
CHAPTER 6

Programming Using
the Message-Passing
Paradigm

Numerous programming languages and libraries have been developed for explicit parallel
programming. These differ in their view of the address space that they make available
to the programmer, the degree of synchronization imposed on concurrent activities, and
the multiplicity of programs. The message-passing programming paradigm is one of the
oldest and most widely used approaches for programming parallel computers. Its roots can
be traced back in the early days of parallel processing and its wide-spread adoption can be
attributed to the fact that it imposes minimal requirements on the underlying hardware.

In this chapter, we first describe some of the basic concepts of the message-passing pro-
gramming paradigm and then explore various message-passing programming techniques
using the standard and widely-used Message Passing Interface.

6.1 Principles of Message-Passing Programming

There are two key attributes that characterize the message-passing programming paradigm.
The first is that it assumes a partitioned address space and the second is that it supports only
explicit parallelization.

The logical view of a machine supporting the message-passing paradigm consists of p
processes, each with its own exclusive address space. Instances of such a view come nat-
urally from clustered workstations and non-shared address space multicomputers. There
are two immediate implications of a partitioned address space. First, each data element
must belong to one of the partitions of the space; hence, data must be explicitly partitioned
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234 Programming Using the Message-Passing Paradigm

and placed. This adds complexity to programming, but encourages locality of access that
is critical for achieving high performance on non-UMA architecture, since a processor can
access its local data much faster than non-local data on such architectures. The second
implication is that all interactions (read-only or read/write) require cooperation of two pro-
cesses – the process that has the data and the process that wants to access the data. This
requirement for cooperation adds a great deal of complexity for a number of reasons. The
process that has the data must participate in the interaction even if it has no logical con-
nection to the events at the requesting process. In certain circumstances, this requirement
leads to unnatural programs. In particular, for dynamic and/or unstructured interactions the
complexity of the code written for this type of paradigm can be very high for this reason.
However, a primary advantage of explicit two-way interactions is that the programmer is
fully aware of all the costs of non-local interactions, and is more likely to think about al-
gorithms (and mappings) that minimize interactions. Another major advantage of this type
of programming paradigm is that it can be efficiently implemented on a wide variety of
architectures.

The message-passing programming paradigm requires that the parallelism is coded ex-
plicitly by the programmer. That is, the programmer is responsible for analyzing the under-
lying serial algorithm/application and identifying ways by which he or she can decompose
the computations and extract concurrency. As a result, programming using the message-
passing paradigm tends to be hard and intellectually demanding. However, on the other
hand, properly written message-passing programs can often achieve very high performance
and scale to a very large number of processes.

Structure of Message-Passing Programs Message-passing programs are often
written using the asynchronous or loosely synchronous paradigms. In the asynchronous
paradigm, all concurrent tasks execute asynchronously. This makes it possible to imple-
ment any parallel algorithm. However, such programs can be harder to reason about, and
can have non-deterministic behavior due to race conditions. Loosely synchronous pro-
grams are a good compromise between these two extremes. In such programs, tasks or
subsets of tasks synchronize to perform interactions. However, between these interactions,
tasks execute completely asynchronously. Since the interaction happens synchronously, it
is still quite easy to reason about the program. Many of the known parallel algorithms can
be naturally implemented using loosely synchronous programs.

In its most general form, the message-passing paradigm supports execution of a differ-
ent program on each of the p processes. This provides the ultimate flexibility in parallel
programming, but makes the job of writing parallel programs effectively unscalable. For
this reason, most message-passing programs are written using the single program multiple
data (SPMD) approach. In SPMD programs the code executed by different processes is
identical except for a small number of processes (e.g., the “root” process). This does not
mean that the processes work in lock-step. In an extreme case, even in an SPMD program,
each process could execute a different code (the program contains a large case statement
with code for each process). But except for this degenerate case, most processes execute
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the same code. SPMD programs can be loosely synchronous or completely asynchronous.

6.2 The Building Blocks: Send and Receive
Operations

Since interactions are accomplished by sending and receiving messages, the basic opera-
tions in the message-passing programming paradigm are send and receive. In their
simplest form, the prototypes of these operations are defined as follows:

send(void *sendbuf, int nelems, int dest)
receive(void *recvbuf, int nelems, int source)

The sendbuf points to a buffer that stores the data to be sent, recvbuf points to a
buffer that stores the data to be received, nelems is the number of data units to be sent
and received, dest is the identifier of the process that receives the data, and source is
the identifier of the process that sends the data.

However, to stop at this point would be grossly simplifying the programming and per-
formance ramifications of how these functions are implemented. To motivate the need for
further investigation, let us start with a simple example of a process sending a piece of data
to another process as illustrated in the following code-fragment:

1 P0 P1
2
3 a = 100; receive(&a, 1, 0)
4 send(&a, 1, 1); printf("%d\n", a);
5 a = 0;

In this simple example, process P0 sends a message to process P1 which receives and
prints the message. The important thing to note is that process P0 changes the value of a
to 0 immediately following the send. The semantics of the send operation require that the
value received by process P1 must be 100 as opposed to 0. That is, the value of a at the
time of the send operation must be the value that is received by process P1.

It may seem that it is quite straightforward to ensure the semantics of the send and re-
ceive operations. However, based on how the send and receive operations are implemented
this may not be the case. Most message passing platforms have additional hardware sup-
port for sending and receiving messages. They may support DMA (direct memory access)
and asynchronous message transfer using network interface hardware. Network interfaces
allow the transfer of messages from buffer memory to desired location without CPU in-
tervention. Similarly, DMA allows copying of data from one memory location to another
(e.g., communication buffers) without CPU support (once they have been programmed).
As a result, if the send operation programs the communication hardware and returns before
the communication operation has been accomplished, process P1 might receive the value
0 in a instead of 100!
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Figure 6.1 Handshake for a blocking non-buffered send/receive operation. It is easy to see that in
cases where sender and receiver do not reach communication point at similar times, there can be
considerable idling overheads.

While this is undesirable, there are in fact reasons for supporting such send operations
for performance reasons. In the rest of this section, we will discuss send and receive opera-
tions in the context of such a hardware environment, and motivate various implementation
details and message-passing protocols that help in ensuring the semantics of the send and
receive operations.

6.2.1 Blocking Message Passing Operations

A simple solution to the dilemma presented in the code fragment above is for the send
operation to return only when it is semantically safe to do so. Note that this is not the same
as saying that the send operation returns only after the receiver has received the data. It
simply means that the sending operation blocks until it can guarantee that the semantics
will not be violated on return irrespective of what happens in the program subsequently.
There are two mechanisms by which this can be achieved.

Blocking Non-Buffered Send/Receive

In the first case, the send operation does not return until the matching receive has been
encountered at the receiving process. When this happens, the message is sent and the
send operation returns upon completion of the communication operation. Typically, this
process involves a handshake between the sending and receiving processes. The sending
process sends a request to communicate to the receiving process. When the receiving
process encounters the target receive, it responds to the request. The sending process
upon receiving this response initiates a transfer operation. The operation is illustrated in
Figure 6.1. Since there are no buffers used at either sending or receiving ends, this is also
referred to as a non-buffered blocking operation.
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Idling Overheads in Blocking Non-Buffered Operations In Figure 6.1, we illus-
trate three scenarios in which the send is reached before the receive is posted, the send
and receive are posted around the same time, and the receive is posted before the send is
reached. In cases (a) and (c), we notice that there is considerable idling at the sending and
receiving process. It is also clear from the figures that a blocking non-buffered protocol is
suitable when the send and receive are posted at roughly the same time. However, in an
asynchronous environment, this may be impossible to predict. This idling overhead is one
of the major drawbacks of this protocol.

Deadlocks in Blocking Non-Buffered Operations Consider the following simple
exchange of messages that can lead to a deadlock:

1 P0 P1
2
3 send(&a, 1, 1); send(&a, 1, 0);
4 receive(&b, 1, 1); receive(&b, 1, 0);

The code fragment makes the values of a available to both processes P0 and P1. How-
ever, if the send and receive operations are implemented using a blocking non-buffered
protocol, the send at P0 waits for the matching receive at P1 whereas the send at process
P1 waits for the corresponding receive at P0, resulting in an infinite wait.

As can be inferred, deadlocks are very easy in blocking protocols and care must be taken
to break cyclic waits of the nature outlined. In the above example, this can be corrected by
replacing the operation sequence of one of the processes by a receive and a send as
opposed to the other way around. This often makes the code more cumbersome and buggy.

Blocking Buffered Send/Receive

A simple solution to the idling and deadlocking problem outlined above is to rely on buffers
at the sending and receiving ends. We start with a simple case in which the sender has a
buffer pre-allocated for communicating messages. On encountering a send operation, the
sender simply copies the data into the designated buffer and returns after the copy operation
has been completed. The sender process can now continue with the program knowing that
any changes to the data will not impact program semantics. The actual communication
can be accomplished in many ways depending on the available hardware resources. If the
hardware supports asynchronous communication (independent of the CPU), then a network
transfer can be initiated after the message has been copied into the buffer. Note that at the
receiving end, the data cannot be stored directly at the target location since this would
violate program semantics. Instead, the data is copied into a buffer at the receiver as well.
When the receiving process encounters a receive operation, it checks to see if the message
is available in its receive buffer. If so, the data is copied into the target location. This
operation is illustrated in Figure 6.2(a).

In the protocol illustrated above, buffers are used at both sender and receiver and com-
munication is handled by dedicated hardware. Sometimes machines do not have such
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Figure 6.2 Blocking buffered transfer protocols: (a) in the presence of communication hardware
with buffers at send and receive ends; and (b) in the absence of communication hardware, sender
interrupts receiver and deposits data in buffer at receiver end.

communication hardware. In this case, some of the overhead can be saved by buffering
only on one side. For example, on encountering a send operation, the sender interrupts
the receiver, both processes participate in a communication operation and the message is
deposited in a buffer at the receiver end. When the receiver eventually encounters a receive
operation, the message is copied from the buffer into the target location. This protocol is
illustrated in Figure 6.2(b). It is not difficult to conceive a protocol in which the buffering
is done only at the sender and the receiver initiates a transfer by interrupting the sender.

It is easy to see that buffered protocols alleviate idling overheads at the cost of adding
buffer management overheads. In general, if the parallel program is highly synchronous
(i.e., sends and receives are posted around the same time), non-buffered sends may per-
form better than buffered sends. However, in general applications, this is not the case and
buffered sends are desirable unless buffer capacity becomes an issue.

Example 6.1 Impact of finite buffers in message passing
Consider the following code fragment:

1 P0 P1
2
3 for (i = 0; i < 1000; i++) { for (i = 0; i < 1000; i++) {
4 produce_data(&a); receive(&a, 1, 0);
5 send(&a, 1, 1); consume_data(&a);
6 } }

In this code fragment, process P0 produces 1000 data items and process P1
consumes them. However, if process P1 was slow getting to this loop, process P0
might have sent all of its data. If there is enough buffer space, then both processes
can proceed; however, if the buffer is not sufficient (i.e., buffer overflow), the sender
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would have to be blocked until some of the corresponding receive operations had
been posted, thus freeing up buffer space. This can often lead to unforeseen over-
heads and performance degradation. In general, it is a good idea to write programs
that have bounded buffer requirements.

Deadlocks in Buffered Send and Receive Operations While buffering alleviates
many of the deadlock situations, it is still possible to write code that deadlocks. This is due
to the fact that as in the non-buffered case, receive calls are always blocking (to ensure
semantic consistency). Thus, a simple code fragment such as the following deadlocks
since both processes wait to receive data but nobody sends it.

1 P0 P1
2
3 receive(&a, 1, 1); receive(&a, 1, 0);
4 send(&b, 1, 1); send(&b, 1, 0);

Once again, such circular waits have to be broken. However, deadlocks are caused only
by waits on receive operations in this case.

6.2.2 Non-Blocking Message Passing Operations

In blocking protocols, the overhead of guaranteeing semantic correctness was paid in the
form of idling (non-buffered) or buffer management (buffered). Often, it is possible to
require the programmer to ensure semantic correctness and provide a fast send/receive
operation that incurs little overhead. This class of non-blocking protocols returns from the
send or receive operation before it is semantically safe to do so. Consequently, the user
must be careful not to alter data that may be potentially participating in a communication
operation. Non-blocking operations are generally accompanied by a check-status

operation, which indicates whether the semantics of a previously initiated transfer may be
violated or not. Upon return from a non-blocking send or receive operation, the process is
free to perform any computation that does not depend upon the completion of the operation.
Later in the program, the process can check whether or not the non-blocking operation has
completed, and, if necessary, wait for its completion.

