the final configuration.

S
Parallel Algorithm vs Parallel

Formulation

m Parallel Formulation
Refers to a parallelization of a serial algorithm.

m Parallel Algorithm

May represent an entirely different algorithm than the
one used serially.

m \We primarily focus on “Parallel Formulations”

Our goal today is to primarily discuss how to develop
such parallel formulations.

Of course, there will always be examples of “parallel
algorithms” that were not derived from serial
algorithms.

" B
Elements of a Parallel
Algorithm/Formulation

m Pieces of work that can be done concurrently
tasks

m Mapping of the tasks onto multiple processors
Processes Vs processors

m Distribution of input/output & intermediate data across the different
processors

m Management the access of shared data
either input or intermediate

m Synchronization of the processors at various points of the parallel
execution

Holy Grail:
Maximize concurrency and reduce overheads due to parallelization!
Maximize potential speedup!

S
Finding Concurrent Pieces of Work

m Decomposition:

The process of dividing the computation into
smaller pieces of work I.e., tasks

m Tasks are programmer defined and are
considered to be indivisible

S
Example: Dense Matrix-Vector

Multiplication

A b

s

Task 1

Tasks can be of different size.
« granularity of a task

n-1
Task n

LITTTTTTTTTT

Figure 3.1 Decomposition of dense matrix-vector multiplication into » tasks, where » is the num-
ber of rows in the matrix. The portions of the matrix and the input and output vectors accessed by
Task 1 are highlighted.

Task 1

Task 2

Task 3

Task 4

LTI T T I I T ETT]

NN EEEEEN

Figure 3.4 Decomposition of dense matrix-vector multiplication into four tasks. The portions of the
matrix and the input and output vectors accessed by Task 1 are highlighted.

=
Example: Query Processing

Query:

ID# Model Year Color Dealer Price

4523 Civic 2002 Blue MN $18.,000
3476 Corolla 1999 White IL $15,000
7623 Camry 2001 Green NY $21,000
9834 Prius 2001 Green CA $18.,000
6734 Civic 2001 White OR $17,000
5342 Altima 2001 Green FL $19,000
3845 Maxima 2001 Blue NY $22.000
8354 Accord 2000 QGreen VT $18.,000
4395 Civic 2001 Red CA $17,000
7352 Civic 2002 Red WA $18,000

MODEL="Civic” AND YEAR="2001" AND (COLOR="Green” OR COLOR="White")

Example: Query Processing

m Finding concurrent tasks...

ID# | Year
ID# ID# | Color
7623 2001
4523 6734 | 2001 ID# | Color 7623 | Green
6734 5342 | 2001 9834 | Green
4395 1845 | 2001 3476 \\-:llitc 5342 | Green
7352 4395 | 2001 6734 | White 8354 | Green
A ' ' (o -
Civic ((2001) (W\hneﬁ (Green)
7 \
\
/

ID# | Model
6734 | Civic | 2001
4395 | Civic_| 2001

Year H—L
Civic AND 2001 |

\

1A

White OR Green

| Civic AND 2001 AND (White OR Green) j

ID#

Model

Yea

r| Color

6734

Civic

2001

White

ID# | Color
3476 | White
7623 | Green
9834 | Green
6734 | White
5342 | Green
8354 | Green

Figure 3.2 The different tables and their dependencies in a query processing operation.

ID# |[Model
4523 | Civic
6734 | Civic
4395 | Civic
7352 | Civic

’~ P N
[Civic |

ID# | Year
7623 2001
6734 | 2001
5302 | 2001
3845 | 2001
4395 | 2001
("2001)
-

&

ID# | Color
ID# | Color 7623 (Erecn
9834 | Green
3476 | White 5342 | Green
6734 | White 8354 | Green
(o) (\
White | Green

ID# | Color

(White OR Green) |3476 | White

~ o 7623 | Green

9834 | Green

6734 | White

5342 | Green

8354 | Green

(' 2001 AND (White or Green)) | ID#

Civic AND 2001 AND (White OR Green)

[ID#

Model

Year

Color

[6734

Civic

2001

White

Figure 3.3 An alternate data-dependency graph for the query processing operation.

7623
6734
5342

Color
Green
White
Green

Year

2001
2001
2001

Task-Dependency Graph

m In most cases, there are dependencies between

the different tasks

certain task(s) can only start once some other task(s)

have finished

m e.g., producer-consumer relationships
m These dependencies are represented using a

DAG called task-dependency graph

Task 4 Task 3

(a)

N
8 Task 7
A

Task 2

Tas

k1

Task 4

Ta

sk 3

Task 2

Figure 3.5 Abstractions of the task graphs of Figures 3.2 and 3.3, respectively.

