edits
This commit is contained in:
parent
295ebd3ae6
commit
744d84b767
2 changed files with 38 additions and 12 deletions
|
@ -14,8 +14,8 @@ mnx=-0.1*mxx;%for visualization %mnx = min(X(1,:));
|
||||||
mxy = max(X(2,:));
|
mxy = max(X(2,:));
|
||||||
mny=-0.1*mxy; % for visualization %mny = min(X(2,:));
|
mny=-0.1*mxy; % for visualization %mny = min(X(2,:));
|
||||||
|
|
||||||
figure;
|
%%% figure;
|
||||||
ginput(1);
|
%%% ginput(1);
|
||||||
err = 1;
|
err = 1;
|
||||||
round = 0;
|
round = 0;
|
||||||
while err > 0
|
while err > 0
|
||||||
|
@ -24,17 +24,17 @@ while err > 0
|
||||||
w = w + rate*X(:,ii) * Y(ii); %then add (or subtract) this point to w
|
w = w + rate*X(:,ii) * Y(ii); %then add (or subtract) this point to w
|
||||||
x1=mnx:0.01:mxx;
|
x1=mnx:0.01:mxx;
|
||||||
x2=-(w(1)*x1+w(3))/w(2);
|
x2=-(w(1)*x1+w(3))/w(2);
|
||||||
%figure;
|
%%% figure;
|
||||||
clf;
|
%%% clf;
|
||||||
hold on
|
%%% hold on
|
||||||
plot(X(1,pos_idx),X(2,pos_idx),'b*','MarkerSize',10);
|
%%% plot(X(1,pos_idx),X(2,pos_idx),'b*','MarkerSize',10);
|
||||||
plot(X(1,neg_idx),X(2,neg_idx),'r+','MarkerSize',10);
|
%%% plot(X(1,neg_idx),X(2,neg_idx),'r+','MarkerSize',10);
|
||||||
plot(X(1,ii),X(2,ii),'ko','MarkerSize',15);
|
%%% plot(X(1,ii),X(2,ii),'ko','MarkerSize',15);
|
||||||
plot(x1,x2);
|
%%% plot(x1,x2);
|
||||||
xlim([mnx mxx]);
|
%%% xlim([mnx mxx]);
|
||||||
ylim([mny mxy]);
|
%%% ylim([mny mxy]);
|
||||||
%ginput(1);
|
%ginput(1);
|
||||||
pause(0.5); %change the delay
|
% pause(0.5); %change the delay
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
round = round + 1
|
round = round + 1
|
||||||
|
|
26
zoo/zoo2.m
Normal file
26
zoo/zoo2.m
Normal file
|
@ -0,0 +1,26 @@
|
||||||
|
% Change K here to any integer < 96
|
||||||
|
K = 60;
|
||||||
|
|
||||||
|
load zoo; %load matlab data
|
||||||
|
sample_idxs = randperm(96, K)
|
||||||
|
sample_data = trn_data(sample_idxs, : )
|
||||||
|
sample_lab = trn_lab(sample_idxs, : )
|
||||||
|
t = fitctree(sample_data,sample_lab,'PredictorNames', fields); %train a decision tree for classification
|
||||||
|
view(t,'Mode','graph'); %visualize the tree t
|
||||||
|
|
||||||
|
% %for visualization
|
||||||
|
% allHandles=findall(groot,'Type','text')
|
||||||
|
% set(allHandles,'FontSize',24)
|
||||||
|
% pause;
|
||||||
|
% h = findall(groot,'Type','figure');
|
||||||
|
% close(h);
|
||||||
|
% for i=1:6
|
||||||
|
% clf(gcf);
|
||||||
|
% imshow(strcat(tst_names{i},'.png'));
|
||||||
|
% set(gcf,'Position',[0 0 700 700]+300);
|
||||||
|
% title(tst_names{i},'FontSize',40);
|
||||||
|
% pause;
|
||||||
|
% y=predict(t,tst_data(i,:)); %classify a test sample by tree t
|
||||||
|
% title(sprintf('%s is %s',tst_names{i},y{1}),'FontSize',40,'color', 'r');
|
||||||
|
% pause;
|
||||||
|
% end
|
Loading…
Reference in a new issue