As illustrated in Figure 6.3, non-blocking operations can themselves be buffered or
non-buffered. In the non-buffered case, a process wishing to send data to another simply
posts a pending message and returns to the user program. The program can then do other
useful work. At some point in the future, when the corresponding receive is posted, the
communication operation is initiated. When this operation is completed, the check-status
operation indicates that it is safe for the programmer to touch this data. This transfer is
indicated in Figure 6.4(a).

Comparing Figures 6.4(a) and 6.1(a), it is easy to see that the idling time when the pro-
cess is waiting for the corresponding receive in a blocking operation can now be utilized
for computation, provided it does not update the data being sent. This alleviates the ma-
jor bottleneck associated with the former at the expense of some program restructuring.
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Figure 6.3 Space of possible protocols for send and receive operations.

The benefits of non-blocking operations are further enhanced by the presence of dedicated
communication hardware. This is illustrated in Figure 6.4(b). In this case, the communi-
cation overhead can be almost entirely masked by non-blocking operations. In this case,
however, the data being received is unsafe for the duration of the receive operation.

Non-blocking operations can also be used with a buffered protocol. In this case, the
sender initiates a DMA operation and returns immediately. The data becomes safe the mo-
ment the DMA operation has been completed. At the receiving end, the receive operation
initiates a transfer from the sender’s buffer to the receiver’s target location. Using buffers
with non-blocking operation has the effect of reducing the time during which the data is
unsafe.

Typical message-passing libraries such as Message Passing Interface (MPI) and Parallel
Virtual Machine (PVM) implement both blocking and non-blocking operations. Blocking
operations facilitate safe and easier programming and non-blocking operations are useful
for performance optimization by masking communication overhead. One must, however,
be careful using non-blocking protocols since errors can result from unsafe access to data
that is in the process of being communicated.

6.3 MPI: the Message Passing Interface

Many early generation commercial parallel computers were based on the message-passing
architecture due to its lower cost relative to shared-address-space architectures. Since
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Figure 6.4 Non-blocking non-buffered send and receive operations (a) in absence of communica-
tion hardware; (b) in presence of communication hardware.

message-passing is the natural programming paradigm for these machines, this resulted
in the development of many different message-passing libraries. In fact, message-passing
became the modern-age form of assembly language, in which every hardware vendor pro-
vided its own library, that performed very well on its own hardware, but was incompat-
ible with the parallel computers offered by other vendors. Many of the differences be-
tween the various vendor-specific message-passing libraries were only syntactic; however,
often enough there were some serious semantic differences that required significant re-
engineering to port a message-passing program from one library to another.

The message-passing interface, or MPI as it is commonly known, was created to essen-
tially solve this problem. MPI defines a standard library for message-passing that can be
used to develop portable message-passing programs using either C or Fortran. The MPI
standard defines both the syntax as well as the semantics of a core set of library routines
that are very useful in writing message-passing programs. MPI was developed by a group
of researchers from academia and industry, and has enjoyed wide support by almost all the
hardware vendors. Vendor implementations of MPI are available on almost all commercial
parallel computers.

The MPI library contains over 125 routines, but the number of key concepts is much
smaller. In fact, it is possible to write fully-functional message-passing programs by using
only the six routines shown in Table 6.1. These routines are used to initialize and terminate
the MPI library, to get information about the parallel computing environment, and to send
and receive messages.

In this section we describe these routines as well as some basic concepts that are essen-
tial in writing correct and efficient message-passing programs using MPI.
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Table 6.1 The minimal set of MPI routines.

MPI_Init Initializes MPI.
MPI_Finalize Terminates MPI.
MPI_Comm_size Determines the number of processes.
MPI_Comm_rank Determines the label of the calling process.
MPI_Send Sends a message.
MPI_Recv Receives a message.

6.3.1 Starting and Terminating the MPI Library

MPI_Init is called prior to any calls to other MPI routines. Its purpose is to initialize the
MPI environment. Calling MPI_Init more than once during the execution of a program
will lead to an error. MPI_Finalize is called at the end of the computation, and it
performs various clean-up tasks to terminate the MPI environment. No MPI calls may be
performed after MPI_Finalize has been called, not even MPI_Init. Both MPI_Init
and MPI_Finalize must be called by all the processes, otherwise MPI’s behavior will
be undefined. The exact calling sequences of these two routines for C are as follows:

int MPI_Init(int *argc, char ***argv)
int MPI_Finalize()

The arguments argc and argv of MPI_Init are the command-line arguments of the
C program. An MPI implementation is expected to remove from the argv array any
command-line arguments that should be processed by the implementation before returning
back to the program, and to decrement argc accordingly. Thus, command-line process-
ing should be performed only after MPI_Init has been called. Upon successful execu-
tion, MPI_Init and MPI_Finalize return MPI_SUCCESS; otherwise they return an
implementation-defined error code.

The bindings and calling sequences of these two functions are illustrative of the nam-
ing practices and argument conventions followed by MPI. All MPI routines, data-types,
and constants are prefixed by “MPI_”. The return code for successful completion is
MPI_SUCCESS. This and other MPI constants and data-structures are defined for C in
the file "mpi.h". This header file must be included in each MPI program.

6.3.2 Communicators

A key concept used throughout MPI is that of the communication domain. A commu-
nication domain is a set of processes that are allowed to communicate with each other.
Information about communication domains is stored in variables of type MPI_Comm, that
are called communicators. These communicators are used as arguments to all message
transfer MPI routines and they uniquely identify the processes participating in the mes-
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sage transfer operation. Note that each process can belong to many different (possibly
overlapping) communication domains.

The communicator is used to define a set of processes that can communicate with each
other. This set of processes form a communication domain. In general, all the processes
may need to communicate with each other. For this reason, MPI defines a default commu-
nicator called MPI_COMM_WORLDwhich includes all the processes involved in the parallel
execution. However, in many cases we want to perform communication only within (pos-
sibly overlapping) groups of processes. By using a different communicator for each such
group, we can ensure that no messages will ever interfere with messages destined to any
other group. How to create and use such communicators is described at a later point in this
chapter. For now, it suffices to use MPI_COMM_WORLD as the communicator argument to
all the MPI functions that require a communicator.

6.3.3 Getting Information

The MPI_Comm_size and MPI_Comm_rank functions are used to determine the num-
ber of processes and the label of the calling process, respectively. The calling sequences of
these routines are as follows:

int MPI_Comm_size(MPI_Comm comm, int *size)
int MPI_Comm_rank(MPI_Comm comm, int *rank)

The function MPI_Comm_size returns in the variable size the number of processes
that belong to the communicator comm. So, when there is a single process per proces-
sor, the call MPI_Comm_size(MPI_COMM_WORLD, &size) will return in size the
number of processors used by the program. Every process that belongs to a communicator
is uniquely identified by its rank. The rank of a process is an integer that ranges from
zero up to the size of the communicator minus one. A process can determine its rank in
a communicator by using the MPI_Comm_rank function that takes two arguments: the
communicator and an integer variable rank. Up on return, the variable rank stores the
rank of the process. Note that each process that calls either one of these functions must
belong in the supplied communicator, otherwise an error will occur.

Example 6.2 Hello World
We can use the four MPI functions just described to write a program that prints out
a “Hello World” message from each processor.

1 #include <mpi.h>
2
3 main(int argc, char *argv[])
4 {
5 int npes, myrank;
6
7 MPI_Init(&argc, &argv);
8 MPI_Comm_size(MPI_COMM_WORLD, &npes);
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9 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
10 printf("From process %d out of %d, Hello World!\n",
11 myrank, npes);
12 MPI_Finalize();
13 }

6.3.4 Sending and Receiving Messages

The basic functions for sending and receiving messages in MPI are the MPI_Send and
MPI_Recv, respectively. The calling sequences of these routines are as follows:

int MPI_Send(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status *status)

MPI_Send sends the data stored in the buffer pointed by buf. This buffer consists of
consecutive entries of the type specified by the parameter datatype. The number of
entries in the buffer is given by the parameter count. The correspondence between MPI
datatypes and those provided by C is shown in Table 6.2. Note that for all C datatypes, an
equivalent MPI datatype is provided. However, MPI allows two additional datatypes that
are not part of the C language. These are MPI_BYTE and MPI_PACKED.
MPI_BYTE corresponds to a byte (8 bits) and MPI_PACKED corresponds to a collec-

tion of data items that has been created by packing non-contiguous data. Note that the
length of the message in MPI_Send, as well as in other MPI routines, is specified in terms
of the number of entries being sent and not in terms of the number of bytes. Specifying
the length in terms of the number of entries has the advantage of making the MPI code
portable, since the number of bytes used to store various datatypes can be different for
different architectures.

The destination of the message sent by MPI_Send is uniquely specified by the dest
and comm arguments. The dest argument is the rank of the destination process in the
communication domain specified by the communicator comm. Each message has an integer-
valued tag associated with it. This is used to distinguish different types of messages.
The message-tag can take values ranging from zero up to the MPI defined constant
MPI_TAG_UB. Even though the value of MPI_TAG_UB is implementation specific, it
is at least 32,767.
MPI_Recv receives a message sent by a process whose rank is given by the source in

the communication domain specified by the comm argument. The tag of the sent message
must be that specified by the tag argument. If there are many messages with identi-
cal tag from the same process, then any one of these messages is received. MPI allows
specification of wildcard arguments for both source and tag. If source is set to
MPI_ANY_SOURCE, then any process of the communication domain can be the source
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Table 6.2 Correspondence between the datatypes supported by MPI and those supported by C.

MPI Datatype C Datatype

MPI_CHAR signed char
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int
MPI_UNSIGNED_CHAR unsigned char
MPI_UNSIGNED_SHORT unsigned short int
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG unsigned long int
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE
MPI_PACKED

of the message. Similarly, if tag is set to MPI_ANY_TAG, then messages with any tag
are accepted. The received message is stored in continuous locations in the buffer pointed
to by buf. The count and datatype arguments of MPI_Recv are used to specify the
length of the supplied buffer. The received message should be of length equal to or less
than this length. This allows the receiving process to not know the exact size of the mes-
sage being sent. If the received message is larger than the supplied buffer, then an overflow
error will occur, and the routine will return the error MPI_ERR_TRUNCATE.

After a message has been received, the status variable can be used to get information
about the MPI_Recv operation. In C, status is stored using the MPI_Status data-
structure. This is implemented as a structure with three fields, as follows:

typedef struct MPI_Status {
int MPI_SOURCE;
int MPI_TAG;
int MPI_ERROR;

};

MPI_SOURCE and MPI_TAG store the source and the tag of the received message. They
are particularly useful when MPI_ANY_SOURCE and MPI_ANY_TAG are used for the
source and tag arguments. MPI_ERROR stores the error-code of the received message.

The status argument also returns information about the length of the received message.
This information is not directly accessible from the status variable, but it can be re-
trieved by calling the MPI_Get_count function. The calling sequence of this function
is as follows:

int MPI_Get_count(MPI_Status *status, MPI_Datatype datatype,
int *count)
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MPI_Get_count takes as arguments the status returned by MPI_Recv and the type
of the received data in datatype, and returns the number of entries that were actually
received in the count variable.

The MPI_Recv returns only after the requested message has been received and copied
into the buffer. That is, MPI_Recv is a blocking receive operation. However, MPI allows
two different implementations for MPI_Send. In the first implementation, MPI_Send
returns only after the corresponding MPI_Recv have been issued and the message has
been sent to the receiver. In the second implementation, MPI_Send first copies the mes-
sage into a buffer and then returns, without waiting for the corresponding MPI_Recv to
be executed. In either implementation, the buffer that is pointed by the buf argument of
MPI_Send can be safely reused and overwritten. MPI programs must be able to run cor-
rectly regardless of which of the two methods is used for implementing MPI_Send. Such
programs are called safe. In writing safe MPI programs, sometimes it is helpful to forget
about the alternate implementation of MPI_Send and just think of it as being a blocking
send operation.

