ok kinda works?
This commit is contained in:
parent
b444304a89
commit
bc30320eef
3 changed files with 44 additions and 30 deletions
|
@ -22,12 +22,12 @@ function [h, m, Q] = EMG(x, k, epochs, flag)
|
|||
Q = zeros(epochs*2,1); % vector that can hold complete data log-likelihood after each E and M step
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Initialise cluster means using k-means
|
||||
% TODO: Initialise cluster means using k-means
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
[~, ~, ~, D] = kmeans(x, k);
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Determine the b values for all data points
|
||||
% TODO: Determine the b values for all data points
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
for i = 1:num_data
|
||||
row = D(i,:);
|
||||
|
@ -36,7 +36,7 @@ function [h, m, Q] = EMG(x, k, epochs, flag)
|
|||
end
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Initialize pi's (mixing coefficients)
|
||||
% TODO: Initialize pi's (mixing coefficients)
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
pi = zeros(k, 1);
|
||||
for i = 1:k
|
||||
|
@ -44,8 +44,8 @@ function [h, m, Q] = EMG(x, k, epochs, flag)
|
|||
end
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Initialize the covariance matrix estimate
|
||||
% further modifications will need to be made when doing 2(d)
|
||||
% TODO: Initialize the covariance matrix estimate
|
||||
% further modifications will need to be made when doing 2(d)
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
m = zeros(k, dim);
|
||||
for i = 1:k
|
||||
|
@ -63,21 +63,21 @@ function [h, m, Q] = EMG(x, k, epochs, flag)
|
|||
[h] = E_step(x, h, pi, m, S, k);
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Store the value of the complete log-likelihood function
|
||||
% TODO: Store the value of the complete log-likelihood function
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
L = 0;
|
||||
for i = 1:num_data
|
||||
for j = 1:k
|
||||
prior = mvnpdf(x, m(j, :), S(:, :, j));
|
||||
L = L + h(i, j) * (log(pi(j)) + log(prior(j)));
|
||||
end
|
||||
end
|
||||
% for i = 1:num_data
|
||||
% for j = 1:k
|
||||
% prior = mvnpdf(x, m(j, :), S(:, :, j));
|
||||
% L = L + h(i, j) * (log(pi(i)) + log(prior(i)));
|
||||
% end
|
||||
% end
|
||||
|
||||
%%%%%%%%%%%%%%%%
|
||||
% M-step
|
||||
%%%%%%%%%%%%%%%%
|
||||
fprintf('M-step, epoch #%d\n', n);
|
||||
[Q, S, m] = M_step(x, h, S, k, flag);
|
||||
[S, m, pi] = M_step(x, h, S, k, flag);
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% TODO: Store the value of the complete log-likelihood function
|
||||
|
|
|
@ -14,17 +14,17 @@ function [h] = E_step(x, h, pi, m, S, k)
|
|||
[num_data, ~] = size(x);
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% TODO: perform E-step of EM algorithm
|
||||
% perform E-step of EM algorithm
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
parts = zeros(num_data, k);
|
||||
|
||||
for j = 1:k
|
||||
parts(:, j) = pi(j) * mvnpdf(x, m(j, :), S(:, :, j));
|
||||
for i = 1:k
|
||||
parts(:, i) = pi(i) * mvnpdf(x, m(i, :), S(:, :, i));
|
||||
end
|
||||
|
||||
s = sum(parts);
|
||||
for i = 1:num_data
|
||||
h(i, :) = parts(i, :) ./ s;
|
||||
for j = 1:num_data
|
||||
h(j, :) = parts(j, :) ./ s;
|
||||
end
|
||||
|
||||
end
|
|
@ -21,24 +21,38 @@ function [S, m, pi] = M_step(x, h, S, k, flag)
|
|||
% update mixing coefficients
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
pi = zeros(k, 1);
|
||||
for i = 1:num_data
|
||||
row = h(i, :);
|
||||
maxValue = max(row);
|
||||
maxIdx = find(row == maxValue);
|
||||
pi(maxIdx) = pi(maxIdx) + 1;
|
||||
N_i = zeros(k, 1);
|
||||
for i = 1:k
|
||||
N_i(i) = sum(h(:, i));
|
||||
end
|
||||
pi = pi ./ num_data;
|
||||
pi = N_i / num_data;
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% TODO: update cluster means
|
||||
% update cluster means
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
m = zeros(k, dim);
|
||||
m = h' * x ./ N_i;
|
||||
% for i = 1:k
|
||||
% m(i, :) = sum(h(:, i) .* x(i, :)) / N_i(i);
|
||||
% end
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% TODO: Calculate the covariance matrix estimate
|
||||
% further modifications will need to be made when doing 2(d)
|
||||
% Calculate the covariance matrix estimate
|
||||
% further modifications will need to be made when doing 2(d)
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
S = zeros(dim, dim, k);
|
||||
for i = 1:k
|
||||
% for j = 1:num_data
|
||||
% S(:, :, i) = S(:, :, i) + h(j, i) * (x(j, :) - m(i, :)) * (x(j, :) - m(i, :))';
|
||||
% end
|
||||
s = (x - m(i, :))' * ((x - m(i, :)) .* h(:, i)) / N_i(i);
|
||||
|
||||
% % MAKE IT SYMMETRIC https://stackoverflow.com/a/38730499
|
||||
% S(:, :, i) = (s + s') / 2;
|
||||
% https://www.mathworks.com/matlabcentral/answers/366140-eig-gives-a-negative-eigenvalue-for-a-positive-semi-definite-matrix#answer_290270
|
||||
s = (s + s') / 2;
|
||||
[V, D] = eig(s);
|
||||
S(:, :, i) = V * max(D,eps) / V;
|
||||
end
|
||||
|
||||
end
|
Loading…
Reference in a new issue