Ta

sk 1

" J
Task-Dependency Graph (cont)

m Key Concepts Derived from the Task-
Dependency Graph

Degree of Concurrency

= The number of tasks that can be concurrently
executed

we usually care about the average degree of
concurrency

Critical Path

m The longest vertex-weighted path in the graph
The weights represent task size
Task granularity affects both of the above
characteristics

=
Task-Interaction Graph

m Captures the pattern of interaction between
tasks

This graph usually contains the task-dependency
graph as a subgraph

= i.e., there may be interactions between tasks even if there
are no dependencies

these interactions usually occur due to accesses on shared
data

5

) 3 91011

o=
@®| =

LIl
ooe [oe |-

Task 0

....
ee |-

1
[]
[]
[]

4

o0 eoeoe |-

8 |®

[(ITTTTTTTITTT] &

Task 11

(a) (b)

Figure 3.6 A decomposition for sparse matrix-vector multiplication and the corresponding task-
interaction graph. In the decomposition Task i computes 3 o_ -1y 4. jj0 ALi. 71.61/ 1.

JE—
Task Dependency/Interaction

Graphs

m These graphs are important in developing

effectively mapping the tasks onto the different
Processors

Maximize concurrency and minimize overheads

lask 4 Task T'ask Iask 1 lask 4 l'ask l'ask Task 1
1 (10 1 10) 10) ¢ 1 10)
- I S r, P .,
I 7 ¥ 7P, I I 1 P,
/ ~
o
P
W W \ Po \ . Task
N \ s
Py (9) Taske Po (6) Tasks Ne—
pN y e ™
S I) .
.~/ Taské

(a) (b)

Figure 3.7 Mappings of the task graphs of Figure 3.5 onto four processes.

m More on this later...

Common Decomposition Methods

m Data Decomposition

m Recursive Decomposition) o

m Exploratory Decomposition >~ decomposition
m Speculative Decomposition memoss

m Hybrid Decomposition

_

=
Recursive Decomposition

m Suitable for problems that can be solved
using the divide-and-conquer paradigm

m Each of the subproblems generated by the
divide step becomes a task

"
Example: Quicksort

\5\12\11\1\1o|q\§|3\7\4\9\2\

nonn (s Jw2[11]0]e e[7]8]
N /_,/H“‘x‘x‘
N -
1]2] 3 5/ 6(8/7|
(1] [2 3| |4 5[6 7]8]
G [[0 L R [
) [

Figure 3.8 The quicksort task-dependency graph based on recursive decomposition for sorting a
sequence of 12 numbers.

"
Example: Finding the Minimum

= Note that we can obtain divide-and-conquer algorithms
for problems that are traditionally solved using non-
divide-and-conquer approaches

l. procedure RECURSIVE_MIN (A4, n)
2. begin
3. if (n = 1) then Mmin(1.2)
4. min = A[0];
5. else
6. Imin := RECURSIVE_MIN (4, n/2); ' min(:n | ' m.i-;(8 2 |
7. rmin ;= RECURSIVE_MIN (&(A[n/2]).n — n/ / AN / "\
8. if (/min < rmin) th e ;
: if (n:tm.:; ”TH?} en | \\ | . |
: min 3= (min; min(4,9) | min(1,7) | min(8,11) min(2,12)
10, T L B L L LU S L
I1. min ;= rmin; . . ¢ :
12 endelse: Figure 3.9 The task-dependency graph for finding the minimum number in the sequence {4, 9,

1,7, 8,11, 2, 12}. Each node in the tree represents the task of finding the minimum of a pair of

13. endelse;
numbers.

14. return min;
15. end RECURSIVE_MIN

Algorithm 3.2 Arecursive program for finding the minimum in an array of numbers 4 of length .

=
Recursive Decomposition

m How good are the decompositions that it
produces?

average concurrency?
critical path?

m How do the quicksort and min-finding
decompositions measure-up?

=
Data Decomposition

Used to derive concurrency for problems that operate on
large amounts of data

The idea Is to derive the tasks by focusing on the
multiplicity of data

Data decomposition is often performed in two steps
Step 1: Partition the data
Step 2: Induce a computational partitioning from the data
partitioning

Which data should we partition?