Avoiding Deadlocks The semantics of MPI_Send and MPI_Recv place some re-
strictions on how we can mix and match send and receive operations. For example, con-
sider the following piece of code in which process 0 sends two messages with different
tags to process 1, and process 1 receives them in the reverse order.

1 int a[10], b[10], myrank;
2 MPI_Status status;
3 ...
4 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
5 if (myrank == 0) {
6 MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD);
7 MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD);
8 }
9 else if (myrank == 1) {
10 MPI_Recv(b, 10, MPI_INT, 0, 2, MPI_COMM_WORLD);
11 MPI_Recv(a, 10, MPI_INT, 0, 1, MPI_COMM_WORLD);
12 }
13 ...

If MPI_Send is implemented using buffering, then this code will run correctly provided
that sufficient buffer space is available. However, if MPI_Send is implemented by block-
ing until the matching receive has been issued, then neither of the two processes will be
able to proceed. This is because process zero (i.e., myrank == 0) will wait until process
one issues the matching MPI_Recv (i.e., the one with tag equal to 1), and at the same
time process one will wait until process zero performs the matching MPI_Send (i.e., the
one with tag equal to 2). This code fragment is not safe, as its behavior is implementation
dependent. It is up to the programmer to ensure that his or her program will run correctly
on any MPI implementation. The problem in this program can be corrected by matching
the order in which the send and receive operations are issued. Similar deadlock situations
can also occur when a process sends a message to itself. Even though this is legal, its
behavior is implementation dependent and must be avoided.



6.3.4 Sending and Receiving Messages 247

Improper use of MPI_Send and MPI_Recv can also lead to deadlocks in situations
when each processor needs to send and receive a message in a circular fashion. Consider
the following piece of code, in which process i sends a message to process i + 1 (modulo
the number of processes) and receives a message from process i − 1 (module the number
of processes).

1 int a[10], b[10], npes, myrank;
2 MPI_Status status;
3 ...
4 MPI_Comm_size(MPI_COMM_WORLD, &npes);
5 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
6 MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1, MPI_COMM_WORLD);
7 MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1, MPI_COMM_WORLD);
8 ...

When MPI_Send is implemented using buffering, the program will work correctly, since
every call to MPI_Send will get buffered, allowing the call of the MPI_Recv to be per-
formed, which will transfer the required data. However, if MPI_Send blocks until the
matching receive has been issued, all processes will enter an infinite wait state, waiting
for the neighboring process to issue a MPI_Recv operation. Note that the deadlock still
remains even when we have only two processes. Thus, when pairs of processes need to
exchange data, the above method leads to an unsafe program. The above example can be
made safe, by rewriting it as follows:

1 int a[10], b[10], npes, myrank;
2 MPI_Status status;
3 ...
4 MPI_Comm_size(MPI_COMM_WORLD, &npes);
5 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
6 if (myrank%2 == 1) {
7 MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1, MPI_COMM_WORLD);
8 MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1, MPI_COMM_WORLD);
9 }
10 else {
11 MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1, MPI_COMM_WORLD);
12 MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1, MPI_COMM_WORLD);
13 }
14 ...

This new implementation partitions the processes into two groups. One consists of the odd-
numbered processes and the other of the even-numbered processes. The odd-numbered
processes perform a send followed by a receive, and the even-numbered processes perform
a receive followed by a send. Thus, when an odd-numbered process calls MPI_Send, the
target process (which has an even number) will call MPI_Recv to receive that message,
before attempting to send its own message.

Sending and Receiving Messages Simultaneously The above communication
pattern appears frequently in many message-passing programs, and for this reason MPI
provides the MPI_Sendrecv function that both sends and receives a message.
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MPI_Sendrecv does not suffer from the circular deadlock problems of MPI_Send and
MPI_Recv. You can think of MPI_Sendrecv as allowing data to travel for both send
and receive simultaneously. The calling sequence of MPI_Sendrecv is the following:

int MPI_Sendrecv(void *sendbuf, int sendcount,
MPI_Datatype senddatatype, int dest, int sendtag,
void *recvbuf, int recvcount, MPI_Datatype recvdatatype,
int source, int recvtag, MPI_Comm comm,
MPI_Status *status)

The arguments of MPI_Sendrecv are essentially the combination of the arguments of
MPI_Send and MPI_Recv. The send and receive buffers must be disjoint, and the source
and destination of the messages can be the same or different. The safe version of our earlier
example using MPI_Sendrecv is as follows.

1 int a[10], b[10], npes, myrank;
2 MPI_Status status;
3 ...
4 MPI_Comm_size(MPI_COMM_WORLD, &npes);
5 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
6 MPI_SendRecv(a, 10, MPI_INT, (myrank+1)%npes, 1,
7 b, 10, MPI_INT, (myrank-1+npes)%npes, 1,
8 MPI_COMM_WORLD, &status);
9 ...

In many programs, the requirement for the send and receive buffers of MPI_Sendrecv
be disjoint may force us to use a temporary buffer. This increases the amount of memory
required by the program and also increases the overall run time due to the extra copy. This
problem can be solved by using that MPI_Sendrecv_replace MPI function. This
function performs a blocking send and receive, but it uses a single buffer for both the send
and receive operation. That is, the received data replaces the data that was sent out of the
buffer. The calling sequence of this function is the following:

int MPI_Sendrecv_replace(void *buf, int count,
MPI_Datatype datatype, int dest, int sendtag,
int source, int recvtag, MPI_Comm comm,
MPI_Status *status)

Note that both the send and receive operations must transfer data of the same datatype.

6.3.5 Example: Odd-Even Sort

We will now use the MPI functions described in the previous sections to write a complete
message-passing program that will sort a list of numbers using the odd-even sorting algo-
rithm. Recall from Section 9.3.1 that the odd-even sorting algorithm sorts a sequence of n
elements using p processes in a total of p phases. During each of these phases, the odd-
or even-numbered processes perform a compare-split step with their right neighbors. The
MPI program for performing the odd-even sort in parallel is shown in Program 6.1. To
simplify the presentation, this program assumes that n is divisible by p.
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Program 6.1 Odd-Even Sorting

1 #include <stdlib.h>
2 #include <mpi.h> /* Include MPI’s header file */
3
4 main(int argc, char ∗argv[])
5 {
6 int n; /* The total number of elements to be sorted */
7 int npes; /* The total number of processes */
8 int myrank; /* The rank of the calling process */
9 int nlocal; /* The local number of elements, and the array that stores them */

10 int ∗elmnts; /* The array that stores the local elements */
11 int ∗relmnts; /* The array that stores the received elements */
12 int oddrank; /* The rank of the process during odd-phase communication */
13 int evenrank; /* The rank of the process during even-phase communication */
14 int ∗wspace; /* Working space during the compare-split operation */
15 int i;
16 MPI_Status status;
17
18 /* Initialize MPI and get system information */
19 MPI_Init(&argc, &argv);
20 MPI_Comm_size(MPI_COMM_WORLD, &npes);
21 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
22
23 n = atoi(argv[1]);
24 nlocal = n/npes; /* Compute the number of elements to be stored locally. */
25
26 /* Allocate memory for the various arrays */
27 elmnts = (int ∗)malloc(nlocal∗sizeof(int));
28 relmnts = (int ∗)malloc(nlocal∗sizeof(int));
29 wspace = (int ∗)malloc(nlocal∗sizeof(int));
30
31 /* Fill-in the elmnts array with random elements */
32 srandom(myrank);
33 for (i=0; i<nlocal; i++)
34 elmnts[i] = random();
35
36 /* Sort the local elements using the built-in quicksort routine */
37 qsort(elmnts, nlocal, sizeof(int), IncOrder);
38
39 /* Determine the rank of the processors that myrank needs to communicate during the */
40 /* odd and even phases of the algorithm */
41 if (myrank%2 == 0) {
42 oddrank = myrank-1;
43 evenrank = myrank+1;
44 }
45 else {
46 oddrank = myrank+1;
47 evenrank = myrank-1;
48 }
49
50 /* Set the ranks of the processors at the end of the linear */
51 if (oddrank == -1 || oddrank == npes)
52 oddrank = MPI_PROC_NULL;
53 if (evenrank == -1 || evenrank == npes)
54 evenrank = MPI_PROC_NULL;
55
56 /* Get into the main loop of the odd-even sorting algorithm */
57 for (i=0; i<npes-1; i++) {
58 if (i%2 == 1) /* Odd phase */
59 MPI_Sendrecv(elmnts, nlocal, MPI_INT, oddrank, 1, relmnts,
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60 nlocal, MPI_INT, oddrank, 1, MPI_COMM_WORLD, &status);
61 else /* Even phase */
62 MPI_Sendrecv(elmnts, nlocal, MPI_INT, evenrank, 1, relmnts,
63 nlocal, MPI_INT, evenrank, 1, MPI_COMM_WORLD, &status);
64
65 CompareSplit(nlocal, elmnts, relmnts, wspace,
66 myrank < status.MPI_SOURCE);
67 }
68
69 free(elmnts); free(relmnts); free(wspace);
70 MPI_Finalize();
71 }
72
73 /* This is the CompareSplit function */
74 CompareSplit(int nlocal, int ∗elmnts, int ∗relmnts, int ∗wspace,
75 int keepsmall)
76 {
77 int i, j, k;
78
79 for (i=0; i<nlocal; i++)
80 wspace[i] = elmnts[i]; /* Copy the elmnts array into the wspace array */
81
82 if (keepsmall) { /* Keep the nlocal smaller elements */
83 for (i=j=k=0; k<nlocal; k++) {
84 if (j == nlocal || (i < nlocal && wspace[i] < relmnts[j]))
85 elmnts[k] = wspace[i++];
86 else
87 elmnts[k] = relmnts[j++];
88 }
89 }
90 else { /* Keep the nlocal larger elements */
91 for (i=k=nlocal-1, j=nlocal-1; k>=0; k--) {
92 if (j == 0 || (i >= 0 && wspace[i] >= relmnts[j]))
93 elmnts[k] = wspace[i--];
94 else
95 elmnts[k] = relmnts[j--];
96 }
97 }
98 }
99

100 /* The IncOrder function that is called by qsort is defined as follows */
101 int IncOrder(const void ∗e1, const void ∗e2)
102 {
103 return (∗((int ∗)e1) - ∗((int ∗)e2));
104 }

6.4 Topologies and Embedding

MPI views the processes as being arranged in a one-dimensional topology and uses a linear
ordering to number the processes. However, in many parallel programs, processes are
naturally arranged in higher-dimensional topologies (e.g., two- or three-dimensional). In
such programs, both the computation and the set of interacting processes are naturally
identified by their coordinates in that topology. For example, in a parallel program in
which the processes are arranged in a two-dimensional topology, process (i, j) may need
to send message to (or receive message from) process (k, l). To implement these programs
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Figure 6.5 Different ways to map a set of processes to a two-dimensional grid. (a) and (b) show a
row- and column-wise mapping of these processes, (c) shows a mapping that follows a space-filling
curve (dotted line), and (d) shows a mapping in which neighboring processes are directly connected
in a hypercube.

in MPI, we need to map each MPI process to a process in that higher-dimensional topology.
Many such mappings are possible. Figure 6.5 illustrates some possible mappings of

eight MPI processes onto a 4×4 two-dimensional topology. For example, for the mapping
shown in Figure 6.5(a), an MPI process with rank rank corresponds to process (row, col)
in the grid such that row = rank/4 and col = rank%4 (where ‘%’ is C’s module operator).
As an illustration, the process with rank 7 is mapped to process (1, 3) in the grid.

In general, the goodness of a mapping is determined by the pattern of interaction among
the processes in the higher-dimensional topology, the connectivity of physical processors,
and the mapping of MPI processes to physical processors. For example, consider a pro-
gram that uses a two-dimensional topology and each process needs to communicate with
its neighboring processes along the x and y directions of this topology. Now, if the pro-
cessors of the underlying parallel system are connected using a hypercube interconnection
network, then the mapping shown in Figure 6.5(d) is better, since neighboring processes in
the grid are also neighboring processors in the hypercube topology.

However, the mechanism used by MPI to assign ranks to the processes in a communi-
cation domain does not use any information about the interconnection network, making it
impossible to perform topology embeddings in an intelligent manner. Furthermore, even
if we had that information, we will need to specify different mappings for different in-
terconnection networks, diminishing the architecture independent advantages of MPI. A
better approach is to let the library itself compute the most appropriate embedding of a
given topology to the processors of the underlying parallel computer. This is exactly the
approach facilitated by MPI. MPI provides a set of routines that allows the programmer
to arrange the processes in different topologies without having to explicitly specify how
these processes are mapped onto the processors. It is up to the MPI library to find the most
appropriate mapping that reduces the cost of sending and receiving messages.

