87 lines
2.3 KiB
Mathematica
87 lines
2.3 KiB
Mathematica
|
function [] = Problem2()
|
||
|
|
||
|
% file names
|
||
|
stadium_fn = "stadium.jpg";
|
||
|
goldy_fn = "goldy.jpg";
|
||
|
|
||
|
% load image and preprocess it
|
||
|
goldy_img = double(imread(goldy_fn))/255;
|
||
|
stadium_img = double(imread(stadium_fn))/255;
|
||
|
|
||
|
% convert RGB images
|
||
|
goldy_x = reshape(permute(goldy_img, [2 1 3]), [], 3); % convert img from NxMx3 to N*Mx3
|
||
|
stadium_x = reshape(permute(stadium_img, [2 1 3]), [], 3);
|
||
|
|
||
|
% get dimensionality of stadium image
|
||
|
[height, width, depth] = size(stadium_img);
|
||
|
|
||
|
% set epochs (number of iterations to run algorithm for)
|
||
|
epochs = 10;
|
||
|
|
||
|
%%%%%%%%%%
|
||
|
% 2(a,b) %
|
||
|
%%%%%%%%%%
|
||
|
index = 1;
|
||
|
figure();
|
||
|
for k = 4:4:12
|
||
|
fprintf("k=%d\n", k);
|
||
|
|
||
|
% call EM on data
|
||
|
[h, m, Q] = EMG(stadium_x, k, epochs, false);
|
||
|
|
||
|
% get compressed version of image
|
||
|
[~,class_index] = max(h,[],2);
|
||
|
compress = m(class_index,:);
|
||
|
|
||
|
% 2(a), plot compressed image
|
||
|
subplot(3,2,index)
|
||
|
imagesc(permute(reshape(compress, [width, height, depth]),[2 1 3]))
|
||
|
index = index + 1;
|
||
|
|
||
|
% 2(b), plot complete data likelihood curves
|
||
|
subplot(3,2,index)
|
||
|
x = 1:size(Q);
|
||
|
c = repmat([1 0 0; 0 1 0], length(x)/2, 1);
|
||
|
scatter(x,Q,20,c);
|
||
|
index = index + 1;
|
||
|
end
|
||
|
shg
|
||
|
|
||
|
%%%%%%%%
|
||
|
% 2(c) %
|
||
|
%%%%%%%%
|
||
|
% get dimensionality of goldy image, and set k=7
|
||
|
[height, width, depth] = size(goldy_img);
|
||
|
k = 7;
|
||
|
|
||
|
% run EM on goldy image
|
||
|
[h, m, Q] = EMG(goldy_x, k, epochs, false);
|
||
|
|
||
|
% plot goldy image using clusters from EM
|
||
|
[~,class_index] = max(h,[],2);
|
||
|
compress = m(class_index,:);
|
||
|
figure();
|
||
|
subplot(2,1,1)
|
||
|
imagesc(permute(reshape(compress, [width, height, depth]),[2 1 3]))
|
||
|
|
||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
% TODO: plot goldy image after using clusters from k-means
|
||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
% begin code here
|
||
|
|
||
|
% end code here
|
||
|
shg
|
||
|
|
||
|
%%%%%%%%
|
||
|
% 2(e) %
|
||
|
%%%%%%%%
|
||
|
% run improved version of EM on goldy image
|
||
|
[h, m, Q] = EMG(goldy_x, k, epochs, true);
|
||
|
|
||
|
% plot goldy image using clusters from improved EM
|
||
|
[~,class_index] = max(h,[],2);
|
||
|
compress = m(class_index,:);
|
||
|
figure();
|
||
|
imagesc(permute(reshape(compress, [width, height, depth]),[2 1 3]))
|
||
|
shg
|
||
|
end
|