Input/Output/Intermediate?

m Well... all of the above—Ileading to different data decomposition
methods

How do induce a computational partitioning?
Owner-computes rule

" S
Example: Matrix-Matrix
Multiplication

m Partitioning the output data

A1 Arn Bia1 B2 N (171.1 (:71.2
Ar1 Axnx)\ B21 B> Caq1 (oo
(a)

Task 1: C1.1 = A11B1.1+ 412821
Task 2: CLQ = A1,1B1‘2 + Al,szqz
Task 3: (5.1 = A>1B1.1 + A22B21
Task 4: C2!2 — Az‘lBLz + Az,sz,z

(b)

Example: Matrix-Matrix

Multiplication

m Partitioning the intermediate data

Stage |

A A2 Bii B2\ _ 22
A2y Az2)\ Bai Ban (Dz.u Dl.l.l)

Stage Il

Diay Diaa Dyiy D2z Crp Cr2
(Di22 D22 + Diss Dans)\ oy (a2
A decomposition induced by a partitioning of D

Task 01: Dy 1= 41181,

1
Task 02: Do = A28,
Task 03: Dyj2= 411812
Task 04: Dz 2= 412822

Task 05: .")|_3.1 =1‘!3‘1H[.1
Task 06: 1')3‘3‘| = Ag‘gh’gJ
Task 07: f)|‘3‘3:/43‘]b'[_3
Task 08: [Dhror2 = A22822

Task 09: 'y = Di1a+ Dy
Task 10: Ciao=D1 124 Do 0
Task 11: (2 =Dya21+ D20
Task 12: (22=Di22+ D22

Figure 3.15 A decomposition of matrix multiplication based on partitioning the intermediate three-
dimensional matrix.

Al Bl | Bip Diyy | Dz
-

Aal Doy | Diaa

+

ALl Dyiy D
-

A22 By B2 Db, | Daas

Ci1 Ci2

Cz1| Cz22

Figure 3.14 Multiplication of matrices .4 and 5 with partitioning of the three-dimensional interme-
diate matrix).

© D ©®© (UJ
® a ®

Figure 3.16 The task-dependency graph of the decomposition shown in Figure 3.15.

=
Data Decomposition

m |s the most widely-used decomposition
technique

after all parallel processing is often applied to
problems that have a lot of data

splitting the work based on this data is the natural
way to extract high-degree of concurrency

m [t is used by itself or in conjunction with other
decomposition methods

Hybrid decomposition
@ ll,i‘ 2 8‘ ‘? lUml"- F 1,9 3 9‘ El)eﬂc[::mposition

-

- -

2____._ ____,l J Recursive
decomposition
[1]

Figure 3.21 Hybrid decomposition for finding the minimum of an array of size 16 using four tasks.

=
Exploratory Decomposition

m Used to decompose computations that
correspond to a search of a space of
solutions

15-puzzle Problem

Example

=
Exploratory Decomposition

m |t is not as general purpose

m [t can result In speedup anomalies

engineered slow-down or superlinear
Speedup

\\ \“\)
AR N
m\ %n(\ \ ‘Zn\ /n\\ A\ /m\ / m\ m
T P
" Solution~"
Total serial work: 2m+1 Total serial work: m
Total parallel work: 1 Total parallel work: 4m
(a) (b)
Figure 3.19 Aniillustration of anomalous speedups resulting from exploratory decomposition.

Speculative Decomposition

m Used to extract concurrency in problems in
which the next step is one of many
possible actions that can only be

determined when the current tasks
finishes

m This decomposition assumes a certain
outcome of the currently executed task
and executes some of the next steps

Just like speculative execution at the
microprocessor level

"
Example: Discrete Event
Simulation

C

N
5 —= A D
o
=
5 E G I =
s A

» F H

System Components

Figure 3.20 A simple network for discrete event simulation.

System Output

=
Speculative Execution

m |f predictions are wrong...
work Is wasted

work may need to be undone

m state-restoring overhead
memory/computations

m However, it may be the only way to extract
concurrency!

Mapping the Tasks

m Why do we care about task mapping?

Can | just randomly assign them to the available processors?

m Proper mapping is critical as it needs to minimize the
parallel processing overheads

If T, is the parallel runtime on p processors and Ty is the serial

they can
be at odds
with each
other

runtime, then the total overhead T, is p*T,— T,

m The work done by the parallel system beyond that required by the

serial system

Overhead sources: T

m Load imbalance
m Inter-process communication

coordination/synchronization/data-sharing ___~

remember the
holy grail...