6.4.1 Creating and Using Cartesian Topologies

MPI provides routines that allow the specification of virtual process topologies of arbitrary
connectivity in terms of a graph. Each node in the graph corresponds to a process and two
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nodes are connected if they communicate with each other. Graphs of processes can be used
to specify any desired topology. However, most commonly used topologies in message-
passing programs are one-, two-, or higher-dimensional grids, that are also referred to
as Cartesian topologies. For this reason, MPI provides a set of specialized routines for
specifying and manipulating this type of multi-dimensional grid topologies.

MPI’s function for describing Cartesian topologies is called MPI_Cart_create. Its
calling sequence is as follows.

int MPI_Cart_create(MPI_Comm comm_old, int ndims, int *dims,
int *periods, int reorder, MPI_Comm *comm_cart)

This function takes the group of processes that belong to the communicator comm_old
and creates a virtual process topology. The topology information is attached to a new com-
municator comm_cart that is created by MPI_Cart_create. Any subsequent MPI
routines that want to take advantage of this new Cartesian topology must use comm_cart
as the communicator argument. Note that all the processes that belong to the comm_old
communicator must call this function. The shape and properties of the topology are speci-
fied by the arguments ndims, dims, and periods. The argument ndims specifies the
number of dimensions of the topology. The array dims specify the size along each di-
mension of the topology. The i th element of this array stores the size of the i th dimension
of the topology. The array periods is used to specify whether or not the topology has
wraparound connections. In particular, if periods[i] is true (non-zero in C), then the
topology has wraparound connections along dimension i , otherwise it does not. Finally, the
argument reorder is used to determine if the processes in the new group (i.e., communi-
cator) are to be reordered or not. If reorder is false, then the rank of each process in the
new group is identical to its rank in the old group. Otherwise, MPI_Cart_create may
reorder the processes if that leads to a better embedding of the virtual topology onto the
parallel computer. If the total number of processes specified in the dims array is smaller
than the number of processes in the communicator specified by comm_old, then some
processes will not be part of the Cartesian topology. For this set of processes, the value
of comm_cart will be set to MPI_COMM_NULL (an MPI defined constant). Note that it
will result in an error if the total number of processes specified by dims is greater than the
number of processes in the comm_old communicator.

Process Naming When a Cartesian topology is used, each process is better identified
by its coordinates in this topology. However, all MPI functions that we described for
sending and receiving messages require that the source and the destination of each message
be specified using the rank of the process. For this reason, MPI provides two functions,
MPI_Cart_rank and MPI_Cart_coord, for performing coordinate-to-rank and rank-
to-coordinate translations, respectively. The calling sequences of these routines are the
following:

int MPI_Cart_rank(MPI_Comm comm_cart, int *coords, int *rank)
int MPI_Cart_coord(MPI_Comm comm_cart, int rank, int maxdims,

int *coords)
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The MPI_Cart_rank takes the coordinates of the process as argument in the coords
array and returns its rank in rank. The MPI_Cart_coords takes the rank of the process
rank and returns its Cartesian coordinates in the array coords, of length maxdims.
Note that maxdims should be at least as large as the number of dimensions in the Cartesian
topology specified by the communicator comm_cart.

Frequently, the communication performed among processes in a Cartesian topology
is that of shifting data along a dimension of the topology. MPI provides the function
MPI_Cart_shift, that can be used to compute the rank of the source and destination
processes for such operation. The calling sequence of this function is the following:

int MPI_Cart_shift(MPI_Comm comm_cart, int dir, int s_step,
int *rank_source, int *rank_dest)

The direction of the shift is specified in the dir argument, and is one of the dimensions
of the topology. The size of the shift step is specified in the s_step argument. The
computed ranks are returned in rank_source and rank_dest. If the Cartesian topol-
ogy was created with wraparound connections (i.e., the periods[dir] entry was set to
true), then the shift wraps around. Otherwise, a MPI_PROC_NULL value is returned for
rank_source and/or rank_dest for those processes that are outside the topology.

6.4.2 Example: Cannon’s Matrix-Matrix Multiplication

To illustrate how the various topology functions are used we will implement Cannon’s
algorithm for multiplying two matrices A and B, described in Section 8.2.2. Cannon’s
algorithm views the processes as being arranged in a virtual two-dimensional square array.
It uses this array to distribute the matrices A, B, and the result matrix C in a block fashion.
That is, if n × n is the size of each matrix and p is the total number of process, then each
matrix is divided into square blocks of size n/

√
p × n/

√
p (assuming that p is a perfect

square). Now, process Pi, j in the grid is assigned the Ai, j , Bi, j , and Ci, j blocks of each
matrix. After an initial data alignment phase, the algorithm proceeds in

√
p steps. In each

step, every process multiplies the locally available blocks of matrices A and B, and then
sends the block of A to the leftward process, and the block of B to the upward process.

Program 6.2 shows the MPI function that implements Cannon’s algorithm. The dimen-
sion of the matrices is supplied in the parameter n. The parameters a, b, and c point to the
locally stored portions of the matrices A, B, and C , respectively. The size of these arrays
is n/

√
p × n/

√
p, where p is the number of processes. This routine assumes that p is a

perfect square and that n is a multiple of
√

p. The parameter comm stores the communi-
cator describing the processes that call the MatrixMatrixMultiply function. Note
that the remaining programs in this chapter will be provided in the form of a function, as
opposed to complete stand-alone programs.
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Program 6.2 Cannon’s Matrix-Matrix Multiplication with MPI’s Topologies

1 MatrixMatrixMultiply(int n, double ∗a, double ∗b, double ∗c,
2 MPI_Comm comm)
3 {
4 int i;
5 int nlocal;
6 int npes, dims[2], periods[2];
7 int myrank, my2drank, mycoords[2];
8 int uprank, downrank, leftrank, rightrank, coords[2];
9 int shiftsource, shiftdest;

10 MPI_Status status;
11 MPI_Comm comm_2d;
12
13 /* Get the communicator related information */
14 MPI_Comm_size(comm, &npes);
15 MPI_Comm_rank(comm, &myrank);
16
17 /* Set up the Cartesian topology */
18 dims[0] = dims[1] = sqrt(npes);
19
20 /* Set the periods for wraparound connections */
21 periods[0] = periods[1] = 1;
22
23 /* Create the Cartesian topology, with rank reordering */
24 MPI_Cart_create(comm, 2, dims, periods, 1, &comm_2d);
25
26 /* Get the rank and coordinates with respect to the new topology */
27 MPI_Comm_rank(comm_2d, &my2drank);
28 MPI_Cart_coords(comm_2d, my2drank, 2, mycoords);
29
30 /* Compute ranks of the up and left shifts */
31 MPI_Cart_shift(comm_2d, 0, -1, &rightrank, &leftrank);
32 MPI_Cart_shift(comm_2d, 1, -1, &downrank, &uprank);
33
34 /* Determine the dimension of the local matrix block */
35 nlocal = n/dims[0];
36
37 /* Perform the initial matrix alignment. First for A and then for B */
38 MPI_Cart_shift(comm_2d, 0, -mycoords[0], &shiftsource, &shiftdest);
39 MPI_Sendrecv_replace(a, nlocal∗nlocal, MPI_DOUBLE, shiftdest,
40 1, shiftsource, 1, comm_2d, &status);
41
42 MPI_Cart_shift(comm_2d, 1, -mycoords[1], &shiftsource, &shiftdest);
43 MPI_Sendrecv_replace(b, nlocal∗nlocal, MPI_DOUBLE,
44 shiftdest, 1, shiftsource, 1, comm_2d, &status);
45
46 /* Get into the main computation loop */
47 for (i=0; i<dims[0]; i++) {
48 MatrixMultiply(nlocal, a, b, c); /* c = c + a*b */
49
50 /* Shift matrix a left by one */
51 MPI_Sendrecv_replace(a, nlocal∗nlocal, MPI_DOUBLE,
52 leftrank, 1, rightrank, 1, comm_2d, &status);
53
54 /* Shift matrix b up by one */
55 MPI_Sendrecv_replace(b, nlocal∗nlocal, MPI_DOUBLE,
56 uprank, 1, downrank, 1, comm_2d, &status);
57 }
58
59 /* Restore the original distribution of a and b */
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60 MPI_Cart_shift(comm_2d, 0, +mycoords[0], &shiftsource, &shiftdest);
61 MPI_Sendrecv_replace(a, nlocal∗nlocal, MPI_DOUBLE,
62 shiftdest, 1, shiftsource, 1, comm_2d, &status);
63
64 MPI_Cart_shift(comm_2d, 1, +mycoords[1], &shiftsource, &shiftdest);
65 MPI_Sendrecv_replace(b, nlocal∗nlocal, MPI_DOUBLE,
66 shiftdest, 1, shiftsource, 1, comm_2d, &status);
67
68 MPI_Comm_free(&comm_2d); /* Free up communicator */
69 }
70
71 /* This function performs a serial matrix-matrix multiplication c = a*b */
72 MatrixMultiply(int n, double ∗a, double ∗b, double ∗c)
73 {
74 int i, j, k;
75
76 for (i=0; i<n; i++)
77 for (j=0; j<n; j++)
78 for (k=0; k<n; k++)
79 c[i∗n+j] += a[i∗n+k]∗b[k∗n+j];
80 }

6.5 Overlapping Communication with Computation

The MPI programs we developed so far used blocking send and receive operations when-
ever they needed to perform point-to-point communication. Recall that a blocking send
operation remains blocked until the message has been copied out of the send buffer (either
into a system buffer at the source process or sent to the destination process). Similarly, a
blocking receive operation returns only after the message has been received and copied into
the receive buffer. For example, consider Cannon’s matrix-matrix multiplication program
described in Program 6.2. During each iteration of its main computational loop (lines 47–
57), it first computes the matrix multiplication of the sub-matrices stored in a and b, and
then shifts the blocks of a and b, using MPI_Sendrecv_replace which blocks until
the specified matrix block has been sent and received by the corresponding processes. In
each iteration, each process spends O(n3/p1.5) time for performing the matrix-matrix mul-
tiplication and O(n2/p) time for shifting the blocks of matrices A and B. Now, since the
blocks of matrices A and B do not change as they are shifted among the processors, it will
be preferable if we can overlap the transmission of these blocks with the computation for
the matrix-matrix multiplication, as many recent distributed-memory parallel computers
have dedicated communication controllers that can perform the transmission of messages
without interrupting the CPUs.

6.5.1 Non-Blocking Communication Operations

In order to overlap communication with computation, MPI provides a pair of functions for
performing non-blocking send and receive operations. These functions are MPI_Isend
and MPI_Irecv. MPI_Isend starts a send operation but does not complete, that is, it
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returns before the data is copied out of the buffer. Similarly, MPI_Irecv starts a receive
operation but returns before the data has been received and copied into the buffer. With the
support of appropriate hardware, the transmission and reception of messages can proceed
concurrently with the computations performed by the program upon the return of the above
functions.

However, at a later point in the program, a process that has started a non-blocking send
or receive operation must make sure that this operation has completed before it proceeds
with its computations. This is because a process that has started a non-blocking send
operation may want to overwrite the buffer that stores the data that are being sent, or
a process that has started a non-blocking receive operation may want to use the data it
requested. To check the completion of non-blocking send and receive operations, MPI
provides a pair of functions MPI_Test and MPI_Wait. The first tests whether or not a
non-blocking operation has finished and the second waits (i.e., gets blocked) until a non-
blocking operation actually finishes.

The calling sequences of MPI_Isend and MPI_Irecv are the following:

int MPI_Isend(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Request *request)

Note that these functions have similar arguments as the corresponding blocking send and
receive functions. The main difference is that they take an additional argument request.
MPI_Isend and MPI_Irecv functions allocate a request object and return a pointer to
it in the request variable. This request object is used as an argument in the MPI_Test
and MPI_Wait functions to identify the operation whose status we want to query or to
wait for its completion.

