440 lines
13 KiB
C++
440 lines
13 KiB
C++
#include <algorithm>
|
|
#include <array>
|
|
#include <cstring>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <map>
|
|
#include <set>
|
|
#include <vector>
|
|
|
|
#include <mpi.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
#include <utility>
|
|
|
|
// #include <fmt/format.h>
|
|
// #include <fmt/ranges.h>
|
|
|
|
#define TAG_SEND_NUM_EDGES 1001
|
|
#define TAG_SEND_EDGES 1002
|
|
#define TAG_SEND_FINAL_RESULT 1003
|
|
|
|
#define MIN(a, b) \
|
|
({ \
|
|
__typeof__(a) _a = (a); \
|
|
__typeof__(b) _b = (b); \
|
|
_a < _b ? _a : _b; \
|
|
})
|
|
|
|
typedef struct {
|
|
int fst;
|
|
int snd;
|
|
} pair;
|
|
void init_pair_type(MPI_Datatype *out);
|
|
|
|
struct pair_vector {
|
|
pair *ptr;
|
|
int cap;
|
|
int len;
|
|
};
|
|
void pair_vector_init(struct pair_vector *);
|
|
void pair_vector_clear(struct pair_vector *);
|
|
void pair_vector_push(struct pair_vector *v, int fst, int snd);
|
|
|
|
pair compute_node_range(int p, int total_num_nodes, int each_num_nodes,
|
|
int process);
|
|
int lookup_assignment(int *base_node_assignment, pair my_node_range,
|
|
std::map<int, std::set<int>> recv_map, int *recvbuf,
|
|
int *recv_counts, int *recv_displs, int each_num_nodes,
|
|
int rank, int node_number);
|
|
|
|
int main(int argc, char **argv) {
|
|
MPI_Init(&argc, &argv);
|
|
int rank, p;
|
|
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
|
|
MPI_Comm_size(MPI_COMM_WORLD, &p);
|
|
|
|
MPI_Datatype IntPairType;
|
|
init_pair_type(&IntPairType);
|
|
|
|
// One process reads the file and distributes the data to the other processes
|
|
// using a 1D decomposition (each rank gets approx same number of vertices).
|
|
#pragma region
|
|
FILE *fp;
|
|
char *line = NULL;
|
|
size_t len;
|
|
ssize_t read;
|
|
pair params;
|
|
|
|
if (rank == 0) {
|
|
fp = fopen(argv[1], "r");
|
|
|
|
// Read the first line
|
|
if (getline(&line, &len, fp) != -1)
|
|
sscanf(line, "%d %d", ¶ms.fst, ¶ms.snd);
|
|
}
|
|
|
|
// Send the params
|
|
MPI_Bcast(¶ms, 1, IntPairType, 0, MPI_COMM_WORLD);
|
|
int total_num_nodes = params.fst;
|
|
int total_num_edges = params.snd;
|
|
int each_num_nodes = total_num_nodes / p;
|
|
|
|
// Calculate exactly how many nodes my current process holds
|
|
int num_my_nodes =
|
|
rank == p - 1 ? total_num_nodes - rank * each_num_nodes : each_num_nodes;
|
|
int my_nodes[num_my_nodes];
|
|
|
|
pair node_ranges[p];
|
|
for (int i = 0; i < p; ++i)
|
|
node_ranges[i] = compute_node_range(p, total_num_nodes, each_num_nodes, i);
|
|
|
|
// Read the edges
|
|
int num_my_edges;
|
|
pair *my_edges;
|
|
int counts[p], displs[p];
|
|
if (rank == 0) {
|
|
line = NULL;
|
|
// pair all_edges[total_num_edges];
|
|
struct pair_vector all_edges;
|
|
pair_vector_init(&all_edges);
|
|
|
|
// For the current process, what's the last node we're expecting to see?
