134 lines
No EOL
3.6 KiB
C
134 lines
No EOL
3.6 KiB
C
#include <mpi.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
void local_quicksort(int *arr, int lo, int hi);
|
|
char *string_of_list(int *arr, int len);
|
|
|
|
int main(int argc, char **argv) {
|
|
int rank, p;
|
|
MPI_Init(&argc, &argv);
|
|
|
|
int n = atoi(argv[1]);
|
|
|
|
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
|
|
MPI_Comm_size(MPI_COMM_WORLD, &p);
|
|
|
|
// Generate integers
|
|
int n_over_p = n / p;
|
|
int integers[n_over_p];
|
|
|
|
// Important implementation detail: srand(0) is specially handled by glibc to
|
|
// behave as if it was called with srand(1). To get around this, I'm seeding
|
|
// with rank + 1
|
|
//
|
|
// See more: https://stackoverflow.com/a/27386563
|
|
srand(rank + 1);
|
|
|
|
for (int i = 0; i < n_over_p; ++i) {
|
|
// TODO: For readability during debugging, I'm capping this
|
|
integers[i] = rand() % 101;
|
|
// printf(" - %d\n", integers[i]);
|
|
}
|
|
|
|
int group_root = 0;
|
|
|
|
// Locally sort
|
|
printf("[%d] Numbers before: %s\n", rank,
|
|
string_of_list(integers, n_over_p));
|
|
local_quicksort(integers, 0, n_over_p);
|
|
printf("[%d] Numbers after first sort: %s\n", rank,
|
|
string_of_list(integers, n_over_p));
|
|
|
|
// Select a pivot.
|
|
// This pivot is broadcasted to all nodes
|
|
int pivot;
|
|
|
|
// The pivot is selected as the median (see chp. 9.4.4)
|
|
// Not the real median though, need an existing element of the array
|
|
pivot = integers[n_over_p / 2];
|
|
MPI_Bcast(&pivot, 1, MPI_INT, 0, MPI_COMM_WORLD);
|
|
|
|
printf("Median: %d\n", pivot);
|
|
|
|
// Determine where the boundary between S (lower) and L (higher) lies
|
|
int boundary;
|
|
for (int i = 0; i < n_over_p; ++i) {
|
|
if (integers[i] >= pivot) {
|
|
boundary = i;
|
|
break;
|
|
}
|
|
}
|
|
int S_lo = 0, S_hi = boundary - 1;
|
|
int L_lo = boundary, L_hi = n_over_p - 1;
|
|
int S_size = S_hi - S_lo + 1, L_size = L_hi - L_lo + 1;
|
|
// printf("[%d] S: [%d - %d] (%d), L: [%d - %d] (%d)\n", rank, S_lo, S_hi,
|
|
// S_size, L_lo, L_hi, L_size);
|
|
|
|
// Perform global arrangement
|
|
int S_global_end, L_global_end;
|
|
MPI_Scan(&S_size, &S_global_end, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
|
|
MPI_Scan(&L_size, &L_global_end, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
|
|
|
|
int S_global_start = S_global_end - S_size,
|
|
L_global_start = L_global_end - L_size;
|
|
printf("[%d] S: [%d - %d], L: [%d - %d]\n", rank, S_global_start,
|
|
S_global_end - 1, L_global_start, L_global_end - 1);
|
|
|
|
// Send it to the correct target
|
|
|
|
// The first node is responsible for collecting all the data and then printing
|
|
// it out to the file
|
|
// MPI_Gather(const void *sendbuf, int sendcount, MPI_INT, void *recvbuf,
|
|
// int recvcount, MPI_INT, 0, MPI_COMM_WORLD);
|
|
if (rank == 0) {
|
|
FILE *f = fopen(argv[2], "w");
|
|
fclose(f);
|
|
}
|
|
|
|
MPI_Finalize();
|
|
return 0;
|
|
}
|
|
|
|
// hi not inclusive
|
|
void local_quicksort(int *arr, int lo, int hi) {
|
|
int temp;
|
|
|
|
if (lo >= hi || lo < 0)
|
|
return;
|
|
|
|
int pivot = arr[hi - 1];
|
|
int pivot_idx = lo - 1;
|
|
for (int j = lo; j < hi; ++j) {
|
|
if (arr[j] < pivot) {
|
|
pivot_idx += 1;
|
|
|
|
temp = arr[j];
|
|
arr[j] = arr[pivot_idx];
|
|
arr[pivot_idx] = temp;
|
|
}
|
|
}
|
|
|
|
pivot_idx += 1;
|
|
temp = arr[hi - 1];
|
|
arr[hi - 1] = arr[pivot_idx];
|
|
arr[pivot_idx] = temp;
|
|
|
|
// Recursive call
|
|
local_quicksort(arr, lo, pivot_idx);
|
|
local_quicksort(arr, pivot_idx + 1, hi);
|
|
}
|
|
|
|
char *string_of_list(int *arr, int len) {
|
|
char *buffer = malloc(1000);
|
|
int offset = 0; // Keep track of the current position in the buffer
|
|
for (int i = 0; i < len; i++) {
|
|
offset += sprintf(buffer + offset, "%d", arr[i]);
|
|
if (i < len - 1) {
|
|
// Add a separator (e.g., comma or space) if it's not the last element
|
|
offset += sprintf(buffer + offset, " ");
|
|
}
|
|
}
|
|
|
|
return buffer;
|
|
} |