Note that the MPI_Irecv function does not take a status argument similar to the
blocking receive function, but the status information associated with the receive operation
is returned by the MPI_Test and MPI_Wait functions.

int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)
int MPI_Wait(MPI_Request *request, MPI_Status *status)

MPI_Test tests whether or not the non-blocking send or receive operation identified
by its request has finished. It returns flag = {true} (non-zero value in C) if it
completed, otherwise it returns {false} (a zero value in C). In the case that the non-
blocking operation has finished, the request object pointed to by request is deallocated
and request is set to MPI_REQUEST_NULL. Also the status object is set to contain
information about the operation. If the operation has not finished, request is not mod-
ified and the value of the status object is undefined. The MPI_Wait function blocks
until the non-blocking operation identified by request completes. In that case it deal-
locates the request object, sets it to MPI_REQUEST_NULL, and returns information
about the completed operation in the status object.
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For the cases that the programmer wants to explicitly deallocate a request object, MPI
provides the following function.

int MPI_Request_free(MPI_Request *request)

Note that the deallocation of the request object does not have any effect on the associated
non-blocking send or receive operation. That is, if it has not yet completed it will proceed
until its completion. Hence, one must be careful before explicitly deallocating a request
object, since without it, we cannot check whether or not the non-blocking operation has
completed.

A non-blocking communication operation can be matched with a corresponding block-
ing operation. For example, a process can send a message using a non-blocking send
operation and this message can be received by the other process using a blocking receive
operation.

Avoiding Deadlocks By using non-blocking communication operations we can re-
move most of the deadlocks associated with their blocking counterparts. For example, as
we discussed in Section 6.3 the following piece of code is not safe.

1 int a[10], b[10], myrank;
2 MPI_Status status;
3 ...
4 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
5 if (myrank == 0) {
6 MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD);
7 MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD);
8 }
9 else if (myrank == 1) {
10 MPI_Recv(b, 10, MPI_INT, 0, 2, &status, MPI_COMM_WORLD);
11 MPI_Recv(a, 10, MPI_INT, 0, 1, &status, MPI_COMM_WORLD);
12 }
13 ...

However, if we replace either the send or receive operations with their non-blocking coun-
terparts, then the code will be safe, and will correctly run on any MPI implementation.

1 int a[10], b[10], myrank;
2 MPI_Status status;
3 MPI_Request requests[2];
4 ...
5 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
6 if (myrank == 0) {
7 MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD);
8 MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD);
9 }
10 else if (myrank == 1) {
11 MPI_Irecv(b, 10, MPI_INT, 0, 2, &requests[0], MPI_COMM_WORLD);
12 MPI_Irecv(a, 10, MPI_INT, 0, 1, &requests[1], MPI_COMM_WORLD);
13 }
14 ...
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This example also illustrates that the non-blocking operations started by any process can
finish in any order depending on the transmission or reception of the corresponding mes-
sages. For example, the second receive operation will finish before the first does.

Example: Cannon’s Matrix-Matrix Multiplication (Using Non-Blocking
Operations)

Program 6.3 shows the MPI program that implements Cannon’s algorithm using non-
blocking send and receive operations. The various parameters are identical to those of
Program 6.2.

Program 6.3 Non-Blocking Cannon’s Matrix-Matrix Multiplication

1 MatrixMatrixMultiply_NonBlocking(int n, double ∗a, double ∗b,
2 double ∗c, MPI_Comm comm)
3 {
4 int i, j, nlocal;
5 double ∗a_buffers[2], ∗b_buffers[2];
6 int npes, dims[2], periods[2];
7 int myrank, my2drank, mycoords[2];
8 int uprank, downrank, leftrank, rightrank, coords[2];
9 int shiftsource, shiftdest;

10 MPI_Status status;
11 MPI_Comm comm_2d;
12 MPI_Request reqs[4];
13
14 /* Get the communicator related information */
15 MPI_Comm_size(comm, &npes);
16 MPI_Comm_rank(comm, &myrank);
17
18 /* Set up the Cartesian topology */
19 dims[0] = dims[1] = sqrt(npes);
20
21 /* Set the periods for wraparound connections */
22 periods[0] = periods[1] = 1;
23
24 /* Create the Cartesian topology, with rank reordering */
25 MPI_Cart_create(comm, 2, dims, periods, 1, &comm_2d);
26
27 /* Get the rank and coordinates with respect to the new topology */
28 MPI_Comm_rank(comm_2d, &my2drank);
29 MPI_Cart_coords(comm_2d, my2drank, 2, mycoords);
30
31 /* Compute ranks of the up and left shifts */
32 MPI_Cart_shift(comm_2d, 0, -1, &rightrank, &leftrank);
33 MPI_Cart_shift(comm_2d, 1, -1, &downrank, &uprank);
34
35 /* Determine the dimension of the local matrix block */
36 nlocal = n/dims[0];
37
38 /* Setup the a_buffers and b_buffers arrays */
39 a_buffers[0] = a;
40 a_buffers[1] = (double ∗)malloc(nlocal∗nlocal∗sizeof(double));
41 b_buffers[0] = b;
42 b_buffers[1] = (double ∗)malloc(nlocal∗nlocal∗sizeof(double));
43
44 /* Perform the initial matrix alignment. First for A and then for B */
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45 MPI_Cart_shift(comm_2d, 0, -mycoords[0], &shiftsource, &shiftdest);
46 MPI_Sendrecv_replace(a_buffers[0], nlocal∗nlocal, MPI_DOUBLE,
47 shiftdest, 1, shiftsource, 1, comm_2d, &status);
48
49 MPI_Cart_shift(comm_2d, 1, -mycoords[1], &shiftsource, &shiftdest);
50 MPI_Sendrecv_replace(b_buffers[0], nlocal∗nlocal, MPI_DOUBLE,
51 shiftdest, 1, shiftsource, 1, comm_2d, &status);
52
53 /* Get into the main computation loop */
54 for (i=0; i<dims[0]; i++) {
55 MPI_Isend(a_buffers[i%2], nlocal∗nlocal, MPI_DOUBLE,
56 leftrank, 1, comm_2d, &reqs[0]);
57 MPI_Isend(b_buffers[i%2], nlocal∗nlocal, MPI_DOUBLE,
58 uprank, 1, comm_2d, &reqs[1]);
59 MPI_Irecv(a_buffers[(i+1)%2], nlocal∗nlocal, MPI_DOUBLE,
60 rightrank, 1, comm_2d, &reqs[2]);
61 MPI_Irecv(b_buffers[(i+1)%2], nlocal∗nlocal, MPI_DOUBLE,
62 downrank, 1, comm_2d, &reqs[3]);
63
64 /* c = c + a*b */
65 MatrixMultiply(nlocal, a_buffers[i%2], b_buffers[i%2], c);
66
67 for (j=0; j<4; j++)
68 MPI_Wait(&reqs[j], &status);
69 }
70
71 /* Restore the original distribution of a and b */
72 MPI_Cart_shift(comm_2d, 0, +mycoords[0], &shiftsource, &shiftdest);
73 MPI_Sendrecv_replace(a_buffers[i%2], nlocal∗nlocal, MPI_DOUBLE,
74 shiftdest, 1, shiftsource, 1, comm_2d, &status);
75
76 MPI_Cart_shift(comm_2d, 1, +mycoords[1], &shiftsource, &shiftdest);
77 MPI_Sendrecv_replace(b_buffers[i%2], nlocal∗nlocal, MPI_DOUBLE,
78 shiftdest, 1, shiftsource, 1, comm_2d, &status);
79
80 MPI_Comm_free(&comm_2d); /* Free up communicator */
81
82 free(a_buffers[1]);
83 free(b_buffers[1]);
84 }

There are two main differences between the blocking program (Program 6.2) and this
non-blocking one. The first difference is that the non-blocking program requires the use
of the additional arrays a buffers and b buffers, that are used as the buffer of the blocks
of A and B that are being received while the computation involving the previous blocks is
performed. The second difference is that in the main computational loop, it first starts the
non-blocking send operations to send the locally stored blocks of A and B to the processes
left and up the grid, and then starts the non-blocking receive operations to receive the
blocks for the next iteration from the processes right and down the grid. Having initiated
these four non-blocking operations, it proceeds to perform the matrix-matrix multiplication
of the blocks it currently stores. Finally, before it proceeds to the next iteration, it uses
MPI_Wait to wait for the send and receive operations to complete.

Note that in order to overlap communication with computation we have to use two aux-
iliary arrays – one for A and one for B. This is to ensure that incoming messages never
overwrite the blocks of A and B that are used in the computation, which proceeds concur-
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rently with the data transfer. Thus, increased performance (by overlapping communication
with computation) comes at the expense of increased memory requirements. This is a
trade-off that is often made in message-passing programs, since communication overheads
can be quite high for loosely coupled distributed memory parallel computers.

6.6 Collective Communication and Computation
Operations

MPI provides an extensive set of functions for performing many commonly used collective
communication operations. In particular, the majority of the basic communication opera-
tions described in Chapter 4 are supported by MPI. All of the collective communication
functions provided by MPI take as an argument a communicator that defines the group of
processes that participate in the collective operation. All the processes that belong to this
communicator participate in the operation, and all of them must call the collective commu-
nication function. Even though collective communication operations do not act like barri-
ers (i.e., it is possible for a processor to go past its call for the collective communication
operation even before other processes have reached it), it acts like a virtual synchroniza-
tion step in the following sense: the parallel program should be written such that it behaves
correctly even if a global synchronization is performed before and after the collective call.
Since the operations are virtually synchronous, they do not require tags. In some of the
collective functions data is required to be sent from a single process (source-process) or to
be received by a single process (target-process). In these functions, the source- or target-
process is one of the arguments supplied to the routines. All the processes in the group
(i.e., communicator) must specify the same source- or target-process. For most collective
communication operations, MPI provides two different variants. The first transfers equal-
size data to or from each process, and the second transfers data that can be of different
sizes.

6.6.1 Barrier

The barrier synchronization operation is performed in MPI using the MPI_Barrier func-
tion.

int MPI_Barrier(MPI_Comm comm)

The only argument of MPI_Barrier is the communicator that defines the group of pro-
cesses that are synchronized. The call to MPI_Barrier returns only after all the pro-
cesses in the group have called this function.

6.6.2 Broadcast

The one-to-all broadcast operation described in Section 4.1 is performed in MPI using the
MPI_Bcast function.
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Table 6.3 Predefined reduction operations.

Operation Meaning Datatypes

MPI_MAX Maximum C integers and floating point
MPI_MIN Minimum C integers and floating point
MPI_SUM Sum C integers and floating point
MPI_PROD Product C integers and floating point
MPI_LAND Logical AND C integers
MPI_BAND Bit-wise AND C integers and byte
MPI_LOR Logical OR C integers
MPI_BOR Bit-wise OR C integers and byte
MPI_LXOR Logical XOR C integers
MPI_BXOR Bit-wise XOR C integers and byte
MPI_MAXLOC max-min value-location Data-pairs
MPI_MINLOC min-min value-location Data-pairs

int MPI_Bcast(void *buf, int count, MPI_Datatype datatype,
int source, MPI_Comm comm)

MPI_Bcast sends the data stored in the buffer buf of process source to all the other
processes in the group. The data received by each process is stored in the buffer buf. The
data that is broadcast consist of count entries of type datatype. The amount of data
sent by the source process must be equal to the amount of data that is being received by
each process; i.e., the count and datatype fields must match on all processes.

6.6.3 Reduction

The all-to-one reduction operation described in Section 4.1 is performed in MPI using the
MPI_Reduce function.

int MPI_Reduce(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int target,
MPI_Comm comm)

MPI_Reduce combines the elements stored in the buffer sendbuf of each process in
the group, using the operation specified in op, and returns the combined values in the
buffer recvbuf of the process with rank target. Both the sendbuf and recvbuf
must have the same number of count items of type datatype. Note that all processes
must provide a recvbuf array, even if they are not the target of the reduction operation.
When count is more than one, then the combine operation is applied element-wise on
each entry of the sequence. All the processes must call MPI_Reducewith the same value
for count, datatype, op, target, and comm.