Why Mapping can be Complicated?

m Proper mapping needs to take into account the task-dependency

and interaction graphs

Are the tasks available a priori?
m Static vs dynamic task generation

\

How about their computational requirements? p

= Are they uniform or non-uniform?
= Do we know them a priori?
How much data is associated with each task? _
How about the interaction patterns between the tasks?)
m Are they static or dynamic?

Are they data instance dependent?
Are they regular or irregular?
Are they read-only or read-write? D

m Depending on the above characteristics different mapping
techniques are required of different complexity and cost

= Do we know them a priori? >

Task
dependency
graph

Task
interaction
graph

Example: Simple & Complex Task

Interaction

"9 Pixels

Figure 3.22 The regular two-dimensional task-interaction graph for image dithering. The pixels
with dotted outline require color values from the boundary pixels of the neighboring tasks.

A b
- 01234567891011

lask 0 [gT@ M M]

000 e H

[Telele] [eoj® =

_ 00 O H

4 |@ Q0 00 =

[Tele] Jejefe O H

Q0 O00O0O000 N

o e OO0 N

5 |® o o Jof [[| []

D00 00 H

o 0 oo | [

Task 11 L L] L
(a) (b)

Figure 3.6 A decomposition for sparse matrix-vector multiplication and the corresponding task-
interaction graph. In the decomposition Task i computes -y, ;. ;120 AL, J1.51/1.

S
Mapping Techniques for Load

Balancing

m Be aware...

The assignment of tasks whose aggregate
computational requirements are the same does not
automatically ensure load balance.

Each
processor is
assigned three
tasks but (a) is
better than (b)!

Pl
P2

P3

P4

start

synchronization
A

@& ? o
| B @
5@ &

ool

finish

Pl
P2

P3

P4

start

l
E

synchronization finish

Figure 3.23 Two mappings of a hypothetical decomposition with a synchronization.

" J
Load Balancing Technigues

m Static

The tasks are distributed among the processors prior
to the execution

Applicable for tasks that are
m generated statically
= known and/or uniform computational requirements

m Dynamic

The tasks are distributed among the processors
during the execution of the algorithm

m i.e., tasks & data are migrated

Applicable for tasks that are
= generated dynamically
= unknown computational requirements

Static Mapping—Array Distribution

m Suitable for algorithms that
use data decomposition

their underlying input/output/intermediate data

are in the form of arrays
m Block Distribution O
m Cyclic Distribution
m Block-Cyclic Distribution

m Randomized Block Distributions -

"
Examples: Block Distributions

row-wise distribution column-wise distribution

Po

Py
Ps

L Po|PL| Py | Ps | Py Ps | Fs| 1y
Py
Ps
Fe
Pr

Figure 3.24 Examples of one-dimensional partitioning of an array among eight processes.

Py Py Py Py
Fo|Pi | P | P | Py | Ps | Ps| Py
Py Ps Py Py
P Py P Py
Py | Py |Pro |Pry |Prz |Pra [P [Prs
Py Prs Py Pis
(a) (b)

Figure 3.25 Examples of two-dimensional distributions of an array, (a) on a 4 x 4 process grid,
and (b) on a 2 x 8 process grid.

"
Examples: Block Distributions

4 B C
P
P I
Ps
__________________ Py
__________________ | P
Py P
X = P 7
Py
Pro |
| Py
Pz |
VS
Py |
Pis
(a)
A B C
Po Py P Ps

Py Py P Py

Py Py Pro 5)

P2 Pz Py Pis

(b)

Figure 3.26 Data sharing needed for matrix multiplication with (a) one-dimensional and (b) two-
dimensional partitioning of the output matrix. Shaded portions of the input matrices 4 and B are
required by the process that computes the shaded portion of the output matrix C'.