|
|
int current_process = 0;
|
|
pair current_node_range = node_ranges[current_process];
|
|
int edge_counter = 0;
|
|
|
|
for (int i = 0; i < total_num_edges; ++i) {
|
|
if (getline(&line, &len, fp) == -1)
|
|
break;
|
|
|
|
int fst, snd;
|
|
sscanf(line, "%d %d", &fst, &snd);
|
|
|
|
if (fst >= current_node_range.snd) {
|
|
if (current_process == 0) {
|
|
num_my_edges = edge_counter;
|
|
my_edges = (pair *)calloc(num_my_edges, sizeof(pair));
|
|
memcpy(my_edges, all_edges.ptr, edge_counter * sizeof(pair));
|
|
} else {
|
|
MPI_Send(&edge_counter, 1, MPI_INT, current_process,
|
|
TAG_SEND_NUM_EDGES, MPI_COMM_WORLD);
|
|
MPI_Send(all_edges.ptr, edge_counter, IntPairType, current_process,
|
|
TAG_SEND_EDGES, MPI_COMM_WORLD);
|
|
}
|
|
|
|
// We're starting on the next process
|
|
current_process += 1;
|
|
current_node_range = node_ranges[current_process];
|
|
edge_counter = 0;
|
|
pair_vector_clear(&all_edges);
|
|
}
|
|
|
|
pair_vector_push(&all_edges, fst, snd);
|
|
edge_counter += 1;
|
|
}
|
|
|
|
// We have to send the last one again here, since it didn't get caught in
|
|
// the loop above
|
|
MPI_Send(&edge_counter, 1, MPI_INT, current_process, TAG_SEND_NUM_EDGES,
|
|
MPI_COMM_WORLD);
|
|
MPI_Send(all_edges.ptr, edge_counter, IntPairType, current_process,
|
|
TAG_SEND_EDGES, MPI_COMM_WORLD);
|
|
|
|
free(all_edges.ptr);
|
|
} else {
|
|
MPI_Recv(&num_my_edges, 1, MPI_INT, 0, TAG_SEND_NUM_EDGES, MPI_COMM_WORLD,
|
|
NULL);
|
|
my_edges = (pair *)calloc(num_my_edges, sizeof(pair));
|
|
MPI_Recv(my_edges, num_my_edges, IntPairType, 0, TAG_SEND_EDGES,
|
|
MPI_COMM_WORLD, NULL);
|
|
}
|
|
|
|
if (rank == 0) {
|
|
fclose(fp);
|
|
if (line)
|
|
free(line);
|
|
}
|
|
#pragma endregion
|
|
|
|
// STEP 2 TIMER STARTS HERE
|
|
MPI_Barrier(MPI_COMM_WORLD);
|
|
double step_2_start_time;
|
|
if (rank == 0)
|
|
step_2_start_time = MPI_Wtime();
|
|
|
|
// Each process analyzes the non-local edges that are contained in its portion
|
|
// of the graph.
|
|
#pragma region
|
|
int node_label_assignment_vec[num_my_nodes];
|
|
// std::map<int, int> node_label_assignment;
|
|
pair my_node_range = node_ranges[rank];
|
|
|
|
// Initial node assignment
|
|
for (int idx = 0; idx < num_my_nodes; ++idx) {
|
|
node_label_assignment_vec[idx] = my_node_range.fst + idx;
|
|
}
|
|
|
|
std::map<int, std::set<int>> adj;
|
|
std::set<int> non_local_nodes;
|
|
std::set<std::pair<int, int>> non_local_edges;
|
|
|
|
for (int i = 0; i < num_my_edges; ++i) {
|
|
pair edge = my_edges[i];
|
|
adj[edge.fst].insert(edge.snd);
|
|
|
|
if (!(my_node_range.fst <= edge.fst && edge.fst < my_node_range.snd)) {
|
|
non_local_nodes.insert(edge.fst);
|
|
non_local_edges.insert(std::make_pair(edge.snd, edge.fst));
|
|
}
|
|
|
|
if (!(my_node_range.fst <= edge.snd && edge.snd < my_node_range.snd)) {
|
|
non_local_nodes.insert(edge.snd);
|
|
non_local_edges.insert(std::make_pair(edge.fst, edge.snd));
|
|
}
|
|
}
|
|
#pragma endregion
|
|
|
|
// Each process determines which processors stores the non-local vertices
|
|
// corresponding to the non-local edges.
|
|
#pragma region
|
|
std::map<int, std::set<int>> send_map;
|
|
std::map<int, std::set<int>> recv_map;
|
|
|
|
for (auto entry : non_local_edges) {
|
|
int local_node = entry.first, remote_node = entry.second;
|
|
|
|
int remote_process = remote_node / each_num_nodes;
|
|
// The last process gets some extra nodes
|
|
if (remote_process >= p)
|
|
remote_process = p - 1;
|
|
|
|
send_map[remote_process].insert(local_node);
|
|
recv_map[remote_process].insert(remote_node);
|
|
}
|
|
#pragma endregion
|
|
|
|
// All the processes are communicating to figure out which process needs to
|
|
// send what data to the other processes.
|
|
#pragma region
|
|
#pragma endregion
|
|
|
|
// STEP 5 TIMER STARTS HERE
|
|
MPI_Barrier(MPI_COMM_WORLD);
|
|
double step_5_start_time;
|
|
if (rank == 0)
|
|
step_5_start_time = MPI_Wtime();
|
|
|
|
// The processes perform the transfers of non-local labels and updates of
|
|
// local labels until convergence.
|
|
#pragma region
|
|
while (true) {
|
|
// First, exchange the data that needs to be exchanged
|
|
std::vector<int> sendbuf;
|
|
std::vector<int> send_counts;
|
|
std::vector<int> send_displs;
|
|
std::vector<int> recv_counts;
|
|
std::vector<int> recv_displs;
|
|
|
|
int recv_total;
|
|
{
|
|
int offset = 0;
|
|
for (int i = 0; i < p; ++i) {
|
|
int count = send_map[i].size();
|
|
for (auto local_node : send_map[i]) {
|
|
sendbuf.push_back(
|
|
node_label_assignment_vec[local_node - my_node_range.fst]);
|
|
}
|
|
send_counts.push_back(count);
|
|
send_displs.push_back(offset);
|
|
offset += count;
|
|
}
|
|
|
|
offset = 0;
|
|
for (int i = 0; i < p; ++i) {
|
|
int count = recv_map[i].size();
|
|
recv_counts.push_back(count);
|
|
recv_displs.push_back(offset);
|
|
offset += count;
|
|
}
|
|
recv_total = offset;
|
|
}
|
|
|
|
std::vector<int> recvbuf(recv_total, 0);
|
|
MPI_Alltoallv(sendbuf.data(), send_counts.data(), send_displs.data(),
|
|
MPI_INT, recvbuf.data(), recv_counts.data(),
|
|
recv_displs.data(), MPI_INT, MPI_COMM_WORLD);
|
|
|
|
// For each local node, determine the minimum label out of its neighbors
|
|
std::map<int, int> new_labels;
|
|
for (int i = 0; i < num_my_nodes; ++i) {
|
|
int node = my_node_range.fst + i;
|
|
|
|
// int current_value = total_node_label_assignment[i];
|
|
int current_value = node_label_assignment_vec[i];
|
|
int min = current_value;
|
|
|
|
for (auto neighbor : adj[node]) {
|
|
int neighbor_value = lookup_assignment(
|
|
node_label_assignment_vec, my_node_range, recv_map, recvbuf.data(),
|
|
recv_counts.data(), recv_displs.data(), each_num_nodes, rank,
|
|
neighbor);
|
|
min = MIN(min, neighbor_value);
|
|
}
|
|
|
|
if (min < current_value) {
|
|
new_labels[i] = min;
|
|
}
|
|
}
|
|
|
|
// std::cout << fmt::format("[{}] Helloge {}", rank,
|
|
// fmt::join(new_labels, ", "))
|
|
// << std::endl;
|
|
|
|
// Have there been any changes in the labels?
|
|
int num_changes = new_labels.size();
|
|
int total_changes;
|
|
MPI_Allreduce(&num_changes, &total_changes, 1, MPI_INT, MPI_SUM,
|
|
MPI_COMM_WORLD);
|
|
|
|
if (total_changes == 0) {
|
|
break;
|
|
}
|
|
|
|
// Update the original node assignment
|
|
for (auto entry : new_labels) {
|
|
node_label_assignment_vec[entry.first] = entry.second;
|
|
}
|
|
|
|
if (rank == 0)
|
|
printf("total changes: %d\n", total_changes);
|
|
}
|
|
#pragma endregion
|
|
|
|
// END TIMERS
|
|
MPI_Barrier(MPI_COMM_WORLD);
|
|
double end_time;
|
|
if (rank == 0)
|
|
end_time = MPI_Wtime();
|
|
|
|
if (rank == 0) {
|
|
printf("2-5 Time: %0.04fs\n", end_time - step_2_start_time);
|
|
printf("5 Time: %0.04fs\n", end_time - step_5_start_time);
|
|
}
|
|
|
|
// The results are gathered to a single process, which writes them to the
|
|
// disk.
|
|
#pragma region
|
|
if (rank == 0) {
|
|
std::vector<int> all_assignments(total_num_nodes);
|
|
std::map<int, int> label_count;
|
|
int ctr = 0;
|
|
for (int process_idx = 0; process_idx < p; ++process_idx) {
|
|
pair this_node_range = node_ranges[process_idx];
|
|
int count = this_node_range.snd - this_node_range.fst;
|
|
if (process_idx == 0) {
|
|
for (int j = 0; j < count; ++j) {
|
|
all_assignments[this_node_range.fst + j] =
|
|
node_label_assignment_vec[j];
|
|
label_count[all_assignments[this_node_range.fst + j]]++;
|
|
}
|
|
} else {
|
|
MPI_Recv(&all_assignments[this_node_range.fst], count, MPI_INT,
|
|
process_idx, TAG_SEND_FINAL_RESULT, MPI_COMM_WORLD, NULL);
|
|
for (int j = 0; j < count; ++j) {
|
|
label_count[all_assignments[this_node_range.fst + j]]++;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::cout << "Done! " << label_count.size() << std::endl;
|
|
} else {
|
|
std::vector<int> flat_assignments;
|
|
for (int i = 0; i < num_my_nodes; ++i) {
|
|
flat_assignments.push_back(node_label_assignment_vec[i]);
|
|
}
|
|
MPI_Send(flat_assignments.data(), flat_assignments.size(), MPI_INT, 0,
|
|
TAG_SEND_FINAL_RESULT, MPI_COMM_WORLD);
|
|
}
|
|
#pragma endregion
|
|
|
|
MPI_Finalize();
|
|
return 0;
|
|
}
|
|
|
|
void init_pair_type(MPI_Datatype *out) {
|
|
int blocklengths[2] = {1, 1};
|
|
MPI_Datatype types[2] = {MPI_INT, MPI_INT};
|
|
MPI_Aint offsets[2];
|
|
|
|
offsets[0] = offsetof(pair, fst);
|
|
offsets[1] = offsetof(pair, snd);
|
|
|
|
MPI_Type_create_struct(2, blocklengths, offsets, types, out);
|
|
MPI_Type_commit(out);
|
|
}
|
|
|
|
void pair_vector_init(struct pair_vector *v) {
|
|
const int INITIAL = 100;
|
|
v->ptr = (pair *)malloc(INITIAL * sizeof(pair));
|
|
v->cap = INITIAL;
|
|
v->len = 0;
|
|
}
|
|
|
|
void pair_vector_clear(struct pair_vector *v) { v->len = 0; }
|
|
|
|
void pair_vector_push(struct pair_vector *v, int fst, int snd) {
|
|
if (v->len == v->cap) {
|
|
v->cap *= 2;
|
|
pair *new_loc = (pair *)malloc(v->cap * sizeof(pair));
|
|
for (int i = 0; i < v->len; ++i) {
|
|
new_loc[i].fst = v->ptr[i].fst;
|
|
new_loc[i].snd = v->ptr[i].snd;
|
|
}
|
|
free(v->ptr);
|
|
v->ptr = new_loc;
|
|
}
|
|
|
|
v->ptr[v->len].fst = fst;
|
|
v->ptr[v->len].snd = snd;
|
|
v->len++;
|
|
}
|
|
|
|
pair compute_node_range(int p, int total_num_nodes, int each_num_nodes,
|
|
int process) {
|
|
int start = process * each_num_nodes;
|
|
int end = process == p - 1 ? total_num_nodes : start + each_num_nodes;
|
|
return {.fst = start, .snd = end};
|
|
}
|
|
|
|
int lookup_assignment(int *base_node_assignment, pair my_node_range,
|
|
std::map<int, std::set<int>> recv_map, int *recvbuf,
|
|
int *recv_counts, int *recv_displs, int each_num_nodes,
|
|
int rank, int node_number) {
|
|
int process_from = node_number / each_num_nodes;
|
|
|
|
// Just return from local if local
|
|
if (process_from == rank)
|
|
return base_node_assignment[node_number - my_node_range.fst];
|
|
|
|
int count = recv_counts[process_from];
|
|
int displs = recv_displs[process_from];
|
|
|
|
// Determine what index this node is
|
|
int index = -1, ctr = 0;
|
|
std::vector<int> inner(recv_map[process_from].begin(),
|
|
recv_map[process_from].end());
|
|
for (int i = 0; i < count; ++i) {
|
|
int remote_node = inner[i];
|
|
if (node_number == remote_node) {
|
|
index = ctr;
|
|
break;
|
|
}
|
|
ctr++;
|
|
}
|
|
|
|
// Pull the corresponding value from the map
|
|
return recvbuf[recv_displs[process_from] + index];
|
|
}
|