This commit is contained in:
Michael Zhang 2023-12-08 05:22:31 -06:00
parent 2e2af889ba
commit e9a0b13c09
5 changed files with 147 additions and 0 deletions

View file

@ -0,0 +1,61 @@
%generate two-class data
rng(1); % For reproducibility
N = 20;
r = sqrt(1*rand(N,1)); % Radius
t = 2*pi*rand(N,1); % Angle
data1 = [r.*cos(t), r.*sin(t)]; % Points
r2 = sqrt(8*rand(N,1)+1); % Radius
t2 = 2*pi*rand(N,1); % Angle
data2 = [r2.*cos(t2), r2.*sin(t2)]; % points
%combine the two class data
data3 = [data1;data2];
theclass = ones(2*N,1);
theclass(1:N) = -1;
figure;
for degree = [1 2 4]
%TO DO: replace fitcsvm with kernel_perceptron
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%SVM classification demo;
% alphas = fitcsvm(data3,theclass,'KernelFunction','polynomial','PolynomialOrder',degree);%tune the sigma parameter here, 1, 3, 0.1
[alphas, b] = kernel_perceptron(data3, theclass, degree);
%[alphas,b] = kernel_perceptron(data3,theclass,degree);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
d = 0.02;
[x1Grid,x2Grid] = meshgrid(min(data3(:,1)):d:max(data3(:,1)),...
min(data3(:,2)):d:max(data3(:,2)));
xGrid = [x1Grid(:),x2Grid(:)];
%TO DO: replace predict with kp_predict
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%SVM prediction demo; replace with kernel perceptron
% [~,scores1] = predict(alphas,data3); %replace it with mypredict(...)
% [~,scores2] = predict(alphas,xGrid); %replace it with mypredict(...)
% scores1 = kp_predict(alphas, b, degree, data3, theclass, data3)
% scores2 = scores2(:,2);
% training_error = CalculateErrorRate(theclass,sign(scores1(:,2)));
scores1 = kp_predict(alphas,b,degree,data3,theclass,data3); %return the prediction scores
scores2 = kp_predict(alphas,b,degree,data3,theclass,xGrid); %return the prediction scores
training_error = CalculateErrorRate(theclass,sign(scores1));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
subplot(5,1,degree);
h(1:2) = gscatter(data3(:,1),data3(:,2),theclass,'rb','.');
hold on
contour(x1Grid,x2Grid,reshape(scores2,size(x1Grid)),[0 0],'k');
plottitle = sprintf("Degree = %d; Training Error = %f",degree,training_error);
title(plottitle);
end
function error_rate = CalculateErrorRate(y_pred,y_label)
N = length(y_label);
error_rate = sum(y_pred ~= y_label)/N;
end

View file

@ -0,0 +1,19 @@
== Problem 1
Results:
#image("prob1.png")
== Problem 2
Original:
$
frac(1, 2) w^T S w - nu rho + sum_t C^t xi^t
$
Find the Lagrangian first:
$
frac(1, 2) w^T S w - nu rho + sum_t C^t xi^t
$

View file

@ -0,0 +1,37 @@
function [alphas, b] = kernel_perceptron(X,Y,d);
N = size(X,1);
err = 1; %error rate
max_iter = 10000; %maximum number of iterations
alphas = zeros(N,1);
b = 0;
t = 1;
while t<=max_iter && err>0
for ii = 1 : N %cycle through training set
%TO DO: update alpha and b
xt = X(ii, :);
yt = Y(ii, :);
sum = 0;
for i = 1 : N
ai = alphas(i);
yi = Y(i);
xi = X(i, :);
sum = sum + ai * yi * dot(xi, xt) ^ d;
end
sum = sum + b;
if sum * yt <= 0
alphas(ii) = alphas(ii) + 1;
b = b + yt;
end
%*******************************
end
t = t+1;
%TO DO: calculate the error rate
%*******************************
end

View file

@ -0,0 +1,30 @@
function scores = kp_predict(alphas, b, d, X, Y, tst_data)
% alphas, b: sample weights and bias term for classification
% d: degree of polynomial kernel <x,y>^d
% X,Y: training data and label
% tst_data: test data for prediction
% scores: the perdiction scores.
N = size(X,1);
%TO DO: calculate the predictions
[tst_size, ~] = size(tst_data);
scores = zeros(tst_size, 1);
for t = 1 : tst_size
xt = tst_data(t, :);
sum = 0;
for i = 1 : N
ai = alphas(i);
yi = Y(i);
xi = X(i, :);
sum = sum + ai * yi * dot(xi, xt) ^ d;
end
sum = sum + b;
scores(t) = sign(sum);
end
%********************************

BIN
assignments/hwk04/prob1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB