csci5451/assignments/04/km_cuda.cu
2023-12-10 16:57:24 -06:00

209 lines
6.5 KiB
Text

// #define _POSIX_C_SOURCE 200809L
#include <stdio.h>
#define CUDACHECK(err) \
do { \
cuda_check((err), __FILE__, __LINE__); \
} while (false)
inline void cuda_check(cudaError_t error_code, const char *file, int line) {
if (error_code != cudaSuccess) {
fprintf(stderr, "CUDA Error %d: %s. In file '%s' on line %d\n", error_code,
cudaGetErrorString(error_code), file, line);
fflush(stderr);
exit(error_code);
}
}
__global__ void findDistanceToCentroid(int N, int K, int dim,
float *centroidDistances, float *data,
float *centroids) {
int t = blockIdx.x; // data index
int c = threadIdx.x; // cluster index
float sum = 0;
for (int d = 0; d < dim; ++d) {
float delta = data[t * dim + d] - centroids[c * dim + d];
sum += delta * delta;
}
centroidDistances[t * K + c] = sqrt(sum);
}
__global__ void assignClosestCentroid(int N, int K, int *dirtyBit,
float *centroidDistances,
int *clusterMap) {
int t = blockIdx.x;
int minIdx = 0;
float minValue = INFINITY;
for (int c = 0; c < K; ++c) {
float dist = centroidDistances[t * K + c];
if (dist < minValue) {
minValue = dist;
minIdx = c;
}
}
// printf("[%d]: minDist %f @ idx %d\n", t, minValue, minIdx);
int oldMinIdx = clusterMap[t];
clusterMap[t] = minIdx;
if (oldMinIdx != minIdx) {
atomicOr(dirtyBit, 1);
}
}
__global__ void recentralizeCentroidSum(int N, int K, int dim, float *data,
float *centroids, int *clusterMap,
unsigned int *clusterCount) {
int t = blockIdx.x; // data index
int c = threadIdx.x; // cluster index
int assignedCluster = clusterMap[t];
if (assignedCluster != c)
return;
atomicAdd((unsigned int *)&clusterCount[c], 1);
for (int d = 0; d < dim; ++d) {
atomicAdd(&centroids[c * dim + d], data[t * dim + d]);
}
}
__global__ void recentralizeCentroidDiv(int dim, float *centroids,
unsigned int *clusterCount) {
int c = threadIdx.x; // cluster index
for (int d = 0; d < dim; ++d) {
centroids[c * dim + d] /= clusterCount[c];
}
}
int main(int argc, char **argv) {
int runtimeVersion, driverVersion;
cudaRuntimeGetVersion(&runtimeVersion);
cudaDriverGetVersion(&driverVersion);
printf("Runtime Version: %d, Driver Version: %d\n", runtimeVersion,
driverVersion);
char *data_file = argv[1];
int num_clusters = atoi(argv[2]);
int num_thread_blocks = atoi(argv[3]);
int num_threads_per_block = atoi(argv[4]);
int N, dim;
float *centroids, // centroids[cluster][dimension]
*data, // data[t][dimension]
*centroidDistances; // centroidDistances[t][cluster]
int *clusterMap, *dirtyBit;
unsigned int *clusterCount;
#pragma region Read in data
{
FILE *fp = fopen(data_file, "r");
// Read first line
size_t n;
char *line = NULL;
if (!getline(&line, &n, fp))
return -1;
sscanf(line, "%d %d", &N, &dim);
free(line);
line = NULL;
// Allocate memory on the GPU
CUDACHECK(
cudaMalloc((void **)&centroids, num_clusters * dim * sizeof(float)));
CUDACHECK(cudaMalloc((void **)&clusterMap, N * sizeof(int)));
CUDACHECK(cudaMallocManaged((void **)&clusterCount,
num_clusters * sizeof(unsigned int)));
CUDACHECK(cudaMalloc((void **)&data, N * dim * sizeof(float)));
CUDACHECK(cudaMalloc((void **)&centroidDistances,
N * num_clusters * sizeof(float)));
CUDACHECK(cudaMallocManaged((void **)&dirtyBit, sizeof(int)));
// Initialize all the cluster mappings to -1 so the first iteration is
// always fully dirty
CUDACHECK(cudaMemset(clusterMap, -1, N * sizeof(int)));
// Read the rest of the lines
{
// Buffer for copying
float *currentLine = (float *)malloc(dim * sizeof(float));
for (int i = 0; i < N; ++i) {
if (!getline(&line, &n, fp))
return -1;
for (int j = 0; j < dim; ++j)
sscanf(line, "%f", &currentLine[j]);
CUDACHECK(cudaMemcpy(&data[i * dim], currentLine, dim * sizeof(float),
cudaMemcpyHostToDevice));
}
free(currentLine);
}
printf("Done copying.\n");
fclose(fp);
}
#pragma endregion
#pragma region Select the initial K centroids
{
CUDACHECK(cudaMemcpy(centroids, data, num_clusters * dim * sizeof(float),
cudaMemcpyDeviceToDevice));
}
#pragma endregion
#pragma region Assign each data point to the closest centroid, \
measured via Euclidean distance.
{
findDistanceToCentroid<<<N, num_clusters>>>(
N, num_clusters, dim, centroidDistances, data, centroids);
CUDACHECK(cudaDeviceSynchronize());
*dirtyBit = 0;
assignClosestCentroid<<<N, 1>>>(N, num_clusters, dirtyBit,
centroidDistances, clusterMap);
CUDACHECK(cudaDeviceSynchronize());
}
printf("Is dirty: %d\n", *dirtyBit);
#pragma endregion
#pragma region
int it = 0;
while (*dirtyBit) {
printf("Iteration %d (dirty=%d)\n", it, *dirtyBit);
// Update each centroid to be the average coordinate of all contained data
// points
CUDACHECK(cudaMemset(clusterCount, 0, num_clusters * sizeof(int)));
CUDACHECK(cudaMemset(centroids, 0, num_clusters * dim * sizeof(float)));
recentralizeCentroidSum<<<N, num_clusters>>>(
N, num_clusters, dim, data, centroids, clusterMap, clusterCount);
CUDACHECK(cudaDeviceSynchronize());
for (int i = 0; i < num_clusters; ++i) {
printf("%d ", clusterCount[i]);
}
printf("\n");
recentralizeCentroidDiv<<<1, num_clusters>>>(dim, centroids, clusterCount);
CUDACHECK(cudaDeviceSynchronize());
// Assign all data points to the closest centroid (measured via Euclidean
// distance).
findDistanceToCentroid<<<N, num_clusters>>>(
N, num_clusters, dim, centroidDistances, data, centroids);
CUDACHECK(cudaDeviceSynchronize());
*dirtyBit = 0;
assignClosestCentroid<<<N, 1>>>(N, num_clusters, dirtyBit,
centroidDistances, clusterMap);
CUDACHECK(cudaDeviceSynchronize());
it++;
}
#pragma endregion
return 0;
}