S
Example: Block-Cyclic Distributions

m Gaussian Elimination

‘ = \El The active portion
e s s of the array shrinks
— — as the computations
SO i progress
T Row k(11T e — - A[kj] = Ak jJ/A[kX]
Active part -
IRew il — =G | Alig] = Al Py ‘[,], ' '![l;I ' :j
R R mR i m RaRn
- P EEEEEN [[
P L EEEE | EEEN
) e} mkdn- Lol - mldln
Py] T
P EEEE | EN |
0
— P PR Pl P I
Py NN T
P, [1 N
e ‘;)2 —— .f”"\ o ‘]'): —_— f”'{ —
Fs O [(i 1 (]
(a) (b)

Figure 3.30 Examples of one- and two-dimensional block-cyclic distributions among four pro-
cesses. (a) The rows of the array are grouped into blocks each consisting of two rows, resulting
in eight blocks of rows. These blocks are distributed to four processes in a wraparound fashion. (b)
The matrix is blocked into 16 blocks each of size 4 x 4, and it is mapped onto @ 2 x 2 grid of
processes in a wraparound fashion.

W
Random Block Distributions

m Sometimes the computations are performed only
at certain portions of an array

sparse matrix-matrix multiplication

Po|PL| P |Ps|Po|PL|P2| P
Py|Ps|Ps|Pr|Py|Ps| Ps| Pr
________________ e Ps| Py [P [P | Ps | Py |Pro|Piy
TR P2 |Pis |Pus |Pis | P |Prs | Pra | Prs
|l eles|r|e e p
L Py|Ps | Ps | Pr| Py| Ps| Ps| Pr
oiinn s R Pe| Po |Pio|Pyy| Pe| Py [P0 | Py

s TR Pi | P13 |Pra |Pis |Pr2 |[Pr3 |Pra|Prs

(a) (b)

Figure 3.31 Using the block-cyclic distribution shown in (b) to distribute the computations per-
formed in array (a) will lead to load imbalances.

W
Random Block Distributions

m Better load balance can be achieved via a
random block distribution

V=10,1,2,3,4,56,778,9,10,11]

random(V)=1[8,2,6,0,3,7,11,1,9,5,4, 10]

mapping=8 26037 11195410
| 1 I I

Po Py P, Pj

Figure 3.32 A one-dimensional randomized block mapping of 12 blocks onto four process (i.e.,

o =3).
0123 456789101112131415 106 40113 1 87142139 51512
0 [
1| 10 3
By I I 14 SN E B £ F
3l 1
e - s
5 ll f 1) ! f
13 0 a2
7 o M W
8l i I o '1
9 15
I'“ 4 ! ! ‘p:ll ;
1 R EN 1
o e B u wes s EEEENENRE
14 N . 2 - .
(a) (b) (©

Figure 3.33 Using a two-dimensional random block distribution shown in (b) to distribute the com-
putations performed in array (a), as shown in (c).

=
Graph Partitioning

m A mapping can be achieved by directly
partitioning the task interaction graph.

EG: Finite element mesh-based computations

S
Ot

N A,

SO NS /238,

RARERERE,
NN

SRR DERE B0
AR TS T SR

SRV ANNANAES S
B -:‘&#’AYA‘V <\/ Awsgvﬁgﬁsp‘.a‘s,‘qi AT
A

Figure 3.34 A mesh used to model Lake Superior.

"
Directly partitioning this graph

KU
»

NS
<

Figure 3.36 A distribution of the mesh elements to eight processes, by using a graph-partitioning
algorithm.

" J
Example: Sparse Matrix-Vector

m Another instance of graph partitioning

[S%]

w

o >
l=n

LIS

Process 0 C0=(4,5,6,7.8)

[[T

Process 1 oo C1=(0,12,3,89,10,11)

Process 2 C2=(0.4,5,6)

LT T

Cl =(0,5,6) Process |

Figure 3.38 A mapping for sparse matrix-vector multiplication onto three processes. The list Ci
contains the indices of 4 that Process i needs to access from other processes.

Process 0

C0=(1.2,6,9)

Process 2 C2=(1,2457238)

Figure 3.39 Reducing interaction overhead in sparse matrix-vector multiplication by partitioning
the task-interaction graph.

S
Dynamic Load Balancing Schemes

m There is a huge body of research

Centralized Schemes
m A certain processors is responsible for giving out work
master-slave paradigm

m Issue:
task granularity

Distributed Schemes

m Work can be transferred between any pairs of processors.

m [Sssues:
How do the processors get paired?
Who initiates the work transfer? push vs pull
How much work is transferred?

S
Mapping to Minimize Interaction

Overheads

m Maximize data locality

m Minimize volume of data-exchange

m Minimize frequency of interactions

m Minimize contention and hot spots

m Overlap computation with interactions

m Selective data and computation replication

Achieving the above is usually an interplay of
decomposition and mapping and is usually done iteratively