MPI provides a list of predefined operations that can be used to combine the elements
stored in sendbuf. MPI also allows programmers to define their own operations, which is
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Value
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MinLoc(Value, Process) = (11, 2)

MaxLoc(Value, Process) = (17, 1)

Figure 6.6 An example use of the MPI MINLOC and MPI MAXLOC operators.

not covered in this book. The predefined operations are shown in Table 6.3. For example,
in order to compute the maximum of the elements stored in sendbuf, the MPI_MAX value
must be used for the op argument. Not all of these operations can be applied to all possible
data-types supported by MPI. For example, a bit-wise OR operation (i.e., op = MPI_BOR)
is not defined for real-valued data-types such as MPI_FLOAT and MPI_REAL. The last
column of Table 6.3 shows the various data-types that can be used with each operation.

The operation MPI_MAXLOC combines pairs of values (vi , li ) and returns the pair (v, l)
such that v is the maximum among all vi ’s and l is the smallest among all li ’s such that
v = vi . Similarly, MPI_MINLOC combines pairs of values and returns the pair (v, l) such
that v is the minimum among all vi ’s and l is the smallest among all li ’s such that v = vi .
One possible application of MPI_MAXLOC or MPI_MINLOC is to compute the maximum
or minimum of a list of numbers each residing on a different process and also the rank
of the first process that stores this maximum or minimum, as illustrated in Figure 6.6.
Since both MPI_MAXLOC and MPI_MINLOC require datatypes that correspond to pairs of
values, a new set of MPI datatypes have been defined as shown in Table 6.4. In C, these
datatypes are implemented as structures containing the corresponding types.

When the result of the reduction operation is needed by all the processes, MPI provides
the MPI_Allreduce operation that returns the result to all the processes. This function
provides the functionality of the all-reduce operation described in Section 4.3.

Table 6.4 MPI datatypes for data-pairs used with the MPI MAXLOC and MPI MINLOC reduc-
tion operations.

MPI Datatype C Datatype

MPI_2INT pair of ints
MPI_SHORT_INT short and int
MPI_LONG_INT long and int
MPI_LONG_DOUBLE_INT long double and int
MPI_FLOAT_INT float and int
MPI_DOUBLE_INT double and int
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int MPI_Allreduce(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

Note that there is no target argument since all processes receive the result of the opera-
tion.

6.6.4 Prefix

The prefix-sum operation described in Section 4.3 is performed in MPI using the MPI_Scan
function.

int MPI_Scan(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

MPI_Scan performs a prefix reduction of the data stored in the buffer sendbuf at each
process and returns the result in the buffer recvbuf. The receive buffer of the process
with rank i will store, at the end of the operation, the reduction of the send buffers of
the processes whose ranks range from 0 up to and including i . The type of supported
operations (i.e., op) as well as the restrictions on the various arguments of MPI_Scan are
the same as those for the reduction operation MPI_Reduce.

6.6.5 Gather

The gather operation described in Section 4.4 is performed in MPI using the MPI_Gather
function.

int MPI_Gather(void *sendbuf, int sendcount,
MPI_Datatype senddatatype, void *recvbuf, int recvcount,
MPI_Datatype recvdatatype, int target, MPI_Comm comm)

Each process, including the target process, sends the data stored in the array sendbuf
to the target process. As a result, if p is the number of processors in the communication
comm, the target process receives a total of p buffers. The data is stored in the array
recvbuf of the target process, in a rank order. That is, the data from process with rank i
are stored in the recvbuf starting at location i ∗ sendcount (assuming that the array
recvbuf is of the same type as recvdatatype).

The data sent by each process must be of the same size and type. That is, MPI_Gather
must be called with the sendcount and senddatatype arguments having the same
values at each process. The information about the receive buffer, its length and type ap-
plies only for the target process and is ignored for all the other processes. The argument
recvcount specifies the number of elements received by each process and not the total
number of elements it receives. So, recvcount must be the same as sendcount and
their datatypes must be matching.

MPI also provides the MPI_Allgather function in which the data are gathered to all
the processes and not only at the target process.
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int MPI_Allgather(void *sendbuf, int sendcount,
MPI_Datatype senddatatype, void *recvbuf, int recvcount,
MPI_Datatype recvdatatype, MPI_Comm comm)

The meanings of the various parameters are similar to those for MPI_Gather; however,
each process must now supply a recvbuf array that will store the gathered data.

In addition to the above versions of the gather operation, in which the sizes of the
arrays sent by each process are the same, MPI also provides versions in which the size
of the arrays can be different. MPI refers to these operations as the vector variants. The
vector variants of the MPI_Gather and MPI_Allgather operations are provided by
the functions MPI_Gatherv and MPI_Allgatherv, respectively.

int MPI_Gatherv(void *sendbuf, int sendcount,
MPI_Datatype senddatatype, void *recvbuf,
int *recvcounts, int *displs,
MPI_Datatype recvdatatype, int target, MPI_Comm comm)

int MPI_Allgatherv(void *sendbuf, int sendcount,
MPI_Datatype senddatatype, void *recvbuf,
int *recvcounts, int *displs, MPI_Datatype recvdatatype,
MPI_Comm comm)

These functions allow a different number of data elements to be sent by each process by
replacing the recvcount parameter with the array recvcounts. The amount of data
sent by process i is equal to recvcounts[i]. Note that the size of recvcounts is
equal to the size of the communicator comm. The array parameter displs, which is also
of the same size, is used to determine where in recvbuf the data sent by each process
will be stored. In particular, the data sent by process i are stored in recvbuf starting at
location displs[i]. Note that, as opposed to the non-vector variants, the sendcount
parameter can be different for different processes.

6.6.6 Scatter

The scatter operation described in Section 4.4 is performed in MPI using the MPI_Scatter
function.

int MPI_Scatter(void *sendbuf, int sendcount,
MPI_Datatype senddatatype, void *recvbuf, int recvcount,
MPI_Datatype recvdatatype, int source, MPI_Comm comm)

The source process sends a different part of the send buffer sendbuf to each pro-
cesses, including itself. The data that are received are stored in recvbuf. Process i
receives sendcount contiguous elements of type senddatatype starting from the
i ∗sendcount location of the sendbuf of the source process (assuming that sendbuf
is of the same type as senddatatype). MPI_Scatter must be called by all the
processes with the same values for the sendcount, senddatatype, recvcount,
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recvdatatype, source, and comm arguments. Note again that sendcount is the
number of elements sent to each individual process.

Similarly to the gather operation, MPI provides a vector variant of the scatter opera-
tion, called MPI_Scatterv, that allows different amounts of data to be sent to different
processes.

int MPI_Scatterv(void *sendbuf, int *sendcounts, int *displs,
MPI_Datatype senddatatype, void *recvbuf, int recvcount,
MPI_Datatype recvdatatype, int source, MPI_Comm comm)

As we can see, the parameter sendcount has been replaced by the array sendcounts
that determines the number of elements to be sent to each process. In particular, the
target process sends sendcounts[i] elements to process i . Also, the array displs
is used to determine where in sendbuf these elements will be sent from. In particular,
if sendbuf is of the same type is senddatatype, the data sent to process i start at
location displs[i] of array sendbuf. Both the sendcounts and displs arrays
are of size equal to the number of processes in the communicator. Note that by appropri-
ately setting the displs array we can use MPI_Scatterv to send overlapping regions
of sendbuf.

6.6.7 All-to-All

The all-to-all personalized communication operation described in Section 4.5 is performed
in MPI by using the MPI_Alltoall function.

int MPI_Alltoall(void *sendbuf, int sendcount,
MPI_Datatype senddatatype, void *recvbuf, int recvcount,
MPI_Datatype recvdatatype, MPI_Comm comm)

Each process sends a different portion of the sendbuf array to each other process, in-
cluding itself. Each process sends to process i sendcount contiguous elements of type
senddatatype starting from the i ∗ sendcount location of its sendbuf array. The
data that are received are stored in the recvbuf array. Each process receives from pro-
cess i recvcount elements of type recvdatatype and stores them in its recvbuf
array starting at location i ∗ recvcount. MPI_Alltoall must be called by all the
processes with the same values for the sendcount, senddatatype, recvcount,
recvdatatype, and comm arguments. Note that sendcount and recvcount are
the number of elements sent to, and received from, each individual process.

MPI also provides a vector variant of the all-to-all personalized communication oper-
ation called MPI_Alltoallv that allows different amounts of data to be sent to and
received from each process.

int MPI_Alltoallv(void *sendbuf, int *sendcounts, int *sdispls
MPI_Datatype senddatatype, void *recvbuf, int *recvcounts,
int *rdispls, MPI_Datatype recvdatatype, MPI_Comm comm)
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The parameter sendcounts is used to specify the number of elements sent to each pro-
cess, and the parameter sdispls is used to specify the location in sendbuf in which
these elements are stored. In particular, each process sends to process i , starting at lo-
cation sdispls[i] of the array sendbuf, sendcounts[i] contiguous elements.
The parameter recvcounts is used to specify the number of elements received by
each process, and the parameter rdispls is used to specify the location in recvbuf

in which these elements are stored. In particular, each process receives from process i
recvcounts[i] elements that are stored in contiguous locations of recvbuf starting
at location rdispls[i]. MPI_Alltoallv must be called by all the processes with
the same values for the senddatatype, recvdatatype, and comm arguments.

6.6.8 Example: One-Dimensional Matrix-Vector Multiplication

Our first message-passing program using collective communications will be to multiply a
dense n × n matrix A with a vector b, i.e., x = Ab. As discussed in Section 8.1, one
way of performing this multiplication in parallel is to have each process compute different
portions of the product-vector x . In particular, each one of the p processes is responsible
for computing n/p consecutive elements of x . This algorithm can be implemented in MPI
by distributing the matrix A in a row-wise fashion, such that each process receives the
n/p rows that correspond to the portion of the product-vector x it computes. Vector b is
distributed in a fashion similar to x .

Program 6.4 shows the MPI program that uses a row-wise distribution of matrix A. The
dimension of the matrices is supplied in the parameter n, the parameters a and b point
to the locally stored portions of matrix A and vector b, respectively, and the parameter x
points to the local portion of the output matrix-vector product. This program assumes that
n is a multiple of the number of processors.

Program 6.4 Row-wise Matrix-Vector Multiplication

1 RowMatrixVectorMultiply(int n, double ∗a, double ∗b, double ∗x,
2 MPI_Comm comm)
3 {
4 int i, j;
5 int nlocal; /* Number of locally stored rows of A */
6 double ∗fb; /* Will point to a buffer that stores the entire vector b */
7 int npes, myrank;
8 MPI_Status status;
9

10 /* Get information about the communicator */
11 MPI_Comm_size(comm, &npes);
12 MPI_Comm_rank(comm, &myrank);
13
14 /* Allocate the memory that will store the entire vector b */
15 fb = (double ∗)malloc(n∗sizeof(double));
16
17 nlocal = n/npes;
18
19 /* Gather the entire vector b on each processor using MPI’s ALLGATHER operation */
20 MPI_Allgather(b, nlocal, MPI_DOUBLE, fb, nlocal, MPI_DOUBLE,
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21 comm);
22
23 /* Perform the matrix-vector multiplication involving the locally stored submatrix */
24 for (i=0; i<nlocal; i++) {
25 x[i] = 0.0;
26 for (j=0; j<n; j++)
27 x[i] += a[i∗n+j]∗fb[j];
28 }
29
30 free(fb);
31 }

An alternate way of computing x is to parallelize the task of performing the dot-product
for each element of x . That is, for each element xi , of vector x , all the processes will
compute a part of it, and the result will be obtained by adding up these partial dot-products.
This algorithm can be implemented in MPI by distributing matrix A in a column-wise
fashion. Each process gets n/p consecutive columns of A, and the elements of vector b
that correspond to these columns. Furthermore, at the end of the computation we want the
product-vector x to be distributed in a fashion similar to vector b. Program 6.5 shows the
MPI program that implements this column-wise distribution of the matrix.

