33 lines
698 B
Mathematica
33 lines
698 B
Mathematica
|
% CSCI 5521 Introduction to Machine Learning
|
||
|
% Rui Kuang
|
||
|
% Demonstration of Classification by 1-D Gaussians
|
||
|
|
||
|
%mean and standard deviation of class blue
|
||
|
mu1 = -2;sd1 = 2;
|
||
|
|
||
|
%mean and standard deviation of class red
|
||
|
mu2 = 2;sd2 = 4;
|
||
|
|
||
|
%generate x-axis
|
||
|
sd = max(sd1,sd2);
|
||
|
ix = -6*sd-1:1e-1:6*sd+1; %covers more than 99% of the curve
|
||
|
|
||
|
iy1 = pdf('normal', ix, mu1, sd1);
|
||
|
iy2 = pdf('normal', ix, mu2, sd2);
|
||
|
|
||
|
subplot(1,2,1);
|
||
|
plot(ix,iy1,'b'); hold on;
|
||
|
plot(ix,iy2,'r');
|
||
|
title('PDF P(X)');
|
||
|
|
||
|
%prior
|
||
|
p1=0.8;
|
||
|
p2=1-p1;
|
||
|
|
||
|
%calculate the posteriors
|
||
|
iy1_n = p1*iy1 ./ (p1*iy1+p2*iy2);
|
||
|
iy2_n = p2*iy2 ./ (p1*iy1+p2*iy2);
|
||
|
subplot(1,2,2);
|
||
|
plot(ix,iy1_n,'b'); hold on;
|
||
|
plot(ix,iy2_n,'r');
|
||
|
title('Posteriors P(C | x)');
|