4iii
This commit is contained in:
parent
7f43b1d097
commit
8a019ca360
1 changed files with 26 additions and 3 deletions
|
@ -8,11 +8,14 @@ function [p1,p2,pc1,pc2] = Bayes_Learning(training_data, validation_data)
|
||||||
[train_row_size, column_size] = size (training_data); % dimension of training data
|
[train_row_size, column_size] = size (training_data); % dimension of training data
|
||||||
[valid_row_size, ~] = size (validation_data); % dimension of validation data
|
[valid_row_size, ~] = size (validation_data); % dimension of validation data
|
||||||
X = training_data(1:train_row_size, 1:column_size-1); %Training data
|
X = training_data(1:train_row_size, 1:column_size-1); %Training data
|
||||||
|
y = training_data(:,column_size); % training labels
|
||||||
|
Xvalid = validation_data(1:valid_row_size, 1:column_size-1); %Training data
|
||||||
|
yvalid = validation_data(:,column_size); % training labels
|
||||||
|
|
||||||
% (1) TODO: find label counts of class 1 and class 2
|
% (1) TODO: find label counts of class 1 and class 2
|
||||||
|
|
||||||
% (2) TODO: get MLE p1, p2
|
% (2) TODO: get MLE p1, p2
|
||||||
|
[p1,p2] = MLE_Learning(training_data);
|
||||||
|
|
||||||
% Use different P(C_1) and P(C_2) on validation set
|
% Use different P(C_1) and P(C_2) on validation set
|
||||||
% We compute g(x) = based on priors P(C_1), P(C_2), MLE estimator p1, p2, and x_{1*D}
|
% We compute g(x) = based on priors P(C_1), P(C_2), MLE estimator p1, p2, and x_{1*D}
|
||||||
|
@ -25,9 +28,29 @@ for sigma = [0.00001,0.0001,0.001,0.01,0.1,1,2,3,4,5,6]
|
||||||
error_count = 0; % total number of errors to be count
|
error_count = 0; % total number of errors to be count
|
||||||
% (3) TODO: compute likelihood for class1 and class2 , then compute the posterior
|
% (3) TODO: compute likelihood for class1 and class2 , then compute the posterior
|
||||||
% probability for both classes (posterior = prior x likelihood).
|
% probability for both classes (posterior = prior x likelihood).
|
||||||
% Classify each validation sample as whichever class has the higher posterior probability.
|
|
||||||
% If the sample is misclassified, increment the error count (error_count = error_count + 1);
|
|
||||||
|
|
||||||
|
for i = 1:valid_row_size
|
||||||
|
|
||||||
|
x = Xvalid(i, :);
|
||||||
|
correct_label = yvalid(i);
|
||||||
|
|
||||||
|
postc1 = prod(p1 .^ x .* (1 - p1) .^ (1 - x)) * P_C1;
|
||||||
|
postc2 = prod(p2 .^ x .* (1 - p2) .^ (1 - x)) * P_C2;
|
||||||
|
|
||||||
|
% Classify each validation sample as whichever class has the higher posterior probability.
|
||||||
|
|
||||||
|
if postc1 > postc2
|
||||||
|
lab = 1;
|
||||||
|
else
|
||||||
|
lab = 2;
|
||||||
|
end
|
||||||
|
|
||||||
|
% If the sample is misclassified, increment the error count (error_count = error_count + 1);
|
||||||
|
|
||||||
|
if lab ~= correct_label
|
||||||
|
error_count = error_count + 1;
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
error_table(index,1) = sigma;
|
error_table(index,1) = sigma;
|
||||||
error_table(index,2) = P_C1;
|
error_table(index,2) = P_C1;
|
||||||
|
|
Loading…
Reference in a new issue