Program 6.5 Column-wise Matrix-Vector Multiplication

1 ColMatrixVectorMultiply(int n, double ∗a, double ∗b, double ∗x,
2 MPI_Comm comm)
3 {
4 int i, j;
5 int nlocal;
6 double ∗px;
7 double ∗fx;
8 int npes, myrank;
9 MPI_Status status;

10
11 /* Get identity and size information from the communicator */
12 MPI_Comm_size(comm, &npes);
13 MPI_Comm_rank(comm, &myrank);
14
15 nlocal = n/npes;
16
17 /* Allocate memory for arrays storing intermediate results. */
18 px = (double ∗)malloc(n∗sizeof(double));
19 fx = (double ∗)malloc(n∗sizeof(double));
20
21 /* Compute the partial-dot products that correspond to the local columns of A. */
22 for (i=0; i<n; i++) {
23 px[i] = 0.0;
24 for (j=0; j<nlocal; j++)
25 px[i] += a[i∗nlocal+j]∗b[j];
26 }
27
28 /* Sum-up the results by performing an element-wise reduction operation */
29 MPI_Reduce(px, fx, n, MPI_DOUBLE, MPI_SUM, 0, comm);
30
31 /* Redistribute fx in a fashion similar to that of vector b */
32 MPI_Scatter(fx, nlocal, MPI_DOUBLE, x, nlocal, MPI_DOUBLE, 0,
33 comm);
34
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35 free(px); free(fx);
36 }

Comparing these two programs for performing matrix-vector multiplication we see that
the row-wise version needs to perform only a MPI_Allgather operation whereas the
column-wise program needs to perform a MPI_Reduce and a MPI_Scatter operation.
In general, a row-wise distribution is preferable as it leads to small communication over-
head (see Problem 6.6). However, many times, an application needs to compute not only
Ax but also AT x . In that case, the row-wise distribution can be used to compute Ax , but
the computation of AT x requires the column-wise distribution (a row-wise distribution of
A is a column-wise distribution of its transpose AT ). It is much cheaper to use the program
for the column-wise distribution than to transpose the matrix and then use the row-wise
program. We must also note that using a dual of the all-gather operation, it is possible
to develop a parallel formulation for column-wise distribution that is as fast as the pro-
gram using row-wise distribution (see Problem 6.7). However, this dual operation is not
available in MPI.

6.6.9 Example: Single-Source Shortest-Path

Our second message-passing program that uses collective communication operations com-
putes the shortest paths from a source-vertex s to all the other vertices in a graph using
Dijkstra’s single-source shortest-path algorithm described in Section 10.3. This program
is shown in Program 6.6.

The parameter n stores the total number of vertices in the graph, and the parameter
source stores the vertex from which we want to compute the single-source shortest path.
The parameter wgt points to the locally stored portion of the weighted adjacency matrix
of the graph. The parameter lengths points to a vector that will store the length of the
shortest paths from source to the locally stored vertices. Finally, the parameter comm is
the communicator to be used by the MPI routines. Note that this routine assumes that the
number of vertices is a multiple of the number of processors.

Program 6.6 Dijkstra’s Single-Source Shortest-Path

1 SingleSource(int n, int source, int ∗wgt, int ∗lengths, MPI_Comm comm)
2 {
3 int i, j;
4 int nlocal; /* The number of vertices stored locally */
5 int ∗marker; /* Used to mark the vertices belonging to Vo */
6 int firstvtx; /* The index number of the first vertex that is stored locally */
7 int lastvtx; /* The index number of the last vertex that is stored locally */
8 int u, udist;
9 int lminpair[2], gminpair[2];

10 int npes, myrank;
11 MPI_Status status;
12
13 MPI_Comm_size(comm, &npes);
14 MPI_Comm_rank(comm, &myrank);
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15
16 nlocal = n/npes;
17 firstvtx = myrank∗nlocal;
18 lastvtx = firstvtx+nlocal-1;
19
20 /* Set the initial distances from source to all the other vertices */
21 for (j=0; j<nlocal; j++)
22 lengths[j] = wgt[source∗nlocal + j];
23
24 /* This array is used to indicate if the shortest part to a vertex has been found or not. */
25 /* if marker[v] is one, then the shortest path to v has been found, otherwise it has not. */
26 marker = (int ∗)malloc(nlocal∗sizeof(int));
27 for (j=0; j<nlocal; j++)
28 marker[j] = 1;
29
30 /* The process that stores the source vertex, marks it as being seen */
31 if (source >= firstvtx && source <= lastvtx)
32 marker[source-firstvtx] = 0;
33
34 /* The main loop of Dijkstra’s algorithm */
35 for (i=1; i<n; i++) {
36 /* Step 1: Find the local vertex that is at the smallest distance from source */
37 lminpair[0] = MAXINT; /* set it to an architecture dependent large number */
38 lminpair[1] = -1;
39 for (j=0; j<nlocal; j++) {
40 if (marker[j] && lengths[j] < lminpair[0]) {
41 lminpair[0] = lengths[j];
42 lminpair[1] = firstvtx+j;
43 }
44 }
45
46 /* Step 2: Compute the global minimum vertex, and insert it into Vc */
47 MPI_Allreduce(lminpair, gminpair, 1, MPI_2INT, MPI_MINLOC,
48 comm);
49 udist = gminpair[0];
50 u = gminpair[1];
51
52 /* The process that stores the minimum vertex, marks it as being seen */
53 if (u == lminpair[1])
54 marker[u-firstvtx] = 0;
55
56 /* Step 3: Update the distances given that u got inserted */
57 for (j=0; j<nlocal; j++) {
58 if (marker[j] && udist + wgt[u∗nlocal+j] < lengths[j])
59 lengths[j] = udist + wgt[u∗nlocal+j];
60 }
61 }
62
63 free(marker);
64 }

The main computational loop of Dijkstra’s parallel single-source shortest path algorithm
performs three steps. First, each process finds the locally stored vertex in Vo that has the
smallest distance from the source. Second, the vertex that has the smallest distance over all
processes is determined, and it is included in Vc. Third, all processes update their distance
arrays to reflect the inclusion of the new vertex in Vc.

The first step is performed by scanning the locally stored vertices in Vo and determin-
ing the one vertex v with the smaller lengths[v] value. The result of this computation is
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stored in the array lminpair. In particular, lminpair[0] stores the distance of the vertex, and
lminpair[1] stores the vertex itself. The reason for using this storage scheme will become
clear when we consider the next step, in which we must compute the vertex that has the
smallest overall distance from the source. We can find the overall shortest distance by per-
forming a min-reduction on the distance values stored in lminpair[0]. However, in addition
to the shortest distance, we also need to know the vertex that is at that shortest distance.
For this reason, the appropriate reduction operation is the MPI_MINLOC which returns
both the minimum as well as an index value associated with that minimum. Because of
MPI_MINLOC we use the two-element array lminpair to store the distance as well as the
vertex that achieves this distance. Also, because the result of the reduction operation is
needed by all the processes to perform the third step, we use the MPI_Allreduce op-
eration to perform the reduction. The result of the reduction operation is returned in the
gminpair array. The third and final step during each iteration is performed by scanning
the local vertices that belong in Vo and updating their shortest distances from the source
vertex.

Avoiding Load Imbalances Program 6.6 assigns n/p consecutive columns of W to
each processor and in each iteration it uses the MPI_MINLOC reduction operation to select
the vertex v to be included in Vc. Recall that the MPI_MINLOC operation for the pairs
(a, i) and (a, j) will return the one that has the smaller index (since both of them have
the same value). Consequently, among the vertices that are equally close to the source
vertex, it favors the smaller numbered vertices. This may lead to load imbalances, because
vertices stored in lower-ranked processes will tend to be included in Vc faster than vertices
in higher-ranked processes (especially when many vertices in Vo are at the same minimum
distance from the source). Consequently, the size of the set Vo will be larger in higher-
ranked processes, dominating the overall runtime.

One way of correcting this problem is to distribute the columns of W using a cyclic
distribution. In this distribution process i gets every pth vertex starting from vertex i . This
scheme also assigns n/p vertices to each process but these vertices have indices that span
almost the entire graph. Consequently, the preference given to lower-numbered vertices by
MPI_MINLOC does not lead to load-imbalance problems.

6.6.10 Example: Sample Sort

The last problem requiring collective communications that we will consider is that of sort-
ing a sequence A of n elements using the sample sort algorithm described in Section 9.5.
The program is shown in Program 6.7.

The SampleSort function takes as input the sequence of elements stored at each
process and returns a pointer to an array that stores the sorted sequence as well as the
number of elements in this sequence. The elements of this SampleSort function are
integers and they are sorted in increasing order. The total number of elements to be sorted
is specified by the parameter n and a pointer to the array that stores the local portion of
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these elements is specified by elmnts. On return, the parameter nsorted will store the
number of elements in the returned sorted array. This routine assumes that n is a multiple
of the number of processes.

Program 6.7 Samplesort

1 int ∗SampleSort(int n, int ∗elmnts, int ∗nsorted, MPI_Comm comm)
2 {
3 int i, j, nlocal, npes, myrank;
4 int ∗sorted_elmnts, ∗splitters, ∗allpicks;
5 int ∗scounts, ∗sdispls, ∗rcounts, ∗rdispls;
6
7 /* Get communicator-related information */
8 MPI_Comm_size(comm, &npes);
9 MPI_Comm_rank(comm, &myrank);

10
11 nlocal = n/npes;
12
13 /* Allocate memory for the arrays that will store the splitters */
14 splitters = (int ∗)malloc(npes∗sizeof(int));
15 allpicks = (int ∗)malloc(npes∗(npes-1)∗sizeof(int));
16
17 /* Sort local array */
18 qsort(elmnts, nlocal, sizeof(int), IncOrder);
19
20 /* Select local npes-1 equally spaced elements */
21 for (i=1; i<npes; i++)
22 splitters[i-1] = elmnts[i∗nlocal/npes];
23
24 /* Gather the samples in the processors */
25 MPI_Allgather(splitters, npes-1, MPI_INT, allpicks, npes-1,
26 MPI_INT, comm);
27
28 /* sort these samples */
29 qsort(allpicks, npes∗(npes-1), sizeof(int), IncOrder);
30
31 /* Select splitters */
32 for (i=1; i<npes; i++)
33 splitters[i-1] = allpicks[i∗npes];
34 splitters[npes-1] = MAXINT;
35
36 /* Compute the number of elements that belong to each bucket */
37 scounts = (int ∗)malloc(npes∗sizeof(int));
38 for (i=0; i<npes; i++)
39 scounts[i] = 0;
40
41 for (j=i=0; i<nlocal; i++) {
42 if (elmnts[i] < splitters[j])
43 scounts[j]++;
44 else
45 scounts[++j]++;
46 }
47
48 /* Determine the starting location of each bucket’s elements in the elmnts array */
49 sdispls = (int ∗)malloc(npes∗sizeof(int));
50 sdispls[0] = 0;
51 for (i=1; i<npes; i++)
52 sdispls[i] = sdispls[i-1]+scounts[i-1];
53
54 /* Perform an all-to-all to inform the corresponding processes of the number of elements */
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55 /* they are going to receive. This information is stored in rcounts array */
56 rcounts = (int ∗)malloc(npes∗sizeof(int));
57 MPI_Alltoall(scounts, 1, MPI_INT, rcounts, 1, MPI_INT, comm);
58
59 /* Based on rcounts determine where in the local array the data from each processor */
60 /* will be stored. This array will store the received elements as well as the final */
61 /* sorted sequence */
62 rdispls = (int ∗)malloc(npes∗sizeof(int));
63 rdispls[0] = 0;
64 for (i=1; i<npes; i++)
65 rdispls[i] = rdispls[i-1]+rcounts[i-1];
66
67 ∗nsorted = rdispls[npes-1]+rcounts[i-1];
68 sorted_elmnts = (int ∗)malloc((∗nsorted)∗sizeof(int));
69
70 /* Each process sends and receives the corresponding elements, using the MPI_Alltoallv */
71 /* operation. The arrays scounts and sdispls are used to specify the number of elements */
72 /* to be sent and where these elements are stored, respectively. The arrays rcounts */
73 /* and rdispls are used to specify the number of elements to be received, and where these */
74 /* elements will be stored, respectively. */
75 MPI_Alltoallv(elmnts, scounts, sdispls, MPI_INT, sorted_elmnts,
76 rcounts, rdispls, MPI_INT, comm);
77
78 /* Perform the final local sort */
79 qsort(sorted_elmnts, ∗nsorted, sizeof(int), IncOrder);
80
81 free(splitters); free(allpicks); free(scounts); free(sdispls);
82 free(rcounts); free(rdispls);
83
84 return sorted_elmnts;
85 }

6.7 Groups and Communicators

In many parallel algorithms, communication operations need to be restricted to certain sub-
sets of processes. MPI provides several mechanisms for partitioning the group of processes
that belong to a communicator into subgroups each corresponding to a different communi-
cator. A general method for partitioning a graph of processes is to use MPI_Comm_split
that is defined as follows:

int MPI_Comm_split(MPI_Comm comm, int color, int key,
MPI_Comm *newcomm)

This function is a collective operation, and thus needs to be called by all the processes in the
communicator comm. The function takes color and key as input parameters in addition
to the communicator, and partitions the group of processes in the communicator comm
into disjoint subgroups. Each subgroup contains all processes that have supplied the same
value for the color parameter. Within each subgroup, the processes are ranked in the
order defined by the value of the key parameter, with ties broken according to their rank in
the old communicator (i.e., comm). A new communicator for each subgroup is returned in
the newcomm parameter. Figure 6.7 shows an example of splitting a communicator using
the MPI_Comm_split function. If each process called MPI_Comm_split using the
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MPI_Comm_split

0 1 2 3 4 5 6 7

0 1 2 0 1 2

0 00 1 1 1 1 2

1 1 1 1 1 1 1 1

color

key
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4 0

original rank

new rank

Figure 6.7 Using MPI Comm split to split a group of processes in a communicator into sub-
groups.

values of parameters color and key as shown in Figure 6.7, then three communicators
will be created, containing processes {0, 1, 2}, {3, 4, 5, 6}, and {7}, respectively.

