csci5451/assignments/02/qs_mpi.c

198 lines
5.8 KiB
C

#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
#define ORDER_FORWARDS 1
#define ORDER_BACKWARDS 2
#define GENERIC_MAX(x, y) ((x) > (y) ? (x) : (y))
#define GENERIC_MIN(x, y) ((x) < (y) ? (x) : (y))
#define ENSURE_int(i) _Generic((i), int : (i))
#define ENSURE_float(f) _Generic((f), float : (f))
#define MAX(type, x, y) (type) GENERIC_MAX(ENSURE_##type(x), ENSURE_##type(y))
#define MIN(type, x, y) (type) GENERIC_MIN(ENSURE_##type(x), ENSURE_##type(y))
void local_quicksort(int *arr, int lo, int hi);
char *string_of_list(int *arr, int len);
int main(int argc, char **argv) {
int rank, p;
MPI_Init(&argc, &argv);
int n = atoi(argv[1]);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &p);
// Generate integers
int n_over_p = n / p;
int integers[n_over_p];
// Important implementation detail: srand(0) is specially handled by glibc to
// behave as if it was called with srand(1). To get around this, I'm seeding
// with rank + 1
//
// See more: https://stackoverflow.com/a/27386563
srand(rank + 1);
for (int i = 0; i < n_over_p; ++i) {
// TODO: For readability during debugging, I'm capping this
integers[i] = rand() % 101;
// printf(" - %d\n", integers[i]);
}
int group_root = 0;
// Locally sort
printf("[%d] Numbers before: %s\n", rank,
string_of_list(integers, n_over_p));
local_quicksort(integers, 0, n_over_p);
printf("[%d] Numbers after first sort: %s\n", rank,
string_of_list(integers, n_over_p));
// Select a pivot.
// This pivot is broadcasted to all nodes
int pivot;
// The pivot is selected as the median (see chp. 9.4.4)
// Not the real median though, need an existing element of the array
pivot = integers[n_over_p / 2];
MPI_Bcast(&pivot, 1, MPI_INT, 0, MPI_COMM_WORLD);
printf("Median: %d\n", pivot);
// Determine where the boundary between S (lower) and L (higher) lies
int boundary;
for (int i = 0; i < n_over_p; ++i) {
if (integers[i] >= pivot) {
boundary = i;
break;
}
}
int S_lo = 0, S_hi = boundary - 1;
int L_lo = boundary, L_hi = n_over_p - 1;
int S_size = S_hi - S_lo + 1, L_size = L_hi - L_lo + 1;
printf("[%d] S: [%d - %d] (%d), L: [%d - %d] (%d)\n", rank, S_lo, S_hi,
S_size, L_lo, L_hi, L_size);
// Perform global arrangement
int S_global_end, L_reverse_end;
MPI_Scan(&S_size, &S_global_end, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
MPI_Scan(&L_size, &L_reverse_end, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
int S_global_start = S_global_end - S_size,
L_reverse_start = L_reverse_end - L_size,
L_global_start = n - L_reverse_end, L_global_end = n - L_reverse_start;
printf("[%d] S: [%d - %d], L: [%d - %d]\n", rank, S_global_start,
S_global_end - 1, L_global_start, L_global_end - 1);
{
int recvpart[n_over_p];
int send_counts[p];
int send_displs[p];
for (int i = 0; i < p; ++i) {
send_counts[i] = 0;
send_displs[i] = 0;
}
// Send it to the correct target
int S_starting_process = S_global_start / n_over_p,
L_starting_process = L_global_start / n_over_p;
int S_offset = S_global_start % n_over_p,
L_offset = L_global_start % n_over_p;
for (int i = S_lo, dest_pos = S_global_start,
processor = S_starting_process;
i < S_hi;) {
int next_break = MIN(int, dest_pos + (S_hi - S_lo),
(dest_pos / n_over_p) * n_over_p + n_over_p);
int count = next_break - dest_pos;
int local_start = i, local_end = i + count;
int dest_start = dest_pos, dest_end = dest_pos + count;
printf("[%d] copying from S, local[%d..%d] to dest #%d [%d..%d]\n", rank,
local_start, local_end, processor, dest_start, dest_end);
send_counts[processor] = count;
// int recvbuf[count];
// MPI_Sendrecv(&integers[local_start], count, MPI_INT, processor, 123,
// recvbuf, count, MPI_INT, rank, 123, MPI_COMM_WORLD,
// MPI_STATUS_IGNORE);
i += count;
dest_pos += count;
processor += 1;
}
for (int i = 1; i < p; ++i) {
send_displs[i] = send_displs[i - 1] + send_counts[i - 1];
}
// MPI_Alltoallv(integers, send_counts, send_displs, MPI_INT, recvpart,
// const int *recvcounts, const int *rdispls, MPI_Datatype recvtype,
// MPI_Comm comm)
printf("[%d] send_counts: %s\n", rank, string_of_list(send_counts, p));
printf("[%d] send_displs: %s\n", rank, string_of_list(send_displs, p));
printf("[%d] after: %s\n", rank, string_of_list(recvpart, n_over_p));
}
// The first node is responsible for collecting all the data and then printing
// it out to the file
// MPI_Gather(const void *sendbuf, int sendcount, MPI_INT, void *recvbuf,
// int recvcount, MPI_INT, 0, MPI_COMM_WORLD);
if (rank == 0) {
FILE *f = fopen(argv[2], "w");
fclose(f);
}
MPI_Finalize();
printf("Done.\n");
return 0;
}
// hi not inclusive
void local_quicksort(int *arr, int lo, int hi) {
int temp;
if (lo >= hi || lo < 0)
return;
int pivot = arr[hi - 1];
int pivot_idx = lo - 1;
for (int j = lo; j < hi; ++j) {
if (arr[j] < pivot) {
pivot_idx += 1;
temp = arr[j];
arr[j] = arr[pivot_idx];
arr[pivot_idx] = temp;
}
}
pivot_idx += 1;
temp = arr[hi - 1];
arr[hi - 1] = arr[pivot_idx];
arr[pivot_idx] = temp;
// Recursive call
local_quicksort(arr, lo, pivot_idx);
local_quicksort(arr, pivot_idx + 1, hi);
}
char *string_of_list(int *arr, int len) {
char *buffer = malloc(1000);
int offset = 0; // Keep track of the current position in the buffer
for (int i = 0; i < len; i++) {
offset += sprintf(buffer + offset, "%d", arr[i]);
if (i < len - 1) {
// Add a separator (e.g., comma or space) if it's not the last element
offset += sprintf(buffer + offset, " ");
}
}
return buffer;
}