Splitting Cartesian Topologies In many parallel algorithms, processes are arranged
in a virtual grid, and in different steps of the algorithm, communication needs to be re-
stricted to a different subset of the grid. MPI provides a convenient way to partition a
Cartesian topology to form lower-dimensional grids.

MPI provides the MPI_Cart_sub function that allows us to partition a Cartesian
topology into sub-topologies that form lower-dimensional grids. For example, we can par-
tition a two-dimensional topology into groups, each consisting of the processes along the
row or column of the topology. The calling sequence of MPI_Cart_sub is the following:

int MPI_Cart_sub(MPI_Comm comm_cart, int *keep_dims,
MPI_Comm *comm_subcart)

The array keep_dims is used to specify how the Cartesian topology is partitioned. In
particular, if keep_dims[i] is true (non-zero value in C) then the ith dimension is re-
tained in the new sub-topology. For example, consider a three-dimensional topology of
size 2 × 4 × 7. If keep_dims is {true, false, true}, then the original topology is split
into four two-dimensional sub-topologies of size 2 × 7, as illustrated in Figure 6.8(a).
If keep_dims is {false, false, true}, then the original topology is split into eight one-
dimensional topologies of size seven, illustrated in Figure 6.8(b). Note that the number of
sub-topologies created is equal to the product of the number of processes along the dimen-
sions that are not being retained. The original topology is specified by the communicator
comm_cart, and the returned communicator comm_subcart stores information about
the created sub-topology. Only a single communicator is returned to each process, and for
processes that do not belong to the same sub-topology, the group specified by the returned
communicator is different.

The processes belonging to a given sub-topology can be determined as follows. Con-
sider a three-dimensional topology of size d1 × d2 × d3, and assume that keep_dims is
set to {true, false, true}. The group of processes that belong to the same sub-topology as the
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Figure 6.8 Splitting a Cartesian topology of size 2×4×7 into (a) four subgroups of size 2×1×7,
and (b) eight subgroups of size 1 × 1 × 7.

process with coordinates (x, y, z) is given by (∗, y, ∗), where a ‘*’ in a coordinate denotes
all the possible values for this coordinate. Note also that since the second coordinate can
take d2 values, a total of d2 sub-topologies are created.

Also, the coordinate of a process in a sub-topology created by MPI_Cart_sub can
be obtained from its coordinate in the original topology by disregarding the coordinates
that correspond to the dimensions that were not retained. For example, the coordinate
of a process in the column-based sub-topology is equal to its row-coordinate in the two-
dimensional topology. For instance, the process with coordinates (2, 3) has a coordinate of
(2) in the sub-topology that corresponds to the third column of the grid.

6.7.1 Example: Two-Dimensional Matrix-Vector Multiplication

In Section 6.6.8, we presented two programs for performing the matrix-vector multipli-
cation x = Ab using a row- and column-wise distribution of the matrix. As discussed
in Section 8.1.2, an alternative way of distributing matrix A is to use a two-dimensional
distribution, giving rise to the two-dimensional parallel formulations of the matrix-vector
multiplication algorithm.

Program 6.8 shows how these topologies and their partitioning are used to implement
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the two-dimensional matrix-vector multiplication. The dimension of the matrix is supplied
in the parameter n, the parameters a and b point to the locally stored portions of matrix
A and vector b, respectively, and the parameter x points to the local portion of the output
matrix-vector product. Note that only the processes along the first column of the process
grid will store b initially, and that upon return, the same set of processes will store the
result x. For simplicity, the program assumes that the number of processes p is a perfect
square and that n is a multiple of

√
p.

Program 6.8 Two-Dimensional Matrix-Vector Multiplication

1 MatrixVectorMultiply_2D(int n, double ∗a, double ∗b, double ∗x,
2 MPI_Comm comm)
3 {
4 int ROW=0, COL=1; /* Improve readability */
5 int i, j, nlocal;
6 double ∗px; /* Will store partial dot products */
7 int npes, dims[2], periods[2], keep_dims[2];
8 int myrank, my2drank, mycoords[2];
9 int other_rank, coords[2];

10 MPI_Status status;
11 MPI_Comm comm_2d, comm_row, comm_col;
12
13 /* Get information about the communicator */
14 MPI_Comm_size(comm, &npes);
15 MPI_Comm_rank(comm, &myrank);
16
17 /* Compute the size of the square grid */
18 dims[ROW] = dims[COL] = sqrt(npes);
19
20 nlocal = n/dims[ROW];
21
22 /* Allocate memory for the array that will hold the partial dot-products */
23 px = malloc(nlocal∗sizeof(double));
24
25 /* Set up the Cartesian topology and get the rank & coordinates of the process in this topology */
26 periods[ROW] = periods[COL] = 1; /* Set the periods for wrap-around connections */
27
28 MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, 1, &comm_2d);
29
30 MPI_Comm_rank(comm_2d, &my2drank); /* Get my rank in the new topology */
31 MPI_Cart_coords(comm_2d, my2drank, 2, mycoords); /* Get my coordinates */
32
33 /* Create the row-based sub-topology */
34 keep_dims[ROW] = 0;
35 keep_dims[COL] = 1;
36 MPI_Cart_sub(comm_2d, keep_dims, &comm_row);
37
38 /* Create the column-based sub-topology */
39 keep_dims[ROW] = 1;
40 keep_dims[COL] = 0;
41 MPI_Cart_sub(comm_2d, keep_dims, &comm_col);
42
43 /* Redistribute the b vector. */
44 /* Step 1. The processors along the 0th column send their data to the diagonal processors */
45 if (mycoords[COL] == 0 && mycoords[ROW] != 0) { /* I’m in the first column */
46 coords[ROW] = mycoords[ROW];
47 coords[COL] = mycoords[ROW];
48 MPI_Cart_rank(comm_2d, coords, &other_rank);
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49 MPI_Send(b, nlocal, MPI_DOUBLE, other_rank, 1, comm_2d);
50 }
51 if (mycoords[ROW] == mycoords[COL] && mycoords[ROW] != 0) {
52 coords[ROW] = mycoords[ROW];
53 coords[COL] = 0;
54 MPI_Cart_rank(comm_2d, coords, &other_rank);
55 MPI_Recv(b, nlocal, MPI_DOUBLE, other_rank, 1, comm_2d,
56 &status);
57 }
58
59 /* Step 2. The diagonal processors perform a column-wise broadcast */
60 coords[0] = mycoords[COL];
61 MPI_Cart_rank(comm_col, coords, &other_rank);
62 MPI_Bcast(b, nlocal, MPI_DOUBLE, other_rank, comm_col);
63
64 /* Get into the main computational loop */
65 for (i=0; i<nlocal; i++) {
66 px[i] = 0.0;
67 for (j=0; j<nlocal; j++)
68 px[i] += a[i∗nlocal+j]∗b[j];
69 }
70
71 /* Perform the sum-reduction along the rows to add up the partial dot-products */
72 coords[0] = 0;
73 MPI_Cart_rank(comm_row, coords, &other_rank);
74 MPI_Reduce(px, x, nlocal, MPI_DOUBLE, MPI_SUM, other_rank,
75 comm_row);
76
77 MPI_Comm_free(&comm_2d); /* Free up communicator */
78 MPI_Comm_free(&comm_row); /* Free up communicator */
79 MPI_Comm_free(&comm_col); /* Free up communicator */
80
81 free(px);
82 }

6.8 Bibliographic Remarks

The best source for information about MPI is the actual reference of the library itself
[Mes94]. At the time of writing of this book, there have been two major releases of
the MPI standard. The first release, version 1.0, was released in 1994 and its most re-
cent revision, version 1.2, has been implemented by the majority of hardware vendors.
The second release of the MPI standard, version 2.0 [Mes97], contains numerous signifi-
cant enhancements over version 1.x, such as one-sided communication, dynamic process
creation, and extended collective operations. However, despite the fact that the standard
was voted in 1997, there are no widely available MPI-2 implementations that support the
entire set of features specified in that standard. In addition to the above reference manu-
als, a number of books have been written that focus on parallel programming using MPI
[Pac98, GSNL98, GLS99].

In addition to MPI implementations provided by various hardware vendors, there are a
number of publicly available MPI implementations that were developed by various govern-
ment research laboratories and universities. Among them, the MPICH [GLDS96, GL96b]
(available at http://www-unix.mcs.anl.gov/mpi/mpich) distributed by Argonne National
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Laboratories and the LAM-MPI (available at http://www.lam-mpi.org) distributed by In-
diana University are widely used and are portable to a number of different architectures.
In fact, these implementations of MPI have been used as the starting point for a number
of specialized MPI implementations that are suitable for off-the-shelf high-speed intercon-
nection networks such as those based on gigabit Ethernet and Myrinet networks.

Problems

6.1 Describe a message-transfer protocol for buffered sends and receives in which the
buffering is performed only by the sending process. What kind of additional hard-
ware support is needed to make these types of protocols practical?

6.2 One of the advantages of non-blocking communication operations is that they al-
low the transmission of the data to be done concurrently with computations. Dis-
cuss the type of restructuring that needs to be performed on a program to allow for
the maximal overlap of computation with communication. Is the sending process
in a better position to benefit from this overlap than the receiving process?

6.3 As discussed in Section 6.3.4 the MPI standard allows for two different implemen-
tations of the MPI_Send operation – one using buffered-sends and the other using
blocked-sends. Discuss some of the potential reasons why MPI allows these two
different implementations. In particular, consider the cases of different message-
sizes and/or different architectural characteristics.

6.4 Consider the various mappings of 16 processors on a 4 × 4 two-dimensional grid
shown in Figure 6.5. Show how n = √

p × √
p processors will be mapped using

each one of these four schemes.

6.5 Consider Cannon’s matrix-matrix multiplication algorithm. Our discussion of Can-
non’s algorithm has been limited to cases in which A and B are square matrices,
mapped onto a square grid of processes. However, Cannon’s algorithm can be ex-
tended for cases in which A, B, and the process grid are not square. In particular,
let matrix A be of size n × k and matrix B be of size k ×m. The matrix C obtained
by multiplying A and B is of size n × m. Also, let q × r be the number of pro-
cesses in the grid arranged in q rows and r columns. Develop an MPI program for
multiplying two such matrices on a q × r process grid using Cannon’s algorithm.

6.6 Show how the row-wise matrix-vector multiplication program (Program 6.4) needs
to be changed so that it will work correctly in cases in which the dimension of the
matrix does not have to be a multiple of the number of processes.

6.7 Consider the column-wise implementation of matrix-vector product (Program 6.5).
An alternate implementation will be to use MPI_Allreduce to perform the re-
quired reduction operation and then have each process copy the locally stored
elements of vector x from the vector fx. What will be the cost of this imple-
mentation? Another implementation can be to perform p single-node reduction
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operations using a different process as the root. What will be the cost of this im-
plementation?

6.8 Consider Dijkstra’s single-source shortest-path algorithm described in Section 6.6.9.
Describe why a column-wise distribution is preferable to a row-wise distribution
of the weighted adjacency matrix.

6.9 Show how the two-dimensional matrix-vector multiplication program (Program 6.8)
needs to be changed so that it will work correctly for a matrix of size n × m on a
q × r process grid.




